
A Methodology and Framework for Automati


Layout Independent GUI Testing of Appli
ations

Developed in Magi
 xpa

Daniel Fritsi, Csaba Nagy, Rudolf Feren
, Tibor Gyimothy

Department of Software Engineering

University of Szeged, Hungary

fritsi�frontendart.
om, {n
saba|feren
|gyimi}�inf.u-szeged.hu

Abstra
t. Testing an appli
ation via its Graphi
al User Interfa
e (GUI)

requires lots of manual work, even if some steps of GUI testing 
an be au-

tomated. Test automation tools are great help for testers, parti
ularly for

regression testing. However these tools still la
k some important features

and still require manual work to maintain the test 
ases. For instan
e,

if the layout of a window is 
hanged without a�e
ting the main fun
-

tionality of the appli
ation, all test 
ases testing the window must be

re-re
orded again. This hard maintenan
e work is one of the greatest

problems with the regression tests of GUI appli
ations.

In our paper we propose an approa
h to use the GUI information stored

in the sour
e 
ode during automati
 testing pro
esses to 
reate layout

independent test s
ripts. The idea was motivated by testing an appli
a-

tion developed in a fourth generation language, Magi
. In this language

the layout of the GUI elements (e.g. position and size of 
ontrols) are

stored in the 
ode and 
an be gathered via stati
 
ode analysis. We imple-

mented the presented approa
h for Magi
 xpa in a tool 
alled Magi
 Test

Automation, whi
h is used by our industrial partner who has developed

appli
ations in Magi
 for more than a de
ade.

1 Introdu
tion

Thoroughly testing an appli
ation via its user interfa
e is not an easy task for

large, 
omplex appli
ations with many di�erent fun
tionalities. Testers have to

follow 
ertain steps of thousands of test 
ases and need to evaluate the results

manually. This hard work 
an be supported by automati
 GUI testing tools,

as these tools are able to follow and re
ord user events (mouse, keyboard, et
.)

generated by testers then play ba
k these events to the appli
ation under test.

This is a great help for regression tests, for example, where the aim is to re-

test the appli
ation after a 
hange. However, there remains still a lot of manual

work to be done. Testers need to re
ord the test 
ase for the �rst time when

they 
reate it, and they need to maintain the re
orded s
ripts as the appli
ation

evolves.

Current tools support the most popular 3rd generation languages (e.g. C/C++,

Java, C#), however higher level languages su
h as 4th generation languages



2 Fritsi, Nagy, Feren
 and Gyimothy

(Magi
 4GL, ABAP, Informix) be
ame also popular in software development.

Developers programming in these languages do not write sour
e 
ode in the tra-

ditional way, but they develop at a higher level of abstra
tion, for instan
e, using

an appli
ation development environment. In su
h languages the appli
ation 
ode

usually stores the des
ription of the user interfa
e too (e.g. stru
ture of a window

or a form and position, 
olor or size of a 
ontrol). In our paper we use this infor-

mation to make the automati
 testing pro
ess GUI layout independent. That is,

a re
orded test s
ript does not depend on exa
t 
oordinates or the layout of the

GUI, so the same test 
ase 
an be reused later even when the developers make

minor 
hanges to the user interfa
e of the appli
ation (e.g. they rearrange the

buttons in a window).

One of the greatest problems with regression tests for GUI appli
ations is

that even a minor 
hange in the GUI may result in rewriting all the test 
ases

[4℄. As a possible solution, our te
hnique may signi�
antly redu
e the 
osts of

maintaining regression tests to keep the quality of a GUI appli
ation assured.

The main 
ontributions of this paper are:

� we propose a method to re
ord and play ba
k automati
 GUI test s
ripts

that are una�e
ted by minor 
hanges of the GUI, hen
e they are layout

independent;

� we present our approa
h in an �in vivo� industrial 
ontext, as our tool is used

by our industrial partner for testing Magi
 xpa appli
ations. The presented

approa
h was implemented during a resear
h proje
t in 
o-operation with

our industrial partner, SZEGED Software In
. During the proje
t the tool

was experimentally used for automated GUI testing, and it was extended

with additional features. For further details on the proje
t please refer to its

webpage

1

.

2 Automated Software Testing

Sommerville introdu
es the main goal of software testing in [18℄ as follows: �test-

ing is intended to show that a program does what it is intended to do and to dis-


over program defe
ts before it is put into use� . In the �eld of software testing,

automated software testing is a relevant software engineering topi
 nowadays,

mostly motivated by the industry. As a result many papers and books have been

published in this area [5℄, [6℄, [7℄, [12℄, [17℄. Here we elaborate on the literature

and on related tools fo
using on those that are 
losely related to our work.

Testing automation frameworks are usually divided into 5 generations [10℄,

[11℄. 1st generation frameworks are so-
alled re
ord/playba
k tools that are based

on simple test s
ripts where one s
ript relates to one test 
ase. The 2nd gen-

erational tools have s
ripts that are better designed to use/reuse fun
tions, for

example. 3rd generation frameworks take data out of the test s
ripts so a test

s
ript may be re-exe
uted several times on di�erent data. This 
on
ept is 
alled

1

http://www.infopolus2009.hu/en/magi




Layout Independent GUI Testing 3

data-driven testing [7℄, [19℄. Another 
on
ept, usually referred to as 4th genera-

tion testing is 
alled keyword-driven, where the test 
reation pro
ess is separated

into a higher level planning stage and an implementation stage, thus keywords

de�ned at higher level drive the exe
utions [2℄, [3℄, [7℄. New te
hniques some-

times bring test automation to an even higher, so-
alled s
riptless level (5th

generation), where automated test 
ases are designed by engineers instead of

testers/developers [9℄.

Our approa
h 
an be 
onsidered as a 3rd generation approa
h, be
ause with


arefully designed test s
ripts, the data 
an be separated from the exe
ution

pro
ess. The idea of keyword driven testing is also similar, but our test s
ript is

still at lower level, 
lose to the implementation.

The idea of supporting the re
ording and playba
k of test 
ases by using

test s
ripts based on GUI information from sour
e 
ode is novel to our best

knowledge in 4GL 
ontext. However, stati
 analysis is a 
ommon tool to support

GUI testing in other approa
hes, e.g. for generating test s
ripts [8℄, [13℄, [14℄,

[16℄.

There are a number of automati
 GUI testing tools available for software

engineers. Just to mention some examples, GUITest[1℄ is a Java library for auto-

mated robustness testing, Selenium

2

is a GUI testing tool for Web appli
ations.

As an appli
ation testing a web page it also provides solutions to simplify test

s
ripts by using the identi�er of a 
ontrol from the HTML 
ode of the web page.

This is a similar approa
h to ours for Web appli
ations. TestComplete

3

, HP

Quality Center and Qui
k Test Professional (QTP)

4

tools are also a widely used

for appli
ations written in 4GLs. Mi
rosoft also provides automated GUI testing

for instan
e via GUI Automation of the .NET Framework

5

.

3 Spe
ialties of a Magi
 Appli
ation

In the early 80's Magi
 Software Enterprises (MSE) introdu
ed a new fourth

generation language, 
alled Magi
 4GL. The main 
on
ept was to program an

appli
ation at a higher level meta language, and let an appli
ation generator

engine 
reate the �nal appli
ation. A Magi
 appli
ation 
ould run on popular

operating systems su
h as DOS and Unix, so appli
ations were easily portable.

Magi
 evolved and a new version of Magi
 has been released, uniPaaS and lately

Magi
 xpa. The new version supports modern te
hnologies su
h as RIA, SOA

and mobile development too.

The unique meta model language of Magi
 
ontains instru
tions at a higher

level of abstra
tion, 
loser to business logi
. When one develops an appli
ation in

Magi
, she/he a
tually programs the Magi
 Runtime Appli
ation Environment

2

http://seleniumhq.org/

3

http://smartbear.
om/produ
ts/qa-tools/automated-testing/

4

HP Test Management (a

essed 2013): http://www8.hp.
om/us/en/software-

solutions/software.html?
ompURI=1170256

5

Mi
rosoft UI Automation Overview (a

essed 2013): http://msdn.mi
rosoft.
om/en-

us/library/ee684076%28v=vs.85%29.aspx



4 Fritsi, Nagy, Feren
 and Gyimothy

(MRE) using its meta model. This meta model is what really makes Magi
 a

RADD (Rapid Appli
ation Development and Deployment) tool.

Magi
 
omes with many GUI s
reens and report editors as it was invented

to develop business appli
ations for data manipulation and reporting. The most

important elements of Magi
 are the various entity types of business logi
, namely

the data tables. A table has its 
olumns whi
h are manipulated by a number

of programs (
onsisting of subtasks) linked to forms, menus and help s
reens.

These items may also implement fun
tional logi
 using logi
 statements, e.g.

for sele
ting variables (virtual variables or table 
olumns), updating variables,


onditional statements.

Fig. 1. A s
reen shot of the Magi
 xpa appli
ation development framework.

Figure 1 is a s
reen shot of the Magi
 xpa development environment. Some

major 
omponents of Magi
 xpa, as a 4th generation programming language are:

Data Obje
ts. These are essentially the des
riptions of the database tables.

Just as the tables and their 
olumns and primary or foreign keys are de�ned

in a database, we 
an de�ne these obje
ts in Magi
 xpa too.

Programs. The logi
 of an appli
ation is implemented here. Programs are top-

level tasks with several subtasks below them. A task always works on some

Data Obje
ts and performs some operations on them. We 
an de�ne whi
h

database tables should the task use, and whi
h operations should the task

perform on them.

Menus. In the appli
ation, we 
an use di�erent high-level menus and pop-up

menus, whi
h 
an be de�ned here.

Form Entries. Magi
 xpa has a form editor, where we 
an de�ne the properties

of a window (e.g. title, size and position) and we 
an pla
e 
ontrols and menus

on a form and 
ustomize them. A graphi
 window, a form is FormEntry in

Magi
 xpa. In the Magi
 xpa development environment we 
an use many

built-in 
ontrols or we 
an de�ne our 
ustom 
ontrols too. A form is always

de�ned within a task. The form editor of Magi
 xpa is shown in Figure 2.



Layout Independent GUI Testing 5

Fig. 2. A s
reen shot of the form editor of Magi
 xpa.

4 Automati
 GUI Testing of a Magi
 Appli
ation

We implemented a tool 
alled Magi
 Test Automation, whi
h enables the au-

tomati
 GUI testing of appli
ations implemented in Magi
 xpa. The automati


testing of a Magi
 appli
ation has three main steps (see Figure 3):

1. Analyzing the Magi
 appli
ation. Here we perform a stati
 analysis of the

appli
ation to gather all the required data of its GUI.

2. Re
ording GUI events. This is the step where we monitor the mouse and

keyboard events and use them to 
reate layout independent test s
ripts.

3. Playba
k re
orded GUI events. We use the layout independent test s
ripts

to simulate mouse and keyboard events on the appli
ation being tested.

In 
ase of layout-independent testing, on
e the appli
ation gets 
hanged in

the future, it is enough to repeat the analyzing and the playba
k steps, and

re-re
ording test 
ases is not ne
essary.

Fig. 3. Main steps of automati
 GUI testing of a Magi
 appli
ation.



6 Fritsi, Nagy, Feren
 and Gyimothy

4.1 Stati
 Analysis of Magi
 Appli
ations

A Magi
 appli
ation does not have sour
e 
ode in the �traditional way�, it is

des
ribed by a save �le of its 
urrent model. In the older Magi
 versions this

save was a stru
tured text �le, but in the newer versions su
h as Magi
 xpa, this

is an XML �le. During the analysis of a Magi
 appli
ation we extra
t information

from this sour
e �le. As the result of the analysis, a graph des
ribing the stru
ture

of the program is 
reated, whi
h is 
alled an Abstra
t Semanti
 Graph (ASG).

A node of the ASG represents an item in the sour
e 
ode. All these nodes

are instan
es of the 
orresponding sour
e elements. Two nodes 
an be 
onne
ted

with two types of relations: aggregation and asso
iation. Aggregation 
an be

used to des
ribe 
omplex grammar elements (edges of the syntax tree) and with

asso
iation we 
an des
ribe semanti
 details (e.g. identi�er referen
es). The graph

is 
reated by a stati
 analyzer tool, whi
h parses the save �le of the appli
ation

being analyzed, 
reates the nodes and puts them together in the ASG.

For further details about reverse engineering Magi
 appli
ations please refer

to our previous work [15℄.

4.2 Re
ording GUI Events

Re
ording GUI events is the pro
ess where we re
ord the way the user intera
ts

with the appli
ation under test into a 
ertain s
ript format. We 
at
h the events

generated by the user and we try to identify the related sour
e element, then

transform it to a 
ommand of a test s
ript. Of 
ourse, user 
ould write su
h a

s
ript manually, but for 
omplex test 
ases it would be almost impossible.

Traditional, 
oordinate based automati
 testing te
hniques re
ord the event

type and its position. In our layout-independent te
hnique we re
ord the event

type and the identi�er (in the sour
e 
ode) of the 
ontrol on whi
h the event

o

urred.

Hen
e, the most important task of re
ording is to identify the sour
e element

on whi
h the a
tual user event happened. To be able to do this, we use dynami


tra
es of the exe
uted appli
ation to identify the 
urrently running tasks and

form elements that are displayed on the s
reen. On
e we 
at
h a user event

based on its position on the s
reen and the dynami
 tra
es, we 
an identify the


ertain 
ontrol of the sour
e 
ode, whi
h is a
tually stored in the ASG. Figure

4 illustrates the pro
ess of the re
ording.

Re
ording is performed on Windows platform using Windows API. Cat
h-

ing a user event is based on Windows' hook me
hanism (SetWindowsHookEx,

HookPro
 fun
tions).

In Figure 5 we illustrate the possible steps that a tester would perform testing

a sample window of a Magi
 appli
ation. We re
orded the illustrated steps with

the Magi
 Test Automation tool and saved the s
ript in Python format. Figure

6 shows the resulting Python s
ript.

It 
an be seen that the Magi
 Test Automation tool 
onne
ts the Magi
 
ode

with the ASG and generates a s
ript using the obtained identi�ers. A traditional



Layout Independent GUI Testing 7

Fig. 4. Re
ording GUI Events.


oordinate-based method would result in a s
ript 
ontaining only 
oordinates,

e.g. as it 
an be seen in Figure 7.

One 
an see that both s
ripts 
ontain the same amount of instru
tions. When

we exe
ute the two s
ripts they will produ
e the same result, but what happens

when we rearrange the window? (For illustration, see a rearranged window in

Figure 8.) The appli
ation would work as before, but the 
ontrols would be

in di�erent positions. If we exe
uted the layout independent Python s
ript the

result would be the same as before, be
ause the Magi
 Test Automation tool

re
al
ulates the 
oordinates by the unique identi�ers. In 
ontrast, if we play

the position based Python s
ript then the result will be negative, be
ause the


ontrols are not in the positions as before.

4.3 Playba
k Re
orded GUI Events

On
e we have the test s
ript, we need to be able to playba
k the re
orded user

events to the appli
ation, this is based on exe
uting events of the s
ript. However

this is not enough, as the exe
ution needs to be evaluated and we must make sure

that the program under test behaves the same way as it did when we re
orded

the test s
ript. This is done during the validation phase.

Exe
uting Events In traditional, 
oordinate based te
hniques, exe
uting a user

event is simple, as the re
orded event must be sent to the appli
ation with the

re
orded position. In our layout-independent te
hnique we have no 
oordinates

stored in the test s
ript, but we store the identi�er of the 
ontrol.

Hen
e, during exe
ution we 
al
ulate the 
oordinates of the 
ontrol from the

ASG, and transform these 
oordinates to positions on the s
reen.

If the appli
ation is modi�ed, we 
an re-run the same test s
ript, but with

the ASG of the new version of the appli
ation (see Figure 9 for illustration).

To play ba
k a re
orded test s
ript, �rst of all we need the s
ript �le, and

the ASG to 
onne
t the unique identi�ers of it with the 
orresponding Windows



8 Fritsi, Nagy, Feren
 and Gyimothy

Fig. 5. An example window of a Magi
 xpa appli
ation with example steps for testing

its GUI.

Fig. 6. A layout independent Python s
ript for the steps in Figure 5.

GUI elements. During the playba
k we must exe
ute the Magi
 appli
ation in

the Magi
 Runtime Environment and we must load the s
ript �le in the Magi


Test Automation tool. The s
ript �le 
ontains the re
orded keyboard and mouse

events whi
h the Test Automation tool �rst interprets and then exe
utes. (An

illustration 
an be seen in Figure 10.)

During the interpretation we lo
ate GUI elements in the ASG via their unique

identi�ers. After that, we identify the same Windows 
ontrols of the running

appli
ation. This identi�
ation is sometimes quite 
omplex as the lower level

implementation of a 
ontrol may be totally di�erent than the simple Magi



ontrol. Suppose a 
omplex tree 
ontrol or a group box built from many smaller


ontrols. In order to solve this identi�
ation problem we 
olle
t all information

from the ASG that we need to identify a GUI element (position, size), but this is

still not enough as the appli
ation 
an simultaneously display multiple windows

and parent windows too. Therefore, we need all information from its parent

elements too. This way we know that on whi
h window the 
urrent element

is lo
ated. Using the Windows API we 
an �nd windows and GUI elements by



Layout Independent GUI Testing 9

Fig. 7. A 
oordinate based Python s
ript for the steps in Figure 5.

Fig. 8. A rearranged window of the example uniPaaS appli
ation (see Figure 5).

Fig. 9. After a new version, the same test s
ript 
an be exe
uted with the new ASG.

header texts, positions and parent window identi�ers. So, we get the handle of the

window with the FindWindow and FindWindowEx fun
tions by the header text

and other attributes of it, whi
h we read from the ASG. We 
an also 
al
ulate



10 Fritsi, Nagy, Feren
 and Gyimothy

Fig. 10. Running Re
orded GUI Events.

the relative 
oordinates to the window of the 
urrently sear
hed GUI element.

As the GUI element 
an be within other GUI elements su
h as a group box,

we start looking for it from the bottom of the Windows 
ontrol tree and walk

upwards to the top. We re
al
ulate the relative 
oordinates until we get to the

sear
hed GUI element.

It is not always enough to know whi
h Windows 
ontrol mat
hes a 
ontrol

with a unique ASG identi�er be
ause we must know the exa
t position where to


li
k within the GUI element. In 
ase of a button this is irrelevant, but in 
ase

of a tree view it is not. The Magi
 Test For 
omplex 
ontrols, the automation

tool generates s
ript �les where we store a position as the relative position to

the identi�ed Magi
 
ontrol. Based on these 
oordinates we 
an 
al
ulate the

absolute position where we 
an generate the keyboard or mouse event using the

Windows API.

Evaluating an exe
ution Some steps of the evaluation 
an be done automati-


ally after the test s
ript was exe
uted, however it is always ne
essary to tell the

automation tool the validation steps manually after re
ording a test s
ript. The

tester 
an do it by inserting validation (e.g. assert) fun
tions into the s
ript �le

after the 
orresponding event handler. The Magi
 Test Automation tool supports

the following validation possibilities:

� To 
he
k anywhere in the appli
ation's 
ontrol tree, or in a parti
ular window

whether it 
ontains a text or there is a window with a given title.

� Comparison of a spe
i�
 GUI element's text with a given text.

� Verify that a GUI element is in fo
us or not.

� Verify that a GUI element is enabled or not.

� Verify that a 
he
k box or radio button is 
he
ked or not.

The Magi
 Test Automation tool will 
he
k these asserts and report the result

of a test s
ript a

ordingly.

Another advantage of these validation fun
tions is that in addition to evaluate

the results of an exe
ution, one 
an use them in the previously mentioned delay

fun
tions too. For example, one 
an easily say that she/he wants to wait until a



Layout Independent GUI Testing 11

Fig. 11. Examples for validations in a Python s
ript.


he
k box is 
he
ked or a spe
i�
 text box 
ontains a given text. Moreover, with

Python s
ripts we 
an use them to 
ontrol the exe
ution of the test 
ase. E.g.

we 
an de�ne 
omplex test 
ases where we say that if a GUI element is a
tivated

then we want to do 
ertain steps, otherwise we want to do a di�erent 
hain of

steps.

Figure 11 illustrates the Python s
ript shown in Figure 6, extended with vali-

dation instru
tions. After 
li
king the 
he
k boxes there is a 
he
kState fun
tion

whi
h 
he
ks that the 
he
k box is really 
he
ked or not. After sele
ting an

item from the 
ombo box there is a 
ompareText fun
tion whi
h 
he
ks that the


ombo box 
ontains the 
orre
t text and after 
li
king in the table we 
he
k that

the "Fe~TableView::Ct~Show Figures Box" has the fo
us or not. Finally, after


li
king the "Fe~Table View::Ct~Close Button" button we 
he
k if the window


losed su

essfully or not.

5 Comparison to Other Te
hniques

A 
omparison of some aspe
ts of 
ommon te
hniques and our approa
h 
an be

seen in Table 1. Here we elaborate on these te
hniques in details.

Keyword-driven testing A keyword in its simplest form is an atomi
 test step

or an aggregation of more atomi
 steps. It des
ribes an a
tion to be performed,

hen
e keyword-driven testing is usually referred as a
tion-word testing too. Most

of the 
ases the keyword-driven testing is divided into two stages:

� planning stage,

� implementation stage.

In the planning stage test engineers determine the test steps for ea
h test 
ase

(e.g. entering a text into a text �eld, 
li
king on a button, et
.). Later, in the

implementation stage the engineers 
an use a framework to write the previously

planned test s
ripts in a format whi
h 
an be exe
uted by the framework. A



12 Fritsi, Nagy, Feren
 and Gyimothy

Keyword- Data- Modularity- Coordinate- White-box Presented

driven driven driven based based approa
h

no need of program-

ming skills to design

test s
ripts

X X X

no hard-
oded data

in test s
ripts

X X


ombinable test

s
ripts

X X X X

no sour
e 
ode re-

quired to design test

s
ripts

X X X X

test s
ript exe
ution

handles rearrange-

ments in windows

X X

Table 1. Key features of di�erent testing te
hniques that our tool 
an handle.

spe
ial system under test may require unique a
tions and keywords whi
h are

important to be supported by the testing framework.

In some 
ases the planning stage and the implementation stage 
an be 
om-

bined into one stage and engineers 
an write the s
ripts dire
tly into the frame-

works s
ripting format.

Our presented approa
h 
an be interpreted as keyword-driven testing be
ause

our implemented tool has its own s
ripting language whi
h is able to understand

spe
i�
 keywords and translate them into mouse, keyboard or other input events.

Similar to our tool, Selenium is also a re
ord/replay tool. It is used for testing

web appli
ations. It has keywords like Goto WEBSITE or Enter "username",

et
. TesComplete is also an automating testing tool whi
h uses keywords to

simulate input events. With TestComplete one 
an also re
ord keyword-driven

test s
ripts and edit them later manually. Another example for a keyword-driven

test automation tool is TestAr
hite
t

6

developed by LogiGear In
.

Data-driven testing Data-driven testing is based on the separation of testing

data and exe
ution logi
, the tester spe
i�es inputs and veri�able outputs for a

test s
ript so that the test s
ript is exe
uted several times on di�erent inputs.

Data-driven testing is usually used for testing a form of an appli
ation with spe-


i�
 data. So the tester has to spe
ify the input data whi
h the testing framework

enters manually into the form under test and then 
ompares the result to the

expe
ted output. The main di�eren
e between keyword-driven testing and data-

driven testing is that in keywod-driven test s
ripts the data is hard-
oded into

the test s
ript (e.g. enter "test text" to a textbox) and if one wants to test e.g.

the same textbox with di�erent data she/he has to 
reate another test s
ript.

6

http://www.testar
hite
t.
om/



Layout Independent GUI Testing 13

Our approa
h relies on Python s
ripts resulting that it 
an be used for data-

driven testing. With Python, the input data 
an be stored in variables, whi
h


an be initialized even in a separate s
ript �le, hen
e the input and the exe
ution

logi
 
an be totally separated. Moreover by using arrays for storing input and

expe
ted output data, loops 
an be used to exe
ute the same keyword several

times with the input array. This way hard-
oded data sets 
an be eliminated

from our test s
ripts. Compared to other tools, TestComplete is also 
apable

of spe
ifying input data for test re
orded test s
ripts so TestComplete 
an also

be used for data-driven testing. Using extensions Selenium is also 
apable of

exe
uting test s
ripts on various input data.

Modularity-driven testing Modularity-driven testing requires writing small,

independent test s
ripts for ea
h modules, pa
kages and fun
tions of the appli
a-

tion under test. These small s
ripts are then used to 
reate larger tests, realizing

a parti
ular test 
ase. For example, if one wants to test one of the admin users'

fun
tions, she/he has to write a s
ript for testing the login a
tion and another

separate s
ript for testing the fun
tion itself. Then, in a larger test s
ript, �rst

the login s
ript gets 
alled and if it runs su

essfully the next s
ript gets 
alled

whi
h tests the admin's fun
tion.

One bene�t of this te
hnique is that one 
hange in a module/fun
tion a�e
ts

only its test 
ases and others might remain untou
hed during the maintenan
e

of the test s
ripts.

With Python s
ripts, modularity-driven testing is also supported by our ap-

proa
h. One 
an write separate automated Python test s
ripts and 
ombine them

into a larger s
ript by importing them.

Coordinate-based and white-box testing One 
ommon way for automated

GUI testing is the 
oordinate-based testing, be
ause the testing framework doesn't

need to know anything about the tested appli
ation. Coordinate-based testing

is a sort of keyword-driven testing. Usually a keyword 
ontains a 
oordinate and

a user a
tion to be performed on the given 
oordinate. There are two kinds of


oordinate based testing:

� Using absolute 
oordinates within the appli
ation window, where 
oordinates

are relative to usually the upper left 
orner of the s
reen. This method does

not appears to be very useful, but in many appli
ations the position of the

window is not important.

� Using 
oordinates that are relative to the upper left 
orner of the 
urrently

a
tive window.

Coordinate-based test s
ripts are the solution if there is no available infor-

mation about the appli
ation under test. However, 
oordinate-based test s
ripts

are hard to maintain as it might easily 
hange what is exa
tly on the same


oordinate next time when we exe
ute the appli
ation.

If we have a

ess to the sour
e 
ode or some do
umentations of the appli
a-

tion under test during its testing phases pro
ess it is 
alled white box testing.



14 Fritsi, Nagy, Feren
 and Gyimothy

Basi
ally our method is a white box testing be
ause we use the layout des
ription

of the appli
ation to 
reate test s
ripts.

5.1 Drawba
ks of the te
hnique

Besides bene�ts, there are some important drawba
ks whi
h should be dis
ussed

here. First, we 
onsider minor 
hanges of the GUI those 
hanges that simply

rearrange the layout of the window and does not modify drasti
ally the stru
-

ture of it. Our method will re
ognize the 
ontrol based on its unique identi�er,

whi
h identi�es the 
ontrol based on its parents in the 
ontrol tree. If the parent

hierar
hy 
hanges, we will not be able to re
ognize the same 
ontrol again.

Another important drawba
k is that the method works based on relative


oordinates inside the identi�ed 
ontrols. These 
oordinates may strongly depend

on the internal layout of the 
ontrol. For example, in tree 
ontrols if the order of

the nodes varies between di�erent exe
utions, our tool may not follow the new

stru
ture. Similarly, our te
hnique may fail in sele
ting an exa
t item from a

listbox or a 
ombobox if the list of elements 
hanges.

Another way a developer 
an exploit our method is to 
hange the size or

position of a 
ontrol at runtime. Sin
e we read this information from the ASG,

our method works as long as the size and the position of the 
ontrol remains

un
hanged during exe
ution.

6 Con
lusions and Future Work

Our approa
h for layout independent automati
 GUI testing is based on user

interfa
e des
riptions stored in the sour
e 
ode. We use stati
 
ode analysis to

gather user interfa
e des
riptions and 
ombine it with dynami
 exe
ution tra
es

during the re
ording phase of a test 
ase. The resulting test s
ripts 
ontain only

layout independent data whi
h 
an be played ba
k to the appli
ation later even if

the user interfa
e has been 
hanged. This te
hnique may dramati
ally lower the


osts of regression tests where developers and testers have to maintain thousands

of test 
ases.

We implemented our approa
h in a spe
ial 4GL environment 
alled Magi


xpa, and our implementation is 
urrently used by our industrial partner where

developers have been working with Magi
 for more than a de
ade. Our partner

delivers wholesale produ
ts where high quality of the delivered produ
t is top

priority, whi
h also requires thorough testing pro
esses. We found our approa
h

to be useful for our partner in their regression testing pro
esses.

Using GUI information stored in the sour
e 
ode during automati
 GUI test-

ing is a novel approa
h for Magi
 4GL. We note here that the idea 
an be easily

generalized to other languages, where the GUI des
ription 
an be extra
ted from

the sour
e 
ode by stati
 analysis (e.g. resour
e �les of Delphi or C# appli
a-

tions). However this might not stand for languages where the GUI is usually


onstru
ted dynami
ally, for instan
e in Java, where the dynami
 nature of GUI

generation makes our approa
h hardly appli
able.



Layout Independent GUI Testing 15

As future work we plan to improve our validation te
hniques and to support

testing Magi
 appli
ations with automati
 test s
ript and test input generations

based also on the results of stati
 analysis.

A
knowledgements

This resear
h was supported by the Hungarian national grants GOP-1.2.1-08-

2009-0005 and GOP-1.1.1-11-2011-0039.

Referen
es

1. Sebastian Bauersfeld and Tanja E. J. Vos. Guitest: a java library for fully auto-

mated gui robustness testing. In Pro
eedings of the 27th IEEE/ACM International

Conferen
e on Automated Software Engineering, ASE 2012, pages 330�333, New

York, NY, USA, 2012. ACM.

2. Hans Buwalda. Automated testing with a
tion words, abandoning re
ord and

playba
k. In Pro
eedings of the EuroStar Conferen
e, 1996.

3. Hans Buwalda and Maartje Kasdorp. Getting automated testing under 
ontrol,

software testing and quality engineering. STQE magazine, division of Software

Quality Engineering, nov/de
 1999.

4. Dimitris Dranidis, Stephen P. Masti
ola, and Paul Strooper. Challenges in pra
ti
e:

4th international workshop on the automation of software test report. SIGSOFT

Softw. Eng. Notes, 34(4):32�34, July 2009.

5. Elfriede Dustin, Thom Garrett, and Bernie Gauf. Implementing Automated Soft-

ware Testing: How to Save Time and Lower Costs While Raising Quality. Addison-

Wesley Professional, 1st edition, 2009.

6. Elfriede Dustin, Je� Rashka, and John Paul. Automated software testing: intro-

du
tion, management, and performan
e. Addison-Wesley Longman Publishing Co.,

In
., Boston, MA, USA, 1999.

7. Mark Fewster and Dorothy Graham. Software test automation: e�e
tive use of test

exe
ution tools. ACM Press/Addison-Wesley Publishing Co., 1999.

8. Svetoslav R. Ganov, Chip Killmar, Sarfraz Khurshid, and Dewayne E. Perry. Test

generation for graphi
al user interfa
es based on symboli
 exe
ution. In Pro
eedings

of the 3rd international workshop on Automation of software test, AST '08, pages

33�40, New York, NY, USA, 2008. ACM.

9. Je� Hinz and Martin Gijsen. Fifth generation s
riptless and advan
ed test au-

tomation te
hnologies, 2009.

10. Cem Kaner. Ar
hite
tures of test automation, 2000.

11. Edward Kit. Integrated e�e
tive test design and automation software development.

Software Development online, feb 1999.

12. Kanglin Li and Menggi Wu. E�e
tive GUI Test Automation. SYBEX In
.,

Alameda, CA, USA, 2005.

13. Yongzhong Lu, Danping Yan, Songlin Nie, and Chun Wang. Development of an

improved GUI automation test system based on event-�ow graph. In Pro
eedings of

the 2008 International Conferen
e on Computer S
ien
e and Software Engineering

- Volume 02, pages 712�715. IEEE Computer So
iety, 2008.

14. A.M. Memon, M.E. Polla
k, and M.L. So�a. Hierar
hi
al GUI test 
ase generation

using automated planning. IEEE Transa
tions on Software Engineering, 27(2):144

�155, feb 2001.



16 Fritsi, Nagy, Feren
 and Gyimothy

15. Csaba Nagy, László Vidá
s, Feren
 Rudolf, Tibor Gyimóthy, Feren
 Ko
sis, and

István Ková
s. Solutions for reverse engineering 4GL appli
ations, re
overing the

design of a logisti
al wholesale system. In 15th European Conferen
e on Software

Maintenan
e and Reengineering (CSMR), pages 343 �346, mar
h 2011.

16. Jan Peleska, Helge Löding, and Tatiana Kotas. Test automation meets stati


analysis. In GI Jahrestagung (2), volume 110 of LNI, pages 280�290. GI, 2007.

17. Bru
e Posey. Just Enough Software Test Automation. Prenti
e Hall PTR, 2002.

18. Ian Sommerville. Software Engineering (9th Edition), 
hapter Software testing.

Addison-Wesley, 2010.

19. Ri
hard Strang. Data driven testing for 
lient/server appli
ations. In Pro
eedings

of the Fifth International Conferen
e on Software Testing, Analysis and Reliability

(STAR'96), pages 395�400, 1996.


