
Proceedings of the 7 th International Conference on Applied Informatics
Eger, Hungary, January 28–31, 2007. Vol. 1. pp. 147–154.

Extension of GCC with a fully manageable
reverse engineering front end

Csaba Nagy

Department of Software Engineering, University of Szeged
e-mail: Nagy.Csaba.5@stud.u-szeged.hu

Abstract

In the open source community one of the most popular compilers is GNU
GCC. It is a very complex and robust compiler, but because of its working
mechanism it has no ability for special transformations like interprocedural
optimizations.

A typical compiler has a three sided construction. It has a front end for
analyzes and for building an abstract internal representation of the program,
a middle for transformations (e.g. optimizations), and a back end for final
code generation. However there are smaller but very useful projects for only
front/middle/back ends too, it seems possible to achieve a more effective
compiler by extending GCC with a front end which is capable of running
special algorithms.

This paper shows one solution for this extension. The described method
is based on using Columbus/CAN instead of GCC’s front end, and because
Columbus has a well-structured schema for representing C++ sources, by this
extension the compiler will have the ability to execute those special transfor-
mations on the code before the compiling phases. Furthermore this technique
opens the possibility to connect other front ends – like Edison Design Group’s
C++ front end – to GCC and achieve a more powerful compiler, for example
in code size optimizations.

This approach has been tested on small C projects like bzip2 as a real-
world system, and on parts of the official Code-Size Benchmark Environment
(CSiBE) of GCC.

1. Introduction

For big commercial or even non-commercial projects it is very important to pro-
duce a fully optimized binary code for final release. While developers are working
on the implementation they are usually not able to observe every single optimiza-
tion possibilities so final source analyzes are necessary. The main goal for these
analyzes, can be the better performance for running speed, binary size or anything

147



148 Cs. Nagy

relevant for the target system like the energy consumption for a laptop or a hand-
held device (e.g. PDA). For companies or developers who would like to produce a
project as effective or perfect as possible, these aims are particularly relevant.

The GNU Compiler Collection GCC [3] is a set of programming language com-
piler which already contains many optimization algorithms but in several cases
its structure incapacitate it for doing special kind of optimizations. One typical
example is the Interprocedural Analysis (IPA) which is based on the main idea
of producing algorithms which work on the entire program, across procedure or
even file boundaries. For a long time the open source GCC had no powerful inter-
procedural methods because it is structure was optimized for compiling functions
as units. Nowadays new IPA framework and passes were introduced by the IPA
branch but these are still under heavy development [8] and GCC will still have the
weakness that it is taking one source input as a compilation unit.

This paper introduces a novel possible solution for modifying the structure of the
compiler, to make it capable for doing new optimization methods like interprocudral
optimizations.

There are useful commercial and freeware applications for doing different an-
alyzes and optimizations on the source code but usually these applications can
not act as a compiler. One of these applications is Columbus/CAN (released by
FrontEndArt Ltd.) [7, 1] which is a reverse engineering framework application
providing environment for parsing, analyzing, filtering and exporting information
extracted from source files. Because Columbus has a well structured schema [6] for
representing the whole C/C++ source code of a project, it is also good for doing
kind of transformations on the code that would be impossible in GCC optimiza-
tion phases. Just to mention one example the described IPA optimizations could
be realized on Columbus representation even over file boundaries.

As Columbus/CAN front end is widely extensible through a well documented
Application Programming Interface (API) it seems possible to link GCC and the
FrontEndArt Ltd’s reverse engineering framework together, and have an “extended
compiler” with a fully manageable front end. This linkage presented in this paper,
is a first try for extending GCC with an other front end application, so it opens the
possibility to link other source analysis softwares and front ends to the compiler
as well. In this way we can achieve a more powerful compiler, for example in
optimizations.

2. Overview

2.1. Construction of GCC

A compiler – like GCC – has a typical three sided construction [2]. It has a
front end for parsing and analyzing the source code and for constructing an ab-
stract syntax tree (AST, also called abstract syntax graph, ASG) as an intermediate
representation (IR, also called intermediate language or intermediate representa-
tion language, IL, IRL) of the code. It has a middle end for doing transformations



Extension of GCC with a fully manageable reverse engineering front end 149

(e.g. optimizations) on the internal representation builded before and for prepar-
ing this representation for final code generation which is realized by the back end.
(Figure 1.)

Figure 1: Construction of a compiler

The C++ front end of GCC first does preprocessing (handling macros, etc.)
on the input file, breaks it into tokens and parses it. During this parsing it does
lexical and syntax analysis while constructing the AST as well. This abstract tree
is the highest level IL of GCC, containing language specific elements of C/C++.
Its internal representation is based on the tree structure which is used for de-
scribing lower level ILs too. So the front end can easily transform this AST to
GENERIC and lower it to GIMPLE and Tree-SSA form which representations are
language independent intermediate languages to store different kind of information
for various optimization passes realized by the middle end.

The middle end executes language independent transformations and optimiza-
tion algorithms on different ILs. First on the GIMPLE and finally on the Register
Transfer Language (RTL) representation levels which is the lowest level, very close
to the final assembly that is generated by the back end. (Figure 2.)

Figure 2: The internal representation languages used by GCC

2.2. About Columbus framework

Columbus reverse engineering framework has been developed by FrontEndArt
Ltd. in a cooperation between the Research Group on Artificial Intelligence in
Szeged and the Software Technology Laboratory of the Nokia Research Center. It



150 Cs. Nagy

is able to analyze large C/C++ projects and calculate different metrics on them
[9].

The framework contains many applications for different purposes so in this
section the described applications are only the emphasized ones for the extension:

CANPP C/C++ ANalyzer-PreProcessor is a command line tool for preprocessing
given source files. It is input is a .c or .cpp C/C++ source file and output is
a preprocessed .i file. Using parameters many configuration arguments can
be passed like location for include files, macrodefinitions, filters, etc.

CAN The preprocessed .i file can be passed to C++ ANalyzer which is a com-
mand line program for source code analyzation. This tool constructs for
source code representation the abstract syntax graph (ASG) using the rules
defined by the Columbus Schema [6]. The output of this application is a .csi
file which is a schema instance, a binary output of the ASG representing the
input source.

3. The extension

For doing the extension first an entry point must be located in GCC where we
can join in the compilation passes and force the compiler to use source information
retrieved from Columbus. On the Columbus side it seems to be evident to use the
schema instance (.csi) which contains all important data about the source file in
an easily readable form using the Columbus API. Because this Columbus ASG is
best comparable to the GCC C++ front end’s AST, the best solution seems to
be a transformation between the two representation graph. GCC builds the AST
during parsing and later it does transformations on it. These transformations are
first language specific modifications (like the creation of default constructors and
template instances), and later transformations by the genericizer which transforms
this tree to the language independent GENERIC form. Because the modifications
realized by the front end on the AST level might be necessary on the Columbus
ASG too, the entry point must be before these modifications.

Figure 3: The entrypoint to connect Columbus and GCC compilation passes

One way for this extension is to substitute the parser with a Columbus-GCC
converter which transforms the Columbus Schema to the GCC C++ AST. After



Extension of GCC with a fully manageable reverse engineering front end 151

doing this conversion GCC can take back the control and continue with compila-
tion passes to finish the compilation using the AST constructed from a Columbus
schema instance (Figure 3).

3.1. Theoretical background

The theoretical background of the Columbus-GCC ASG conversion can be de-
scribed from a mathematical and a programing view either.

For the a mathematical view, first we have to give a definition for identical
Columbus ASG and GCC AST graphs. So suppose that a C(V p

C , E
p
C) graph repre-

sents a Columbus ASG and a G(V p
G, E

p
G) represents a GCC graph, where p is the

input program. In this case we can easily give a “lazy” definition when we define the
two graph identical if they produce the same output for same input information.
However this definition works well for checking that two graphs are identical or
not, it does not contain any information for doing the transformation. So we have
to define a “strict” definition as well. This definition first defines small identical
graphs for semantic elements of the source language, and later it defines recursive
rules for equality.

Using the definitions, converting a Columbus ASG to GCC AST is a φi : C → G
partial mapping between identical representation graphs, where C domain is the
set of schema instances and G codomain is the set of possible instances in abstract
syntax tree form of GCC. As a gi ∈ G AST instance can be retrieved from many
c ∈ C schema instances this mapping is non injective and because several cases
gj ∈ G AST instance has no parent in C it is non surjective as well. For addition
the number of φi mappings is about n because the conversion can be realized in
more possible way so for one c ∈ C instance more g ∈ G structure may exist.

From the programing view, this conversion means a transformation between
two really different data structures which were designed for storing the same in-
formation. The base of the transformation is a given schema instance (.csi) file
which stores a Columbus ASG on a high level object orientated IL. The target of
the conversion is the AST IL of GCC which is a lower level language, based on the
tree internal structure of the compiler. For doing this conversion we should walk
over each existing node of Columbus Schema and find the node with same meaning
in the GCC AST. If this node exists, we have to create it, fill the fields of it with
corresponding data, and connect the edges to other already builded nodes.

As Columbus Schema is quite well documented, nodekinds and connections
between them can be easily recovered in spite of GCC, which has a very weak
documentation and usually the source is the only help for gathering information
about the AST. Columbus represents every statement with a class usually with
the same name of the represented nodekind. Connections between these nodes (or
classes) are described by aggregations and associations.

GCC on AST level represents the source using a structure named tree. This
structure is based on a record type definition with various fields for storing different
facts about the statements (e.g. each node has a TREE_CODE for determining
which kind of statement it is).



152 Cs. Nagy

3.2. Implementation and technical details

For development a GCC source snapshot was taken from the mainline version
4.2.0. Columbus CAN and CANPP were version 3.6 beta with the corresponding
libraries for Columbus API.

Because doing the conversion from Columbus ASG to GCC AST, both of the
Columbus API and GCC API calls are used, it resulted that actually a robust C++
project (Columbus) is linked to an other much more robust C project (GCC). For
doing this linkage, the Columbus-GCC Converter source is sperated in a directory
inside the GCC source tree with an own Makefile. This file contains instructions
invoked when GCC is compiled with make g++ command, to compile the C++ front
end as well. The project uses the GCC include files inside extern "C" brackets
and on the other hand for the C++ Columbus libraries it uses g++ instead of gcc
for linking final binaries.

For the invocation of this nested converter the following new flags were added
to the compiler: -fnoparse and -fcsi-file=<filaname>. The first flag works for
skipping the parser part of the compiler, and the second acts for invoking the init
function of the Columbus-GCC Converter. This init function is called by the front
end after the call for the parser but before finishing the AST.

The conversion algorithm itself is based on the pre-order visitor method offered
by the Columbus API. The theory of this method is described in the visitor design
pattern [4] which makes it possible to walk through the source code and extract
information by “visiting” each node exactly once without modifying it. The sys-
tematic for visit order is a pre-order traversal that is a tree traversal algorithm
defined as follows: visit the root first; and then do a preorder traversal each of the
subtrees of the root one-by-one in the given order.

The init function of the Columbus-GCC Converter executes a visitor on the
ASG for the input schema instance file, and when this visitor visits a not-yet-
converted node the visit method invokes a conversion function for the given kind of
source element. This conversion will result with the corresponding tree structure
for the given Columbus node and even link this structure to the already builded
GCC AST. For linking the new tree node to the proper position inside the builded
AST, a stack stores on which level of the AST and on what kind of node works
currently the converter.

Nevertheles, a conversion function builds the whole subtree for the given node
of the schema instance. The reason for it is simple because for a complete trans-
formation the algorithm has to fill the connection edges of the GCC node as well,
and it can do it only after building the connected nodes too (e.g. for a function
node next to the function declaration the parameters and the function body must
be builded as well).

This may result that the conversion reaches and converts a schema node before
the visitor visits it. In these cases it should be monitored that one node is converted
exactly once. For this checking the converter stores pointers to already transformed
nodes in an associative array which takes the Columbus nodeid as a key. Using this
array the conversion can be much more faster, especially for type nodes because



Extension of GCC with a fully manageable reverse engineering front end 153

the construction of complex data types is realized only once.
Thanks to the visitor algorithm and the conversion functions, the converter

transforms all nodes of the source tree in a simple, logical way even for complex
node types like Class and Function.

4. Experiments and further improvements

In the current state of the implementation the converter can handle and trans-
form nearly all lexical elements of the full C syntax and many nodes from the C++
extension. It can deal with functions, classes, type declarations or definitions and
with main sequence structures (iterations, selections) as well.

The current implementation for this “extended compiler” was able to compile
the 1.0.4 version of bzip2 as a C project which has a complex semantic structure
with about 8000 lines of source code. Nevertheles, it successfully compiled small
C++ source files and parts of the GCC’s official Code-Size Benchmark Environ-
ment (CSiBE) v2.1.1 [5] which is an environment developed especially for code-size
optimization purposes in GCC. It contains small and common used projects like
zlib, bzip, parts of Linux kernel, parts of compilers, graphic libraries, etc.

Because Columbus/CAN is a robust source analyzer with many features, still
under heavy development, during the implementation process I reported many bugs
to the developers. Fortunately I could keep a live contact with the developers, and
these bugs were eliminated soon, but in several cases – as a workaround – I had to
modify the original source code to make it acceptable for the analyzer.

As a further improvement the implementation for the template package of
Columbus Schema should be realized, but with this implementation one must wait
for a new Columbus/CAN release, because the current available version (v3.6 beta)
of it does not support perfectly the template instances. Without template support
it is not possible to deal with real C++ sources because even the main header files
(like iostream) of the Standard Library contain template instances.

5. Summary

This paper gives an introduction about a project which extends GCC with
Columbus C++ ANalyzer as a revere engineering front end. After a short intro-
duction there is an overview about the construction of GCC and Columbus with
focus on the intermediate representation languages to explain how it is possible to
find a connection between the two projects and why it is useful for later optimiza-
tion purposes. By briefly analyzing the theoretical background of the extension
there is an overview about the implementation and technical details about the
conversion of Columbus Schema into the GCC abstract syntax tree. Using this “ex-
tended compiler” I compiled C projects and C++ source files for verification of the
implementation and for evolving the conclusions for further possibilities.



154 Cs. Nagy

Thanks to this extension the capabilities of GCC were extended with new opti-
mization possibilities, and as it is a first try for extending the compiler with a new
front end, a future plan might be to generalize the development to add a module to
GCC which opens the possibility of easily linking it with other, quality front end
applications like EDG and others.

Acknowledgements. I would like to thank my supervisor and my advisor at
Department of Software Engineering of University of Szeged, Árpád Beszédes and
Gábor Lóki for their assistance in guiding me throughout this project.

References

[1] Front End Art Ltd. Homepage, http://www.frontendart.com

[2] GNU Compiler Collection GCC Internals, http://gcc.gnu.org/onlinedocs/gccint

[3] GNU Compiler Collection Homepage, http://gcc.gnu.org/

[4] Principles, Patterns, and Practices of Agile Software Development, The Visitor Family
of Design Patterns, Prentice Hall.

[5] Department of Software Engineering, University of Szeged, GCC Code-Size Bench-
mark Environment (CSiBE), http://www.csibe.org/

[6] Ferenc, R., Beszédes, Á., Gyimóthy, T., Data Exchange with the Columbus
Schema for C++, Proceedings of the 6th European Conference on Software Mainte-
nance and Reengineering (CSMR 2002), (Mar. 2002), 59–66.

[7] Ferenc, R., Beszédes, Á., Magyar, F., Gyimóthy, T., A short introduction to
Columbus/CAN, University of Szeged, (2001).

[8] Hubička, J., The GCC call graph module, a framework for interprocedural opti-
mization, Proceedings of the 2004 GCC Developers’ Summit, Ottawa, Canada, (Jun.
2004), 65–75.

[9] Siket, I., Rudolf, F., Calculating Metrics from Large C++ Programs, Proceed-
ings of the 6th International Conference on Applied Informatics (ICAI2004), Eger,
Hungary, (Jan. 2004), 319–328.

Csaba Nagy
Department of Software Engineering
University of Szeged
H-6720 Szeged, Dugonics tér 13
Hungary


