
A Methodology and Framework for Automati

Layout Independent GUI Testing of Appliations

Developed in Magi xpa

Daniel Fritsi, Csaba Nagy, Rudolf Feren, Tibor Gyimothy

Department of Software Engineering

University of Szeged, Hungary

fritsi�frontendart.om, {nsaba|feren|gyimi}�inf.u-szeged.hu

Abstrat. Testing an appliation via its Graphial User Interfae (GUI)

requires lots of manual work, even if some steps of GUI testing an be au-

tomated. Test automation tools are great help for testers, partiularly for

regression testing. However these tools still lak some important features

and still require manual work to maintain the test ases. For instane,

if the layout of a window is hanged without a�eting the main fun-

tionality of the appliation, all test ases testing the window must be

re-reorded again. This hard maintenane work is one of the greatest

problems with the regression tests of GUI appliations.

In our paper we propose an approah to use the GUI information stored

in the soure ode during automati testing proesses to reate layout

independent test sripts. The idea was motivated by testing an applia-

tion developed in a fourth generation language, Magi. In this language

the layout of the GUI elements (e.g. position and size of ontrols) are

stored in the ode and an be gathered via stati ode analysis. We imple-

mented the presented approah for Magi xpa in a tool alled Magi Test

Automation, whih is used by our industrial partner who has developed

appliations in Magi for more than a deade.

1 Introdution

Thoroughly testing an appliation via its user interfae is not an easy task for

large, omplex appliations with many di�erent funtionalities. Testers have to

follow ertain steps of thousands of test ases and need to evaluate the results

manually. This hard work an be supported by automati GUI testing tools,

as these tools are able to follow and reord user events (mouse, keyboard, et.)

generated by testers then play bak these events to the appliation under test.

This is a great help for regression tests, for example, where the aim is to re-

test the appliation after a hange. However, there remains still a lot of manual

work to be done. Testers need to reord the test ase for the �rst time when

they reate it, and they need to maintain the reorded sripts as the appliation

evolves.

Current tools support the most popular 3rd generation languages (e.g. C/C++,

Java, C#), however higher level languages suh as 4th generation languages



2 Fritsi, Nagy, Feren and Gyimothy

(Magi 4GL, ABAP, Informix) beame also popular in software development.

Developers programming in these languages do not write soure ode in the tra-

ditional way, but they develop at a higher level of abstration, for instane, using

an appliation development environment. In suh languages the appliation ode

usually stores the desription of the user interfae too (e.g. struture of a window

or a form and position, olor or size of a ontrol). In our paper we use this infor-

mation to make the automati testing proess GUI layout independent. That is,

a reorded test sript does not depend on exat oordinates or the layout of the

GUI, so the same test ase an be reused later even when the developers make

minor hanges to the user interfae of the appliation (e.g. they rearrange the

buttons in a window).

One of the greatest problems with regression tests for GUI appliations is

that even a minor hange in the GUI may result in rewriting all the test ases

[4℄. As a possible solution, our tehnique may signi�antly redue the osts of

maintaining regression tests to keep the quality of a GUI appliation assured.

The main ontributions of this paper are:

� we propose a method to reord and play bak automati GUI test sripts

that are una�eted by minor hanges of the GUI, hene they are layout

independent;

� we present our approah in an �in vivo� industrial ontext, as our tool is used

by our industrial partner for testing Magi xpa appliations. The presented

approah was implemented during a researh projet in o-operation with

our industrial partner, SZEGED Software In. During the projet the tool

was experimentally used for automated GUI testing, and it was extended

with additional features. For further details on the projet please refer to its

webpage

1

.

2 Automated Software Testing

Sommerville introdues the main goal of software testing in [18℄ as follows: �test-

ing is intended to show that a program does what it is intended to do and to dis-

over program defets before it is put into use� . In the �eld of software testing,

automated software testing is a relevant software engineering topi nowadays,

mostly motivated by the industry. As a result many papers and books have been

published in this area [5℄, [6℄, [7℄, [12℄, [17℄. Here we elaborate on the literature

and on related tools fousing on those that are losely related to our work.

Testing automation frameworks are usually divided into 5 generations [10℄,

[11℄. 1st generation frameworks are so-alled reord/playbak tools that are based

on simple test sripts where one sript relates to one test ase. The 2nd gen-

erational tools have sripts that are better designed to use/reuse funtions, for

example. 3rd generation frameworks take data out of the test sripts so a test

sript may be re-exeuted several times on di�erent data. This onept is alled

1

http://www.infopolus2009.hu/en/magi



Layout Independent GUI Testing 3

data-driven testing [7℄, [19℄. Another onept, usually referred to as 4th genera-

tion testing is alled keyword-driven, where the test reation proess is separated

into a higher level planning stage and an implementation stage, thus keywords

de�ned at higher level drive the exeutions [2℄, [3℄, [7℄. New tehniques some-

times bring test automation to an even higher, so-alled sriptless level (5th

generation), where automated test ases are designed by engineers instead of

testers/developers [9℄.

Our approah an be onsidered as a 3rd generation approah, beause with

arefully designed test sripts, the data an be separated from the exeution

proess. The idea of keyword driven testing is also similar, but our test sript is

still at lower level, lose to the implementation.

The idea of supporting the reording and playbak of test ases by using

test sripts based on GUI information from soure ode is novel to our best

knowledge in 4GL ontext. However, stati analysis is a ommon tool to support

GUI testing in other approahes, e.g. for generating test sripts [8℄, [13℄, [14℄,

[16℄.

There are a number of automati GUI testing tools available for software

engineers. Just to mention some examples, GUITest[1℄ is a Java library for auto-

mated robustness testing, Selenium

2

is a GUI testing tool for Web appliations.

As an appliation testing a web page it also provides solutions to simplify test

sripts by using the identi�er of a ontrol from the HTML ode of the web page.

This is a similar approah to ours for Web appliations. TestComplete

3

, HP

Quality Center and Quik Test Professional (QTP)

4

tools are also a widely used

for appliations written in 4GLs. Mirosoft also provides automated GUI testing

for instane via GUI Automation of the .NET Framework

5

.

3 Speialties of a Magi Appliation

In the early 80's Magi Software Enterprises (MSE) introdued a new fourth

generation language, alled Magi 4GL. The main onept was to program an

appliation at a higher level meta language, and let an appliation generator

engine reate the �nal appliation. A Magi appliation ould run on popular

operating systems suh as DOS and Unix, so appliations were easily portable.

Magi evolved and a new version of Magi has been released, uniPaaS and lately

Magi xpa. The new version supports modern tehnologies suh as RIA, SOA

and mobile development too.

The unique meta model language of Magi ontains instrutions at a higher

level of abstration, loser to business logi. When one develops an appliation in

Magi, she/he atually programs the Magi Runtime Appliation Environment

2

http://seleniumhq.org/

3

http://smartbear.om/produts/qa-tools/automated-testing/

4

HP Test Management (aessed 2013): http://www8.hp.om/us/en/software-

solutions/software.html?ompURI=1170256

5

Mirosoft UI Automation Overview (aessed 2013): http://msdn.mirosoft.om/en-

us/library/ee684076%28v=vs.85%29.aspx



4 Fritsi, Nagy, Feren and Gyimothy

(MRE) using its meta model. This meta model is what really makes Magi a

RADD (Rapid Appliation Development and Deployment) tool.

Magi omes with many GUI sreens and report editors as it was invented

to develop business appliations for data manipulation and reporting. The most

important elements of Magi are the various entity types of business logi, namely

the data tables. A table has its olumns whih are manipulated by a number

of programs (onsisting of subtasks) linked to forms, menus and help sreens.

These items may also implement funtional logi using logi statements, e.g.

for seleting variables (virtual variables or table olumns), updating variables,

onditional statements.

Fig. 1. A sreen shot of the Magi xpa appliation development framework.

Figure 1 is a sreen shot of the Magi xpa development environment. Some

major omponents of Magi xpa, as a 4th generation programming language are:

Data Objets. These are essentially the desriptions of the database tables.

Just as the tables and their olumns and primary or foreign keys are de�ned

in a database, we an de�ne these objets in Magi xpa too.

Programs. The logi of an appliation is implemented here. Programs are top-

level tasks with several subtasks below them. A task always works on some

Data Objets and performs some operations on them. We an de�ne whih

database tables should the task use, and whih operations should the task

perform on them.

Menus. In the appliation, we an use di�erent high-level menus and pop-up

menus, whih an be de�ned here.

Form Entries. Magi xpa has a form editor, where we an de�ne the properties

of a window (e.g. title, size and position) and we an plae ontrols and menus

on a form and ustomize them. A graphi window, a form is FormEntry in

Magi xpa. In the Magi xpa development environment we an use many

built-in ontrols or we an de�ne our ustom ontrols too. A form is always

de�ned within a task. The form editor of Magi xpa is shown in Figure 2.



Layout Independent GUI Testing 5

Fig. 2. A sreen shot of the form editor of Magi xpa.

4 Automati GUI Testing of a Magi Appliation

We implemented a tool alled Magi Test Automation, whih enables the au-

tomati GUI testing of appliations implemented in Magi xpa. The automati

testing of a Magi appliation has three main steps (see Figure 3):

1. Analyzing the Magi appliation. Here we perform a stati analysis of the

appliation to gather all the required data of its GUI.

2. Reording GUI events. This is the step where we monitor the mouse and

keyboard events and use them to reate layout independent test sripts.

3. Playbak reorded GUI events. We use the layout independent test sripts

to simulate mouse and keyboard events on the appliation being tested.

In ase of layout-independent testing, one the appliation gets hanged in

the future, it is enough to repeat the analyzing and the playbak steps, and

re-reording test ases is not neessary.

Fig. 3. Main steps of automati GUI testing of a Magi appliation.



6 Fritsi, Nagy, Feren and Gyimothy

4.1 Stati Analysis of Magi Appliations

A Magi appliation does not have soure ode in the �traditional way�, it is

desribed by a save �le of its urrent model. In the older Magi versions this

save was a strutured text �le, but in the newer versions suh as Magi xpa, this

is an XML �le. During the analysis of a Magi appliation we extrat information

from this soure �le. As the result of the analysis, a graph desribing the struture

of the program is reated, whih is alled an Abstrat Semanti Graph (ASG).

A node of the ASG represents an item in the soure ode. All these nodes

are instanes of the orresponding soure elements. Two nodes an be onneted

with two types of relations: aggregation and assoiation. Aggregation an be

used to desribe omplex grammar elements (edges of the syntax tree) and with

assoiation we an desribe semanti details (e.g. identi�er referenes). The graph

is reated by a stati analyzer tool, whih parses the save �le of the appliation

being analyzed, reates the nodes and puts them together in the ASG.

For further details about reverse engineering Magi appliations please refer

to our previous work [15℄.

4.2 Reording GUI Events

Reording GUI events is the proess where we reord the way the user interats

with the appliation under test into a ertain sript format. We ath the events

generated by the user and we try to identify the related soure element, then

transform it to a ommand of a test sript. Of ourse, user ould write suh a

sript manually, but for omplex test ases it would be almost impossible.

Traditional, oordinate based automati testing tehniques reord the event

type and its position. In our layout-independent tehnique we reord the event

type and the identi�er (in the soure ode) of the ontrol on whih the event

ourred.

Hene, the most important task of reording is to identify the soure element

on whih the atual user event happened. To be able to do this, we use dynami

traes of the exeuted appliation to identify the urrently running tasks and

form elements that are displayed on the sreen. One we ath a user event

based on its position on the sreen and the dynami traes, we an identify the

ertain ontrol of the soure ode, whih is atually stored in the ASG. Figure

4 illustrates the proess of the reording.

Reording is performed on Windows platform using Windows API. Cath-

ing a user event is based on Windows' hook mehanism (SetWindowsHookEx,

HookPro funtions).

In Figure 5 we illustrate the possible steps that a tester would perform testing

a sample window of a Magi appliation. We reorded the illustrated steps with

the Magi Test Automation tool and saved the sript in Python format. Figure

6 shows the resulting Python sript.

It an be seen that the Magi Test Automation tool onnets the Magi ode

with the ASG and generates a sript using the obtained identi�ers. A traditional



Layout Independent GUI Testing 7

Fig. 4. Reording GUI Events.

oordinate-based method would result in a sript ontaining only oordinates,

e.g. as it an be seen in Figure 7.

One an see that both sripts ontain the same amount of instrutions. When

we exeute the two sripts they will produe the same result, but what happens

when we rearrange the window? (For illustration, see a rearranged window in

Figure 8.) The appliation would work as before, but the ontrols would be

in di�erent positions. If we exeuted the layout independent Python sript the

result would be the same as before, beause the Magi Test Automation tool

realulates the oordinates by the unique identi�ers. In ontrast, if we play

the position based Python sript then the result will be negative, beause the

ontrols are not in the positions as before.

4.3 Playbak Reorded GUI Events

One we have the test sript, we need to be able to playbak the reorded user

events to the appliation, this is based on exeuting events of the sript. However

this is not enough, as the exeution needs to be evaluated and we must make sure

that the program under test behaves the same way as it did when we reorded

the test sript. This is done during the validation phase.

Exeuting Events In traditional, oordinate based tehniques, exeuting a user

event is simple, as the reorded event must be sent to the appliation with the

reorded position. In our layout-independent tehnique we have no oordinates

stored in the test sript, but we store the identi�er of the ontrol.

Hene, during exeution we alulate the oordinates of the ontrol from the

ASG, and transform these oordinates to positions on the sreen.

If the appliation is modi�ed, we an re-run the same test sript, but with

the ASG of the new version of the appliation (see Figure 9 for illustration).

To play bak a reorded test sript, �rst of all we need the sript �le, and

the ASG to onnet the unique identi�ers of it with the orresponding Windows



8 Fritsi, Nagy, Feren and Gyimothy

Fig. 5. An example window of a Magi xpa appliation with example steps for testing

its GUI.

Fig. 6. A layout independent Python sript for the steps in Figure 5.

GUI elements. During the playbak we must exeute the Magi appliation in

the Magi Runtime Environment and we must load the sript �le in the Magi

Test Automation tool. The sript �le ontains the reorded keyboard and mouse

events whih the Test Automation tool �rst interprets and then exeutes. (An

illustration an be seen in Figure 10.)

During the interpretation we loate GUI elements in the ASG via their unique

identi�ers. After that, we identify the same Windows ontrols of the running

appliation. This identi�ation is sometimes quite omplex as the lower level

implementation of a ontrol may be totally di�erent than the simple Magi

ontrol. Suppose a omplex tree ontrol or a group box built from many smaller

ontrols. In order to solve this identi�ation problem we ollet all information

from the ASG that we need to identify a GUI element (position, size), but this is

still not enough as the appliation an simultaneously display multiple windows

and parent windows too. Therefore, we need all information from its parent

elements too. This way we know that on whih window the urrent element

is loated. Using the Windows API we an �nd windows and GUI elements by



Layout Independent GUI Testing 9

Fig. 7. A oordinate based Python sript for the steps in Figure 5.

Fig. 8. A rearranged window of the example uniPaaS appliation (see Figure 5).

Fig. 9. After a new version, the same test sript an be exeuted with the new ASG.

header texts, positions and parent window identi�ers. So, we get the handle of the

window with the FindWindow and FindWindowEx funtions by the header text

and other attributes of it, whih we read from the ASG. We an also alulate



10 Fritsi, Nagy, Feren and Gyimothy

Fig. 10. Running Reorded GUI Events.

the relative oordinates to the window of the urrently searhed GUI element.

As the GUI element an be within other GUI elements suh as a group box,

we start looking for it from the bottom of the Windows ontrol tree and walk

upwards to the top. We realulate the relative oordinates until we get to the

searhed GUI element.

It is not always enough to know whih Windows ontrol mathes a ontrol

with a unique ASG identi�er beause we must know the exat position where to

lik within the GUI element. In ase of a button this is irrelevant, but in ase

of a tree view it is not. The Magi Test For omplex ontrols, the automation

tool generates sript �les where we store a position as the relative position to

the identi�ed Magi ontrol. Based on these oordinates we an alulate the

absolute position where we an generate the keyboard or mouse event using the

Windows API.

Evaluating an exeution Some steps of the evaluation an be done automati-

ally after the test sript was exeuted, however it is always neessary to tell the

automation tool the validation steps manually after reording a test sript. The

tester an do it by inserting validation (e.g. assert) funtions into the sript �le

after the orresponding event handler. The Magi Test Automation tool supports

the following validation possibilities:

� To hek anywhere in the appliation's ontrol tree, or in a partiular window

whether it ontains a text or there is a window with a given title.

� Comparison of a spei� GUI element's text with a given text.

� Verify that a GUI element is in fous or not.

� Verify that a GUI element is enabled or not.

� Verify that a hek box or radio button is heked or not.

The Magi Test Automation tool will hek these asserts and report the result

of a test sript aordingly.

Another advantage of these validation funtions is that in addition to evaluate

the results of an exeution, one an use them in the previously mentioned delay

funtions too. For example, one an easily say that she/he wants to wait until a



Layout Independent GUI Testing 11

Fig. 11. Examples for validations in a Python sript.

hek box is heked or a spei� text box ontains a given text. Moreover, with

Python sripts we an use them to ontrol the exeution of the test ase. E.g.

we an de�ne omplex test ases where we say that if a GUI element is ativated

then we want to do ertain steps, otherwise we want to do a di�erent hain of

steps.

Figure 11 illustrates the Python sript shown in Figure 6, extended with vali-

dation instrutions. After liking the hek boxes there is a hekState funtion

whih heks that the hek box is really heked or not. After seleting an

item from the ombo box there is a ompareText funtion whih heks that the

ombo box ontains the orret text and after liking in the table we hek that

the "Fe~TableView::Ct~Show Figures Box" has the fous or not. Finally, after

liking the "Fe~Table View::Ct~Close Button" button we hek if the window

losed suessfully or not.

5 Comparison to Other Tehniques

A omparison of some aspets of ommon tehniques and our approah an be

seen in Table 1. Here we elaborate on these tehniques in details.

Keyword-driven testing A keyword in its simplest form is an atomi test step

or an aggregation of more atomi steps. It desribes an ation to be performed,

hene keyword-driven testing is usually referred as ation-word testing too. Most

of the ases the keyword-driven testing is divided into two stages:

� planning stage,

� implementation stage.

In the planning stage test engineers determine the test steps for eah test ase

(e.g. entering a text into a text �eld, liking on a button, et.). Later, in the

implementation stage the engineers an use a framework to write the previously

planned test sripts in a format whih an be exeuted by the framework. A



12 Fritsi, Nagy, Feren and Gyimothy

Keyword- Data- Modularity- Coordinate- White-box Presented

driven driven driven based based approah

no need of program-

ming skills to design

test sripts

X X X

no hard-oded data

in test sripts

X X

ombinable test

sripts

X X X X

no soure ode re-

quired to design test

sripts

X X X X

test sript exeution

handles rearrange-

ments in windows

X X

Table 1. Key features of di�erent testing tehniques that our tool an handle.

speial system under test may require unique ations and keywords whih are

important to be supported by the testing framework.

In some ases the planning stage and the implementation stage an be om-

bined into one stage and engineers an write the sripts diretly into the frame-

works sripting format.

Our presented approah an be interpreted as keyword-driven testing beause

our implemented tool has its own sripting language whih is able to understand

spei� keywords and translate them into mouse, keyboard or other input events.

Similar to our tool, Selenium is also a reord/replay tool. It is used for testing

web appliations. It has keywords like Goto WEBSITE or Enter "username",

et. TesComplete is also an automating testing tool whih uses keywords to

simulate input events. With TestComplete one an also reord keyword-driven

test sripts and edit them later manually. Another example for a keyword-driven

test automation tool is TestArhitet

6

developed by LogiGear In.

Data-driven testing Data-driven testing is based on the separation of testing

data and exeution logi, the tester spei�es inputs and veri�able outputs for a

test sript so that the test sript is exeuted several times on di�erent inputs.

Data-driven testing is usually used for testing a form of an appliation with spe-

i� data. So the tester has to speify the input data whih the testing framework

enters manually into the form under test and then ompares the result to the

expeted output. The main di�erene between keyword-driven testing and data-

driven testing is that in keywod-driven test sripts the data is hard-oded into

the test sript (e.g. enter "test text" to a textbox) and if one wants to test e.g.

the same textbox with di�erent data she/he has to reate another test sript.

6

http://www.testarhitet.om/



Layout Independent GUI Testing 13

Our approah relies on Python sripts resulting that it an be used for data-

driven testing. With Python, the input data an be stored in variables, whih

an be initialized even in a separate sript �le, hene the input and the exeution

logi an be totally separated. Moreover by using arrays for storing input and

expeted output data, loops an be used to exeute the same keyword several

times with the input array. This way hard-oded data sets an be eliminated

from our test sripts. Compared to other tools, TestComplete is also apable

of speifying input data for test reorded test sripts so TestComplete an also

be used for data-driven testing. Using extensions Selenium is also apable of

exeuting test sripts on various input data.

Modularity-driven testing Modularity-driven testing requires writing small,

independent test sripts for eah modules, pakages and funtions of the applia-

tion under test. These small sripts are then used to reate larger tests, realizing

a partiular test ase. For example, if one wants to test one of the admin users'

funtions, she/he has to write a sript for testing the login ation and another

separate sript for testing the funtion itself. Then, in a larger test sript, �rst

the login sript gets alled and if it runs suessfully the next sript gets alled

whih tests the admin's funtion.

One bene�t of this tehnique is that one hange in a module/funtion a�ets

only its test ases and others might remain untouhed during the maintenane

of the test sripts.

With Python sripts, modularity-driven testing is also supported by our ap-

proah. One an write separate automated Python test sripts and ombine them

into a larger sript by importing them.

Coordinate-based and white-box testing One ommon way for automated

GUI testing is the oordinate-based testing, beause the testing framework doesn't

need to know anything about the tested appliation. Coordinate-based testing

is a sort of keyword-driven testing. Usually a keyword ontains a oordinate and

a user ation to be performed on the given oordinate. There are two kinds of

oordinate based testing:

� Using absolute oordinates within the appliation window, where oordinates

are relative to usually the upper left orner of the sreen. This method does

not appears to be very useful, but in many appliations the position of the

window is not important.

� Using oordinates that are relative to the upper left orner of the urrently

ative window.

Coordinate-based test sripts are the solution if there is no available infor-

mation about the appliation under test. However, oordinate-based test sripts

are hard to maintain as it might easily hange what is exatly on the same

oordinate next time when we exeute the appliation.

If we have aess to the soure ode or some doumentations of the applia-

tion under test during its testing phases proess it is alled white box testing.



14 Fritsi, Nagy, Feren and Gyimothy

Basially our method is a white box testing beause we use the layout desription

of the appliation to reate test sripts.

5.1 Drawbaks of the tehnique

Besides bene�ts, there are some important drawbaks whih should be disussed

here. First, we onsider minor hanges of the GUI those hanges that simply

rearrange the layout of the window and does not modify drastially the stru-

ture of it. Our method will reognize the ontrol based on its unique identi�er,

whih identi�es the ontrol based on its parents in the ontrol tree. If the parent

hierarhy hanges, we will not be able to reognize the same ontrol again.

Another important drawbak is that the method works based on relative

oordinates inside the identi�ed ontrols. These oordinates may strongly depend

on the internal layout of the ontrol. For example, in tree ontrols if the order of

the nodes varies between di�erent exeutions, our tool may not follow the new

struture. Similarly, our tehnique may fail in seleting an exat item from a

listbox or a ombobox if the list of elements hanges.

Another way a developer an exploit our method is to hange the size or

position of a ontrol at runtime. Sine we read this information from the ASG,

our method works as long as the size and the position of the ontrol remains

unhanged during exeution.

6 Conlusions and Future Work

Our approah for layout independent automati GUI testing is based on user

interfae desriptions stored in the soure ode. We use stati ode analysis to

gather user interfae desriptions and ombine it with dynami exeution traes

during the reording phase of a test ase. The resulting test sripts ontain only

layout independent data whih an be played bak to the appliation later even if

the user interfae has been hanged. This tehnique may dramatially lower the

osts of regression tests where developers and testers have to maintain thousands

of test ases.

We implemented our approah in a speial 4GL environment alled Magi

xpa, and our implementation is urrently used by our industrial partner where

developers have been working with Magi for more than a deade. Our partner

delivers wholesale produts where high quality of the delivered produt is top

priority, whih also requires thorough testing proesses. We found our approah

to be useful for our partner in their regression testing proesses.

Using GUI information stored in the soure ode during automati GUI test-

ing is a novel approah for Magi 4GL. We note here that the idea an be easily

generalized to other languages, where the GUI desription an be extrated from

the soure ode by stati analysis (e.g. resoure �les of Delphi or C# applia-

tions). However this might not stand for languages where the GUI is usually

onstruted dynamially, for instane in Java, where the dynami nature of GUI

generation makes our approah hardly appliable.



Layout Independent GUI Testing 15

As future work we plan to improve our validation tehniques and to support

testing Magi appliations with automati test sript and test input generations

based also on the results of stati analysis.

Aknowledgements

This researh was supported by the Hungarian national grants GOP-1.2.1-08-

2009-0005 and GOP-1.1.1-11-2011-0039.

Referenes

1. Sebastian Bauersfeld and Tanja E. J. Vos. Guitest: a java library for fully auto-

mated gui robustness testing. In Proeedings of the 27th IEEE/ACM International

Conferene on Automated Software Engineering, ASE 2012, pages 330�333, New

York, NY, USA, 2012. ACM.

2. Hans Buwalda. Automated testing with ation words, abandoning reord and

playbak. In Proeedings of the EuroStar Conferene, 1996.

3. Hans Buwalda and Maartje Kasdorp. Getting automated testing under ontrol,

software testing and quality engineering. STQE magazine, division of Software

Quality Engineering, nov/de 1999.

4. Dimitris Dranidis, Stephen P. Mastiola, and Paul Strooper. Challenges in pratie:

4th international workshop on the automation of software test report. SIGSOFT

Softw. Eng. Notes, 34(4):32�34, July 2009.

5. Elfriede Dustin, Thom Garrett, and Bernie Gauf. Implementing Automated Soft-

ware Testing: How to Save Time and Lower Costs While Raising Quality. Addison-

Wesley Professional, 1st edition, 2009.

6. Elfriede Dustin, Je� Rashka, and John Paul. Automated software testing: intro-

dution, management, and performane. Addison-Wesley Longman Publishing Co.,

In., Boston, MA, USA, 1999.

7. Mark Fewster and Dorothy Graham. Software test automation: e�etive use of test

exeution tools. ACM Press/Addison-Wesley Publishing Co., 1999.

8. Svetoslav R. Ganov, Chip Killmar, Sarfraz Khurshid, and Dewayne E. Perry. Test

generation for graphial user interfaes based on symboli exeution. In Proeedings

of the 3rd international workshop on Automation of software test, AST '08, pages

33�40, New York, NY, USA, 2008. ACM.

9. Je� Hinz and Martin Gijsen. Fifth generation sriptless and advaned test au-

tomation tehnologies, 2009.

10. Cem Kaner. Arhitetures of test automation, 2000.

11. Edward Kit. Integrated e�etive test design and automation software development.

Software Development online, feb 1999.

12. Kanglin Li and Menggi Wu. E�etive GUI Test Automation. SYBEX In.,

Alameda, CA, USA, 2005.

13. Yongzhong Lu, Danping Yan, Songlin Nie, and Chun Wang. Development of an

improved GUI automation test system based on event-�ow graph. In Proeedings of

the 2008 International Conferene on Computer Siene and Software Engineering

- Volume 02, pages 712�715. IEEE Computer Soiety, 2008.

14. A.M. Memon, M.E. Pollak, and M.L. So�a. Hierarhial GUI test ase generation

using automated planning. IEEE Transations on Software Engineering, 27(2):144

�155, feb 2001.



16 Fritsi, Nagy, Feren and Gyimothy

15. Csaba Nagy, László Vidás, Feren Rudolf, Tibor Gyimóthy, Feren Kosis, and

István Kovás. Solutions for reverse engineering 4GL appliations, reovering the

design of a logistial wholesale system. In 15th European Conferene on Software

Maintenane and Reengineering (CSMR), pages 343 �346, marh 2011.

16. Jan Peleska, Helge Löding, and Tatiana Kotas. Test automation meets stati

analysis. In GI Jahrestagung (2), volume 110 of LNI, pages 280�290. GI, 2007.

17. Brue Posey. Just Enough Software Test Automation. Prentie Hall PTR, 2002.

18. Ian Sommerville. Software Engineering (9th Edition), hapter Software testing.

Addison-Wesley, 2010.

19. Rihard Strang. Data driven testing for lient/server appliations. In Proeedings

of the Fifth International Conferene on Software Testing, Analysis and Reliability

(STAR'96), pages 395�400, 1996.


