
Solutions for Reverse Engineering 4GL
Applications, Recovering the Design of a Logistical

Wholesale System
Csaba Nagy, László Vidács, Rudolf Ferenc, Tibor Gyimóthy

University of Szeged, Hungary
Department of Software Engineering,

Research Group on Artificial Intelligence
{ncsaba,lac,ferenc,gyimi}@inf.u-szeged.hu

Ferenc Kocsis, István Kovács
SZEGED Software Zrt., Hungary

{kocsis.ferenc, kovacs.istvan}@szegedsw.hu

Abstract—Re-engineering a legacy software system to support
new, modern technologies instead of old ones is not an easy task,
especially for large systems with a complex architecture. The
use of reverse engineering tools is crucial for different subtasks
of the full process, such as re-documenting the old code or
recovering its design. There are many tools available to assist
developers, but most of these tools were designed to deal with
third generation languages (e.g. Java, C, C++, C#). However,
many large systems are developed in higher level languages (e.g.
Magic, Informix, ABAP) and current tools are not able to support
all the arising problems during re-engineering systems written
in fourth generation languages.

In this paper we present a project whose main goal is
the development of a technologically and functionally renewed
medicinal wholesale system. This system is developed in Magic
4GL, and its development is based on re-engineering an old Magic
(version 5) system to uniPaaS, which is the current release version
of Magic. In the early phases of this project we developed a
reverse engineering toolset for Magic 4GL to support reverse
engineering, recovering the design of the old system, and to
support some forward engineering tasks too. Here we present
a report on this project that was carried out in cooperation
with SZEGED Software Zrt and the Department of Software
Engineering at the University of Szeged. The project was partly
funded by the Economic Development Operational Programme,
New Hungary Development Plan.

Keywords-architecture reconstruction, fourth generation lan-
guages, Magic 4GL, uniPaaS, re-engineering

I. INTRODUCTION

Fourth generation languages (4GLs) are also referred to
as very high level languages. A developer who develops an
application in such a language does not need to write ‘source
code’, but he/she can program his/her application at a higher
level of abstraction and higher statement level, usually with
the help of an application development environment. These
languages were introduced and widely used in the mid-1980s.
At that time many 4GLs were available (such as Oracle,
FOCUS, RAMIS II and DBASE IV), but today most of
the information systems are developed in third generation
languages. However, large systems developed earlier in a
4GL are still evolving and there is still a continuous need

for RADD (Rapid Application Development and Deployment)
tools, which are usually based on higher level languages.

There are considerable advances in the design of 4GLs
and their development environments. For instance, these lan-
guages usually offer ready solutions for common problems
in developing a typical business application (e.g. connecting
to database, supporting different database management or
operating systems, managing data, etc.). On the other hand,
one disadvantage of such a language is that it makes the de-
velopers depend on a particular vendor. This dependency may
prevent the customers from taking advantage of the benefits
of new technologies that are not supported by their vendor.
New releases of the application development environment
may support new technologies, but migrating from a previous
version to a new one is not always automated. Performing the
migration manually is often not economically feasible and in
order to reduce costs of the migration or re-engineering, it is
important to develop tools which will automate processes and
assist the developers [1].

In this paper we report on a project whose main goal is
to develop a re-engineered, technologically and functionally
renewed, high market value logistical, medicinal wholesale
system. The system was originally developed in Magic version
5 and it is re-engineered to work under uniPaaS, which is
today the newest release of the Magic application development
environment. Since the re-engineering process includes sophis-
ticated reverse engineering and design recovery technologies,
the outcome of the project is not only the re-engineered
application, but also techniques and tools for recovering the
design of fourth generation languages.

Here we report on the project and briefly introduce the new
reverse engineering technology for 4GL as well. In Section II
we give a brief overview on related work and related projects,
then in Section III we describe the specialties of Magic 4GL
and our design recovering methodology. In Section IV we
describe the details (funding, duration, etc.) of the project,
and finally, in Section V we conclude.



II. RELATED WORK AND PROJECTS

In the literature only few papers are available in the area
of reverse engineering fourth generation languages. Some of
these papers address software quality, because when 4GLs
became popular, some studies argued in favour of their use
and some against them. These studies tried to predict the size
of a 4GL project and its development effort, for instance by
calculating function points [2] or by combining 4GL metrics
with metrics for database systems [3]. In our previous paper [4]
we introduced a quality-assurance framework (MAGISTER)
for 4GLs which is able to continuously monitor the develop-
ment process of a Magic application by measuring metrics and
identifying coding rule violations.

An early paper for recovering the design of 4GL information
systems was published by Harrison et al. in 1998 [5]. They
described a tool to assist the recovery of both the application
semantics and the static schema definition from Ingres ABF
4GL applications. They used the recovered design components
to migrate from ABF 4GL to Oracle Designer 2000. Another
migration tool is named M2J1 which automatically converts a
Magic application (written in newer versions of Magic, such as
eDeveloper or uniPaaS) to Java. A solution for converting ap-
plications from previous Magic versions to uniPaaS is offered
by Kopel Reem Ltd. as a professional service. Their solution
is based on similar concepts as our approach, however our
main goal is not only to assist conversion. Beyond presenting
several different architectural views to developers, our aim is
to facilitate general program comprehension by providing a
toolset to query and investigate Magic applications. There are
some tools available for testing and for optimization purposes
too, e.g. Magic Optimizer2, which also provide a set of views
(e.g. cross references, UML charts) of a system.

III. DESIGN RECOVERY IN THE MAGIC ENVIRONMENT

In this section we place emphasis on the first part of the
whole project, where we have the main contributions related
to the reverse engineering of Magic 4GL.

A. Design of a Magic application

Magic 4GL was introduced by Magic Software Enterprises
(MSE) in the early 80’s. It was an innovative technology to
move from code generation to the use of an underlying meta
model within an application generator. The resulting applica-
tion was run on popular operating systems including DOS and
UNIX. Since then newer versions of Magic have been released
called eDeveloper and uniPaaS. Recent versions support novel
technologies including RIA (Rich Internet Applications), SOA.

The heart of a Magic application is the Magic Runtime En-
gine (MRE), which allows one to run the same application on
different operating systems. When one develops an application
in Magic, one actually programs the MRE using the unique
meta model language of Magic, which is – at a higher level
of abstraction – closer to business logic. This meta model is

1http://www.magic2java.com
2http://www.magic-optimizer.com

what makes the development in Magic unique and what really
makes Magic a RADD (Rapid Application Development and
Deployment) tool.

Magic was invented to develop business applications for
data manipulating and reporting, so it comes with many
GUI screens and report editors. Hence the most important
elements of its meta model language are the various entity
types of business logic, namely the data tables. A table has its
columns and a number of programs (consisting of subtasks)
that manipulate it. The programs or tasks are linked to forms,
menus, help screens and they may also implement business
logic using logic statements e.g. for selecting variables (virtual
variables or table columns), updating variables, conditional
statements and expressions.

The meta model of a Magic application serves as a ‘source
code’ that can be analyzed.

B. Design recovery in Magic environment

The design recovery process (see Figure 1) involves reverse
engineering the Magic application and presenting several dif-
ferent architectural views to the developers. These views can
be further investigated to determine functional or logical com-
ponents or simply query language entities and their relations.

Analysis

Figure 1. Overview of the design recovery process.

1) Fact extraction: The reverse engineering step is a Magic
adaptation of the Columbus reverse engineering methodology
[6]. In this step we precisely describe the syntactic and se-
mantic characteristics of Magic by defining language elements
and their relations with a meta-model, called Magic Schema.
This schema determines the structure of the Abstract Semantic
Graph (ASG). The ASG of a Magic application is constructed
by a parser called MagicASG which takes as its input the CTL
(control) export of the application development environment.
Note, that developers do not write code in the traditional way,
but they edit tables of the development environment. Therefore
the CTL export represents a textual export of the actual state of
the environment. This export is hard to read and comprehend
for humans, but it can be parsed and contains all the necessary
information for constructing an ASG.

2) Design recovery: The design recovery process involves
analysis techniques in order to present the gathered informa-
tion via higher level views to the developers. These views are
the following:

Physical view. This view presents the structure of the
application. Here we identify relevant language entities (data

2



tables, columns, programs, tasks, logic units, etc.) and their
parent-child relation that determine the main structure of the
application, like packages, classes and methods define the
structure of a Java application.

Call view. This view presents the call-graph of the system.
Menu view. In Magic applications a Menu is an entity of

the language too. A Menu can fire system/user events, or can
call a program within the application. The executed program
can call other programs or subtasks. Hence in this view we
extend the Call view with the menu entities and their program
call relations.

User rights view. Magic offers ready solutions for user and
user role management. In Magic one can define rights which
describe the role to access menus, programs or data tables.
One can also define users and user groups and these users or
groups may have a number of previously defined rights. In this
view we present the information whether a user has access to
a menu/program/table or not.

3) Database design recovery: Magic applications strongly
depend on their databases, hence, it is important to take into
account the database dependencies during the design recovery
process too.

Table-Task dependencies. We identify relations between data
tables and all those tasks and programs that use the specified
table. We differentiate between create, retrieve, update, and
delete relations. Using this view, one can easily identify
language elements working on the same data table. This can
be a powerful tool for identifying e.g. logical components in
the system.

Data Table relations. In older Magic versions foreign keys
were not supported and even in new versions one can develop
his application without using them. The only way to determine
the relations between data tables is to analyze the application
logic and identify those parts of the code where they link
together two or more tables. Here we determine if two tables
are in one-to-one, one-to-many, or many-to-many relations
and we identify the columns that were used for linking them
together.

IV. THE PROJECT

A. General details

The presented project is a sub-project of the larger research
project MAGISTER3 aiming at defining a framework that
provides software quality assurance, reengineering, and testing
services for applications developed in Magic fourth generation
language (4GL).

The details of the project are the following:
• The MAGISTER-ARCH project is carried out in coopera-

tion between SZEGED Software Zrt. and the Department
of Software Engineering, University of Szeged.

• The project is based on the “Support of enterprise
innovation” tender of the Economic Development Op-
erational Programme, New Hungary Development Plan.

3http://www.szegedsw.hu/magister/

The project is supported by the European Union and by
the European Regional Development Fund.

• The project title is “Development of a technologically
and functionally renewed, high market value, logistical,
medicinal wholesale system”, and its registration index
is: GOP-1.3.1-07/1-2008-0026.

• The total budget of the project is 362 400 EUR. The
amount of funding is 181 200 EUR (50%).

• The project started in September, 2008 and lasted for 2
years.

B. Main tasks of the project

Figure 2 illustrates the main tasks of the project. First
we prepared the introduced reverse engineering toolset and
methodology for Magic 4GL (1) then we implemented design
recovery tools and applied them on the old system (2). Based
on the results and the investigated new technologies (3) we
started the specification of the new system (4). After the
implementation phases (5) we tested it (6) and started some
marketing tasks (7).

Designing new systemReverse engineering Implementing

Figure 2. Main tasks of the project.

Preparing reverse engineering tools. We investigated the
specialties of fourth generation languages, especially the spe-
cialties of Magic 4GL. We designed a methodology and
implemented a tool to reverse engineer Magic 4GL appli-
cations. Here we focused on Magic version 5 and our goal
was to construct a precise ASG (Abstract Semantic Graph)
by analyzing the CTL export of the application development
environment.

Reverse engineering and design recovery. We further in-
vestigated the specialties of Magic 4GL so we could recover
the design of the system being analyzed. We note that these
systems are usually database-intensive systems which were
designed to store and modify their data model entities using
databases. Hence, recovering the design of the data model
and its relations to the application is also important here. We
implemented the design recovering tools and applied them to
the reverse engineered system.

Investigating, testing new technologies. Before finalizing the
new specification of the system, it was important to perform
tests on its environment too. The old system had many environ-
mental dependencies and some new functionalities of the new
system required integration of new tools and technologies too.
It was important to see how efficient would the new system
be in its new environment. New potential performance or
functional problems arose here, some of them could be solved
only with the assistance of MSE. We performed performance

3



and stress tests on the selected tools (e.g. database manager)
with large data and network traffic.

Specification of the new system. Here we used the results of
reverse engineering, the new requirements and the results of
testing new technologies. As the new programming environ-
ment offered several new features we had to redesign several
parts of the system too.

Implementing the re-engineered system. We started the
implementation by developing the core framework. That is,
the user management, rights, data management, menus, most
important background tasks, etc. Then we implemented the
selected functionalities of the new system one-by-one.

Testing. Testing was particularly important to assure the
quality of the system. Here we performed functional, integra-
tion and general testing of the whole system as some of the
previously implemented functionalities had a work-flow that
affected almost the whole system.

Marketing. In the final phases of the project we start direct
marketing tasks to advertise our new product.

C. Status of the project
The project was successfully completed within the planned

time frame. The participants of the project gained experiences
in new technologies, but more importantly collected useful
practices in reverse engineering and re-engineering in Magic
environment.

Figure 3 is a screenshot of the old, reverse engineered
system and Figure 4 is a screenshot of the same input form
in the new re-engineered application.

Figure 3. A screenshot of the old, reverse engineered application.

Figure 4. A screenshot of the new, re-engineered application.

V. CONCLUSIONS

Our primary goal was to re-engineer a complex Magic
4GL application. Besides the full re-engineering process, in
this paper we focused on the reverse engineering steps. In
these steps we made the following contributions. We have
successfully adapted and tailored for 4GLs the Columbus RE
technology, which was originally invented for object oriented
languages. Using this technology we developed a methodology
for recovering the design of legacy 4GL applications. This
methodology defines architectural views which reflect the
program structure, semantics and its relations to the under-
lying databases. Our methodology was considered useful by
assisting program comprehension and re-engineering tasks of
Magic 4GL applications in a successful project which was
partly funded by EU. A remarkable outcome of our work is
the tool-chain, which we plan to use for offering services in
further projects such as migration, maintenance and program
comprehension of Magic programs.

ACKNOWLEDGEMENTS

This research was supported by the New Hungary Develop-
ment Plan, Economic Development Operational Programme,
GOP-1.3.1-07/1-2008-0026.

REFERENCES

[1] E. J. Chikofsky and J. H. Cross II, “Reverse Engineering and Design
Recovery: A Taxonomy,” in IEEE Software 7, Jan. 1990, pp. 13–17.

[2] G. Witting and G. Finnie, “Using Artificial Neural Networks and Function
Points to Estimate 4GL Software Development Effort,” Australasian
Journal of Information Systems, vol. 1, no. 2, pp. 87–94, 1994.

[3] S. MacDonell, “Metrics for Database Systems: An Empirical Study,”
IEEE International Symposium on Software Metrics, pp. 99–107, 1997.

[4] C. Nagy, L. Vidács, R. Ferenc, T. Gyimóthy, F. Kocsis, and I. Kovács,
“MAGISTER: Quality Assurance of Magic Applications for Software De-
velopers and End Users,” in Proceedings of the 26th IEEE International
Conference on Software Maintenance. IEEE Computer Society, Sep.
2010.

[5] J. V. Harrison and W. M. Lim, “Automated Reverse Engineering of
Legacy 4GL Information System Applications Using the ITOC Work-
bench,” in Proceedings of the 10th International Conference on Advanced
Information Systems Engineering. Springer-Verlag, 1998, pp. 41–57.

[6] R. Ferenc, Á. Beszédes, M. Tarkiainen, and T. Gyimóthy, “Columbus –
Reverse Engineering Tool and Schema for C++,” in Proceedings of the
18th International Conference on Software Maintenance (ICSM 2002).
IEEE Computer Society, Oct. 2002, pp. 172–181.

4


