
Static Analysis of Data-Intensive Applications
Csaba Nagy

University of Szeged
Department of Software Engineering

Dugonics tér 13. H-6725 Szeged, Hungary
ncsaba@inf.u-szeged.hu

Abstract—Data-intensive systems are designed to handle data
at massive scale, and during the years they might evolve to very
large, complex systems. In order to support maintenance tasks of
these systems several techniques have been developed to analyze
the source code of applications or to analyze the underlying
databases for the purpose of reverse engineering, e.g. quality
assurance or program comprehension. However, only a few of
these techniques take into account the specialties of data-intensive
systems.

In this thesis we conducted research to analyze and to improve
data-intensive applications via different methods based on static
analysis: methods for recovering architecture of data-intensive
systems and a quality assurance methodology for applications de-
veloped in Magic 4GL. We targeted SQL as the most widespread
databases are relational databases using certain dialect of SQL
for their queries. With the proposed techniques we were ableto
analyze large scale industrial projects, such as banking systems
with more than 3 million lines of code, and we successfully
recovered architecture maps and quality issues of these systems.

Keywords-Data-intensive systems, program dependencies, pro-
gram analysis, CRUD matrix, SQL extraction, Magic 4GL

I. I NTRODUCTION

Data-intensive systems are are usually constructed of one
or more databases and some applications communicating with
these databases. These sort of systems are increasingly pop-
ular as databases play important role in many architectures.
Today, these applications are part of our daily life (e.g. ERPs,
CRMs). Such a system usually has a complex, sometimes
even chaotic architecture with a large complex code base.
Reverse engineering techniques have been widely used to
support maintaining these systems in many different fields
such as program comprehension, migration and testing.

In this thesis we utilize static analysis techniques with the
goal to support program comprehension and improve software
quality for data-intensive systems.

We conducted research in different fields which we intro-
duce in this paper, hence the main contributions are:

• an SQL query extraction technique which can be utilized
for further analyses of embedded SQL queries [1],

• a method to compute dependencies via data accesses in
data-intensive systems [1],

• a method to use data dependencies to recover architecture
of legacy database applications [2],

• a quality assurance methodology for applications devel-
oped in Magic 4GL [3], [4], [5], [6].

Most of the introduced analyses techniques are based on
the Columbus reverse engineering technology developed at the
Department of Software Engineering, University of Szeged
in co-operation with FrontEndART Ltd. Columbus was first
introduced to analyze C++ code for quality assurance purposes
[7] and since then it has many different uses in the fields of
software quality assessment, software quality improvement,
software comprehension, and monitoring software develop-
ment life-cycle attributes.

In previous works we extended the reverse engineering
tool set with a front-end to analyze different dialects (Oracle,
Transact) of SQL. This front-end serves as the basis of our
further analyses.

II. EXTRACTING EMBEDDED SQL FROM SOURCE CODE

Relational databases (RDBMS) are the most common
database management systems used in data-intensive appli-
cations. The typical way of communicating with an RDBMS
is to use SQL queries through a library such as JDBC. ORM
technologies (e.g. Hibernate) are becoming popular too, but at
lower level they also use SQL statements. Hence, most of the
reverse engineering methods heavily depend on the extraction
or capturing of SQL statements used to communicate with the
underlying RDBMS.

Depending on the client side of the application, SQL
statements can be embedded into the source code in a hard-
coded way (e.g. in constant variables, string literals) or they
can be constructed dynamically through string expressions, for
instance.

Many approaches have been proposed to analyze embedded
SQL statements via static and dynamic analysis techniques as
well. Static analysis techniques are typically based on string
analysis [8], [9] which require an in-depth data or control
flow analysis. These techniques have their main advantage
that they analyze the full source, but they might be unable to
analyze dynamically constructed statements. Dynamic analysis
techniques capture the statements being sent to the database
at run-time, but they depend on the actual execution and
input, so they might miss not executed cases. Cleve presents
a summary on these techniques in his thesis [10]. Cordyet al.
published papers [11], [12] describing the TXL language and
its applications including embedded SQL parsing.

In our paper [1] we introduced an extraction technique to
analyze SQL statements embedded in the source code of a
special procedural language. The programming style of this



language makes the whole system strongly database dependent
and it makes the use of SQL queries common in the system.
The SQL statements to be executed are embedded as strings
sent to specific library procedures and their results can be
stored in given variables. This method is actually the same
as that for procedural languages where embedded queries are
sent to the database via libraries like JDBC. This makes our
method general and suitable for other languages too.

The implemented approach is based on the simple idea
of substituting the unrecognized query fragments in a string
concatenation with special substrings. For instance, it is
possible to simply replace thename variable with a string
“@@name@@”. If the SQL parser is able to handle this
string as an identifier, then the received query string will be a
syntactically correct SQL command (see Figure 1). With this
simple idea we need to locate the library procedures sending
SQL commands to the database in order to perform the string
concatenation, and the above-mentioned substitution of vari-
able, procedure name and other source elements. Whenever the
constructed string is considered syntactically correct, it has the
main characteristics of the executed SQL command.

SELECT firstname, lastname
FROM @@customer_table@@
WHERE firstname
LIKE(’%@@name@@%’);

Figure 1. Sample code of an extracted SQL command where the table name
is determined by a variable.

Developers usually like to prepare statements as close to
their execution place as possible and they prefer to keep SQL
keywords in separate string literals. In most cases, it is possible
to substitute the variables with their last defined values within
the same control block. In other cases the variable can be
replaced with the variable name as we describe it before.

The technique has its limitations, however in the context of
ForrasSQL it worked reasonably well. With this technique we
identified7, 434 embedded SQL strings (based on the specific
SQL library procedure calls) in a 315 kLOC application and
we successfully analyzed6, 499 SQL statements, which is87%
of all the embedded SQL strings.

III. D EPENDENCIES VIADATA ACCESSES IN

DATA -INTENSIVE SYSTEMS

The analysis of SQL queries can be utilized to discover
dependencies in the software which arise through the database.
Such dependencies can help us in tracking the flow of data
or discovering explicit or implicit relations between source
elements. Primary uses of these techniques are change impact
analysis or architecture reverse engineering.

It has been previously shown thatCRUD matrices are
useful tools to support program comprehension and quality
assessment [13], [14]. In our paper [1] we show the application
of a CRUD-based Usage Matrix for dependency analysis
between program elements (a sample graph representation of
a CRUD-based relations can be seen in Figure 2). In a large

Figure 2. TypicalCRUD andSEA/SEB relations between procedures and
between tables.

industrial system (the same that we described in the previous
section) we identified relations between procedures based
on table or column accesses and compared these relations
to dependencies recovered bySEA/SEB relations [15]. The
results showed that the disjoint parts of the relation sets of the
two methods were similar in size, and that their intersection
was considerably smaller (about 3% of the union). Based on
this empirical evaluation, we concluded that neither of the
relations was definitely better (safer and more precise) than
the other; they were simply different. Thus they should be
applied together in situations where a safe result is soughtin
the context of data-intensive systems.

Recently Liu et al. published a similar technique and they
implement it for PHP-based database applications [16].

IV. A RCHITECTURERECOVERY OFLEGACY DATABASE

APPLICATIONS

One potential use of previous techniques is to recover
architecture of legacy data-intensive systems. In our previous
work [2] one of our industrial partner asked us to help them
in maintenance issues of their huge database system. They
had a large Oracle PL/SQL system which evolved through the
years to a system having a dump with more than 4.1 MLOC
(data excluded, non-empty and non-comment lines of code).
The system had more than 8,000 PL/SQL objects (tables,
views, triggers, packages, routines). During the years, some
implementation tasks were outsourced to small companies
and the development team of the company found itself in a
situation that they could not maintain the system alone.

Utilizing our previous techniques we reconstructed the top
level architecture map of their system based on low-level static
analysis. We identified high-level components and their related
objects during interviews of the development team and we re-
covered the relations (based on call and CRUD dependencies)
between these components. Final results showed that each of
the 26 logical component had relations to almost all other
components (see Figure 3).

Identified dependencies also supported the elimination of a
huge component from the PL/SQL source base, which they
re-implemented in Java. With the help of the analysis, they
could cut relations between the unused component and others.

Besides architectural issues with static code checkers anda
clone detector we identified a number of coding issues which



Figure 3. Relations between components (names distorted).

helped the company improving the quality of the code.

V. QUALITY ASSURANCE OFAPPLICATIONSDEVELOPED

IN MAGIC 4GL

Fourth generation languages (4GLs) are also referred to
as Very High Level Languages (VLLs). A developer who
develops an application in such a language does not need to
write ‘source code’, but he can program his application at a
higher level of abstraction and higher statement level, usually
with the help of an application development environment.

Magic 4GL was introduced by Magic Software Enterprises
(MSE) in the early 80’s as an innovative technology to
move from code generation to the use of an underlying
meta model within an application generator. It was invented
for the development of business applications with a special
development style which is strongly based on a database. Most
of the software elements are related to database entities: fields
of records can be simply reached via variables and a task
(which is the most similar element to a procedure) is always
connected to a data table on which it performs operations.
Hence, applications developed in Magic are also considered
as data-intensive systems.

Fact extraction

process

Metamodel

Identification of

dependcies and modules

Document generation,

diagrams

Checking coding

rule violations

Analyzing

fault-proneness

Continuous

monitoring

Re-engineering,

migration
Query

reports

Figure 4. Columbus methodology adapted in the Magic environment.

With an industrial partner, SZEGED Software Inc., we
adapted the Columbus technology for Magic [3]. The primary
goal was to improve quality of Magic products via continuous
monitoring of the development. We had to deal with many
specialties of the language, but finally the outcome was a full-
fledged system (MAGISTER) that provided useful services
for the developers and also users of Magic products.MAGIS-
TER is able to perform conventional quality assurance tasks
(software code measurements using the product metric, coding
conventions, violations control, etc.) and it has a user interface
(SourceInventory) that allows developers and project managers
to readily evaluate the data obtained from reports, diagrams
and so on.

During the first development phase ofMAGISTER we
identified similarities to previous researches for data-intensive
systems. As these systems had been developed since mid-
1980s they evolved with the development of new features and
sometimes by following the evolution of the underlying Magic
Runtime Environment. However, MSE sometimes introduced
major new features which was not affordable to implement
in a large Magic application. (E.g. when Magic started to
support Microsoft Windows.) With our industrial partner we
conducted research in recovering the architecture of their
logistical wholesale system [4]. The reconstructed architecture
map was created from similar (call, CRUD, . . . ) relations as
we used in the previous PL/SQL system, but with Magic
components. The recovered architectural information was used
to support a migration project from an older version of Magic
(running on DOS) to the newest one (supporting modern, Rich
Internet Application technologies).

To adapt to specialties of Magic we also had to implement
a special complexity measure [5] and in recent research we
extendedMAGISTER with the support of automatic GUI
testing [6]. In this research we exploit the specialty of Magic
that it stores the layout of its user interfaces in its sourcecode
in a static (hard coded) way.

VI. RELATED RESEARCH

In previous sections we already cited related work, however
reverse engineering data-intensive applications has manyaddi-
tional different applications, which must be mentioned here to
have a full view on the static analysis of these systems. Here
we present a brief overview on these topics.

a) Database reverse engineering:Reverse engineering
databases can be considered as a different field, but it has some
common points with data-intensive systems. Hainaut published
a book on this topic [17] and Henrard wrote his PhD thesis
on it [18]. Both sum up previous work in this area.

b) Program analysis and transformation:Cleve wrote
his PhD thesis [19] on program analysis and transformation
for data-intensive system evolution [10] mostly in the areaof
dependency analysis and migration to support data-intensive
system evolution.

c) Testing database applications:There are a number of
papers published in this area in different fields such as test
input generation [20], [21], [22], test case generation [23],
test coverage measurement [24] and regression testing [25].



d) Source Quality:Static analysis has been used before
by Pantoset al. for source code-based quality assessment
of ForrasSQL [26]. Brinket al. [14] used Usage Matrix
to calculate metrics for applications with embedded SQL.
Wassermannet al., Gould et al. and Brasset al. published
papers [8], [27], [28] in the area of static code checking of
embedded SQL queries.

e) Impact analysis:Example topics of impact analysis in
database-intensive systems are the analyzes of schema changes
[29], [30] and supporting test case selection (e.g. in regression
testing) [31].

VII. C ONCLUSIONS

In this thesis we presented techniques to show how dif-
ferent fields of static analysis can be utilized by reverse
engineering methods in the context of data-intensive systems.
As results of these research, we show that the simple fact
that such a system is designed in a database-centric way can
support quality assessment, program comprehension, design
or architecture recovery and testing among many other fields.
With the presented techniques we successfully analyzed large-
scale industrial projects written in ForrasSQL (~300 kLOC),
Oracle PL/SQL (~3,000 kLOC) and Magic 4GL (~10,000
tasks). Thanks to the analysis of relations via databases we
successfully created architecture maps, supported dead code
elimination and identified coding issues.

REFERENCES

[1] C. Nagy, J. Pantos, T. Gergely, and A. Beszedes, “Towardsa safe
method for computing dependencies in database-intensive systems,”
in Proceedings of the 2010 14th European Conference on Software
Maintenance and Reengineering. IEEE Computer Society, 2010, pp.
166–175.

[2] C. Nagy, R. Ferenc, and T. Bakota, “A True Story of Refactoring a
Large Oracle PL/SQL Banking System,” inIndustrial Track of the 8th
joint meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE 2011), 2011.

[3] C. Nagy, L. Vidacs, R. Ferenc, T. Gyimothy, F. Kocsis, andI. Kovacs,
“MAGISTER: Quality assurance of Magic applications for software de-
velopers and end users,” inProceedings of the 2010 IEEE International
Conference on Software Maintenance. IEEE Computer Society, 2010,
pp. 1–6.

[4] ——, “Solutions for reverse engineering 4gl applications, recovering
the design of a logistical wholesale system,” inProceedings of the 2011
15th European Conference on Software Maintenance and Reengineering.
IEEE Computer Society, 2011, pp. 343–346.

[5] C. Nagy, L. Vidács, R. Ferenc, T. Gyimóthy, F. Kocsis, andI. Kovács,
“Complexity measures in 4gl environment,” inProceedings of the 2011
international conference on Computational science and Itsapplications
- Volume Part V. Springer-Verlag, 2011, pp. 293–309.

[6] D. Fritsi, C. Nagy, R. Ferenc, and G. Tibor, “A layout independent gui
test automation tool for applications developed in magic/unipaas,” in
Proceedings of the 12th Symposium on Programming Languagesand
Software Tools, 2011, pp. 248–259.

[7] R. Ferenc, Á. Beszédes, M. Tarkiainen, and T. Gyimóthy, “Columbus –
Reverse Engineering Tool and Schema for C++,” inProceedings of the
18th International Conference on Software Maintenance (ICSM 2002).
IEEE Computer Society, Oct. 2002, pp. 172–181.

[8] G. Wassermann, C. Gould, Z. Su, and P. Devanbu, “Static checking of
dynamically generated queries in database applications,”ACM Trans.
Softw. Eng. Methodol., vol. 16, no. 4, Sep. 2007.

[9] A. S. Christensen, A. Müller, and M. I. Schwartzbach, “Precise analysis
of string expressions,” inProceedings of the 10th International Static
Analysis Symposium, SAS’03. Springer-Verlag, 2003, pp. 1–18.

[10] A. Cleve, “Program analysis and transformation for data-intensive sys-
tem evolution,” Ph.D. dissertation, University of Namur, 2003.

[11] J. R. Cordy, “The TXL source transformation language,”Science of
Computer Programming, vol. 61, no. 3, pp. 190–210, 2006.

[12] T. R. Dean, J. R. Cordy, A. J. Malton, and K. A. Schneider,“Agile
parsing in TXL,” Automated Software Engineering, vol. 10, no. 4, pp.
311–336, Oct. 2003.

[13] A. Van Deursen and T. Kuipers, “Rapid system understanding: Two
COBOL case studies,” inIWPC ’98: Proceedings of the 6th Interna-
tional Workshop on Program Comprehension. IEEE Computer Society,
1998, p. 90.

[14] H. v. d. Brink, R. v. d. Leek, and J. Visser, “Quality assessment
for embedded SQL,” inSCAM ’07: Proceedings of the Seventh IEEE
International Working Conference on Source Code Analysis and Manip-
ulation. IEEE Computer Society, 2007, pp. 163–170.

[15] J. Jász, Á. Beszédes, T. Gyimóthy, and V. Rajlich, “StaticExecute
After/Before as a Replacement of Traditional Software Dependencies,”
in Proceedings of the 2008 IEEE International Conference on Software
Maintenance (ICSM’08). IEEE Computer Society, 2008, pp. 137–146.

[16] K. Liu, H. B. K. Tan, and X. Chen, “Extraction of attribute dependency
graph from database applications,” inProceedings of the 2011 18th Asia-
Pacific Software Engineering Conference. IEEE Computer Society,
2011, pp. 138–145.

[17] J. luc Hainaut, “Introduction to database reverse engineering,” Problems,
Methods and Tools, Tutorial notes, CAiSE’95, Tech. Rep., 2002.

[18] J. Henrard, “Program understanding in database reverse engineering,”
Ph.D. dissertation, University of Namur, 2003.

[19] A. Cleve, T. Mens, and J.-L. Hainaut, “Data-intensive system evolution,”
Computer, vol. 43, no. 8, pp. 110–112, Aug. 2010.

[20] M. Marcozzi, W. Vanhoof, and J.-L. Hainaut, “Test inputgeneration
for database programs using relational constraints,” inProceedings of
the Fifth International Workshop on Testing Database Systems. ACM,
2012, pp. 6:1–6:6.

[21] K. Pan, X. Wu, and T. Xie, “Generating program inputs fordatabase
application testing,” inProceedings of the 2011 26th IEEE/ACM Interna-
tional Conference on Automated Software Engineering. IEEE Computer
Society, 2011, pp. 73–82.

[22] M. Emmi, R. Majumdar, and K. Sen, “Dynamic test input generation
for database applications,” inProceedings of the 2007 international
symposium on Software testing and analysis. ACM, 2007, pp. 151–162.

[23] M. Y. Chan and S. C. Cheung, “Testing database applications with
sql semantics,” inProceedings of the 2nd International Symposium on
Cooperative Database Systems for Advanced Applications. Springer,
1999, pp. 363–374.

[24] M. J. Suárez-Cabal and J. Tuya, “Using an sql coverage measurement for
testing database applications,” inProceedings of the 12th ACM SIGSOFT
twelfth international symposium on Foundations of software engineering.
ACM, 2004, pp. 253–262.

[25] F. Haftmann, D. Kossmann, and E. Lo, “A framework for efficient
regression tests on database applications,”The VLDB Journal, vol. 16,
no. 1, pp. 145–164, Jan. 2007.

[26] J. Pantos, A. Beszedes, P. Gyenizse, and T. Gyimothy, “Experiences
in adapting a source code-based quality assessment technology,” in
Proceedings of the 2008 12th European Conference on Software Mainte-
nance and Reengineering. IEEE Computer Society, 2008, pp. 311–313.

[27] C. Gould, Z. Su, and P. T. Devanbu, “Static checking of dynamically
generated queries in database applications.” inProceedings of the
26th International Conference on Software Engineering, ICSE 2004,
A. Finkelstein, J. Estublier, and D. S. Rosenblum, Eds. IEEEComputer
Society, 2004, pp. 645–654.

[28] S. Brass and C. Goldberg, “Semantic errors in sql queries: A quite
complete list,”J. Syst. Softw., vol. 79, no. 5, pp. 630–644, May 2006.

[29] S. K. Gardikiotis and N. Malevris, “A two-folded impactanalysis of
schema changes on database applications,”International Journal of
Automation and Computing, vol. 6, no. 2, pp. 109–123, 2009.

[30] A. Maule, W. Emmerich, and D. S. Rosenblum, “Impact analysis
of database schema changes,” inICSE ’08: Proceedings of the 30th
international conference on Software engineering. ACM, 2008, pp.
451–460.

[31] A. Orso, T. Apiwattanapong, and M. J. Harrold, “Leveraging field data
for impact analysis and regression testing,”SIGSOFT Softw. Eng. Notes,
vol. 28, no. 5, pp. 128–137, Sep. 2003.


