Static Analysis of Data-Intensive Applications

Csaba Nagy
University of Szeged
Department of Software Engineering
Dugonics tér 13. H-6725 Szeged, Hungary
ncsaba@inf.u-szeged.hu

Abstract—Data-intensive systems are designed to handle data Most of the introduced analyses techniques are based on
at massive scale, and during the years they might evolve tome the Columbus reverse engineering technology developéaat t
large, complex systems. In order to support maintenance t&s of Department of Software Engineering, University of Szeged

these systems several techniques have been developed tolyrea
the source code of applications or to analyze the underlying " co-operation with FrontEndART Ltd. Columbus was first

databases for the purpose of reverse engineering, e.g. qiggl introduced to analyze C++ code for quality assurance pegos
assurance or program comprehension. However, only a few of [7] and since then it has many different uses in the fields of
these techniques take into account the specialties of datatensive goftware quality assessment, software quality improvemen

SyT;etrr:‘iZthesis we conducted research to analyze and to imprev software comprehension, and monitoring software develop-
y P ment life-cycle attributes.

data-intensive applications via different methods based ro static) . .
analysis: methods for recovering architecture of data-inénsive In previous works we extended the reverse engineering
systems and a quality assurance methodology for applicatis de- tool set with a front-end to analyze different dialects (@ea
veloped in Magic 4GL. We targeted SQL as the most widespread Transact) of SQL. This front-end serves as the basis of our
databases are relational databases using certain dialecf SQL f,rther analyses.

for their queries. With the proposed techniques we were able¢o

analyze large scale industrial projects, such as banking sjems Il. EXTRACTING EMBEDDED SQL FROM SOURCE CODE
with more than 3 million lines of code, and we successfully)
recovered architecture maps and quality issues of these ggsns. Relational databases (RDBMS) are the most common

database management systems used in data-intensive appli-
Keywords-Data-intensive systems, program dependencies, pro- Cations. The typical way of communicating with an RDBMS

gram analysis, CRUD matrix, SQL extraction, Magic 4GL is to use SQL queries through a library such as JDBC. ORM
technologies (e.g. Hibernate) are becoming popular tobabu
|. INTRODUCTION lower level they also use SQL statements. Hence, most of the

reverse engineering methods heavily depend on the exiracti

Data-intensive systems are are usually constructed of Qff€capturing of SQL statements used to communicate with the
or more databases and some applications communicating VYJHHerIying RDBMS.

these databases. These sort of systems are increasingly POBepending on the client side of the application, SQL

ular as databases play important role in many architecturgg;iements can be embedded into the source code in a hard-
Today, these applications are part of our daily life (6.9PER ¢oded way (e.g. in constant variables, string literals)hayt

CRMs). Such a system usually has a complex, sometimgg, pe constructed dynamically through string expressfons
even chaotic architecture with a large complex code bag§siance.
Reverse engineering techniques have been widely used @14y approaches have been proposed to analyze embedded
support maintaining these systems in many different fieldg,) statements via static and dynamic analysis technigsies a
such as program comprehension, migration and testing. \ye||. Static analysis techniques are typically based omgstr
In this thesis we utilize static analysis techniques with ”bnalysis [8], [9] which require an in-depth data or control
goallto support program comprehension and improve softwg|&,, analysis. These techniques have their main advantage
quality for data-intensive systems. that they analyze the full source, but they might be unable to
We conducted research in different fields which we introynalyze dynamically constructed statements. Dynamigaisal

duce in this paper, hence the main contributions are: techniques capture the statements being sent to the databas
o an SQL query extraction technique which can be utilizeat run-time, but they depend on the actual execution and
for further analyses of embedded SQL queries [1], input, so they might miss not executed cases. Cleve presents
« a method to compute dependencies via data accessea summary on these techniques in his thesis [10]. Cetd.
data-intensive systems [1], published papers [11], [12] describing the TXL language and
« amethod to use data dependencies to recover architecitseapplications including embedded SQL parsing.
of legacy database applications [2], In our paper [1] we introduced an extraction technique to

« a quality assurance methodology for applications develnalyze SQL statements embedded in the source code of a
oped in Magic 4GL [3], [4], [5], [6]. special procedural language. The programming style of this

language makes the whole system strongly database deggenden
and it makes the use of SQL queries common in the system.
The SQL statements to be executed are embedded as strings
sent to specific library procedures and their results can be
stored in given variables. This method is actually the same
as that for procedural languages where embedded queries are
sent to the database via libraries like JDBC. This makes our
method general and suitable for other languages too.

The implemented approach is based on the simple idea
of substituting the unrecognized query fragments in a gtrin , _
concatenation with special substrings. For instance, it E%gn‘jvfeﬁ' taa’gfa'CRUD andSEA/SED relations between procedures and
possible to simply replace theane variable with a string '

‘@@name@@”. If the SQL parser is able to handle this))))
string as an identifier, then the received query string wellab ndustrial system (the same that we described in the previou
syntactically correct SQL command (see Figure 1). With thRection) we identified relations between procedures baged
simple idea we need to locate the library procedures sendffy {@ble or column accesses and compared these relations
SQL commands to the database in order to perform the striffgdePendencies recovered By A/SED relations [15]. The
concatenation, and the above-mentioned substitution o v4€Sults showed that the disjoint parts of the relation sttee
able, procedure name and other source elements. Whenevef{§p methods were similar in size, and that their intersectio
constructed string is considered syntactically corréttas the WS considerably smaller (about 3% of the union). Based on

main characteristics of the executed SQL command. this empirical evaluation, we concluded that neither of the
relations was definitely better (safer and more precise) tha

Procedure -
Check
Customer
Credit
m

o

SELECT firstname, |astnanme the other; they were simply different. Thus they should be
FROM @@ ust orer _t abl e@@ applied together in situations where a safe result is soinght
VHERE firstname the context of data-intensive systems.

LIKE(" Yamhame @@) ; Recently Liu et al. published a similar technique and they

implement it for PHP-based database applications [16].
Figure 1. Sample code of an extracted SQL command where lileeriame

is determined by a variable. IV. ARCHITECTURERECOVERY OFLEGACY DATABASE

Developers usually like to prepare statements as close to APPLICATIONS

their execution place as possible and they prefer to keep SQLOne potential use of previous techniques is to recover
keywords in separate string literals. In most cases, it &site architecture of legacy data-intensive systems. In ouripusv

to substitute the variables with their last defined valugbiwi work [2] one of our industrial partner asked us to help them
the same control block. In other cases the variable can ipemaintenance issues of their huge database system. They
replaced with the variable name as we describe it before. had a large Oracle PL/SQL system which evolved through the

The technique has its limitations, however in the context gkars to a system having a dump with more than 4.1 MLOC
ForrasSQL it worked reasonably well. With this technique wgglata excluded, non-empty and non-comment lines of code).
identified7, 434 embedded SQL strings (based on the specifithe system had more than 8,000 PL/SQL objects (tables,
SQL library procedure calls) in a 315 KLOC application andiews, triggers, packages, routines). During the yearseso
we successfully analyzeid 499 SQL statements, which &% implementation tasks were outsourced to small companies
of all the embedded SQL strings. and the development team of the company found itself in a
situation that they could not maintain the system alone.

Utilizing our previous techniques we reconstructed the top
level architecture map of their system based on low-leaicst

The analysis of SQL queries can be utilized to discovanalysis. We identified high-level components and theateel
dependencies in the software which arise through the ds¢ababjects during interviews of the development team and we re-
Such dependencies can help us in tracking the flow of datavered the relations (based on call and CRUD dependencies)
or discovering explicit or implicit relations between soer between these components. Final results showed that each of
elements. Primary uses of these techniques are changetimplae 26 logical component had relations to almost all other
analysis or architecture reverse engineering. components (see Figure 3).

It has been previously shown thatRUD matrices are ldentified dependencies also supported the elimination of a
useful tools to support program comprehension and qualliyge component from the PL/SQL source base, which they
assessment [13], [14]. In our paper [1] we show the appbcatire-implemented in Java. With the help of the analysis, they
of a CRUD-based Usage Matrix for dependency analysiuld cut relations between the unused component and others
between program elements (a sample graph representation @esides architectural issues with static code checkersaand
a CRUD-based relations can be seen in Figure 2). In a largone detector we identified a number of coding issues which

IIl. DEPENDENCIES VIADATA ACCESSES IN
DATA-INTENSIVE SYSTEMS

With an industrial partner, SZEGED Software Inc., we
adapted the Columbus technology for Magic [3]. The primary
goal was to improve quality of Magic products via continuous
monitoring of the development. We had to deal with many
specialties of the language, but finally the outcome wasla ful
fledged systemMAGISTER) that provided useful services
for the developers and also users of Magic prodUdtaGl S-
TER is able to perform conventional quality assurance tasks
(software code measurements using the product metricpgodi
conventions, violations control, etc.) and it has a userfate
(Sourcelnventory) that allows developers and project marga
to readily evaluate the data obtained from reports, diagram
and so on.

During the first development phase MAGISTER we
identified similarities to previous researches for datarisive
systems. As these systems had been developed since mid-
1980s they evolved with the development of new features and
Figure 3. Relations between components (names distorted). sometimes by following the evolution of the underlying Magi
Runtime Environment. However, MSE sometimes introduced
major new features which was not affordable to implement
in a large Magic application. (E.g. when Magic started to
V. QUALITY ASSURANCE OFAPPLICATIONS DEVELOPED support Microsoft Wiqdows.) Wi'Fh our industr_ial partner we

IN MAGIC 4GL conducted research in recovering the architecture of their

) logistical wholesale system [4]. The reconstructed aechitre
Fourth generation languages (4GLs) are also referred oy, was created from similar (call, CRUD, ...) relations as

as Very High Level Languages (VLLs). A developer WhQue ysed in the previous PL/SQL system, but with Magic
develops an application in such a language does not nee¢:¢pponents. The recovered architectural information veesi u
write ‘source code’, but he can program his application atg sypport a migration project from an older version of Magic
higher level of abstraction and higher statement levelaliu (running on DOS) to the newest one (supporting modern, Rich
with the help of an application development environment. |qiernet Application technologies).

Magic 4GL was introduced by Magic Software Enterprises 1o adapt to specialties of Magic we also had to implement
(MSE) in the early 80's as an innovative technology tg special complexity measure [5] and in recent research we
move from code generation to the use of an underlyingtendedMAGISTER with the support of automatic GUI
meta model within an application generator. It was inventegsting [6]. In this research we exploit the specialty of fitag

for the development of business applications with a specifht it stores the layout of its user interfaces in its sowade
development style which is strongly based on a databaset. Mpsa static (hard coded) way.

of the software elements are related to database entitdds fi VI. RELATED RESEARCH

of r_eco_rds can be s_|m_ply reached via variables a.”d a tashn previous sections we already cited related work, however
(which is the most similar eIement_ 10 a procedure) is alv‘.’a¥gverse engineering data-intensive applications has raddiy
connected t‘.J a.data table on V.Vh'Ch 't. performs Opere}tm'?%awal different applications, which must be mentionedeher
Hence, ‘f"pp"c‘?‘t"’”s developed in Magic are also ConSIderﬁave a full view on the static analysis of these systems. Here
as data-intensive systems.

we present a brief overview on these topics.
a) Database reverse engineerindReverse engineering
databases can be considered as a different field, but it haes so

helped the company improving the quality of the code.

TR
[Identification of]

\dependcies and modules/

\ (D men nerati r;\
N [— e) common points with data-intensive systems. Hainaut phibds
"""" R pa— a book on this topic [17] and Henrard wrote his PhD thesis
(rtamoza) kil ‘\;“'“‘0'6““5/ on it [18]. Both sum up previous work in this area.

/ b) Program analysis and transformationCleve wrote
rautpranenessNiS PhD thesis [19] on program analysis and transformation
Reverse engineered motel - _ for data-intensive system evolution [10] mostly in the aoéa

o - ontinuous

SN J
.
\K Analyses

Program
code

g\t\ﬁ . montonng | dependency analysis and migration to support data-intensi
. &/‘ Transformed model Visualization SyStem eVOIUtlon . .
N c) Testing database application3here are a number of
A Re-engineering,
R - m papers published in this area in different fields such as test

reports /

input generation [20], [21], [22], test case generation],[23

Figure 4. Columbus methodology adapted in the Magic ent. test coverage measurement [24] and regression testing [25]

d) Source Quality:Static analysis has been used befongo] A. Cleve, “Program analysis and transformation foradiatensive sys-

by Pantoset al. for source code-based quality assessmept_tem evolution” Ph.D. dissertation, University of Namu@a.
[11] J. R. Cordy, “The TXL source transformation languag8¢ience of

of ForrasSQL [2(_3]. Brink et _aI. [14] us_ed Usage Matrix Computer Programmingvol. 61, no. 3, pp. 190210, 2006.
to calculate metrics for applications with embedded SQI12] T. R. Dean, J. R. Cordy, A. J. Malton, and K. A. Schneidégile
Wassermanret al, Gould et al. and Brasset al. published parsing in TXL,” Automated Software Engineeringol. 10, no. 4, pp.

. L . 311-336, Oct. 2003.
papers [8], [27], [28] in the area of static code checking ?13] A. Van Deursen and T. Kuipers, “Rapid system understapndTwo

embedded SQL queries. COBOL case studies,” ifWPC '98: Proceedings of the 6th Interna-

i ; ; o i tional Workshop on Program ComprehensiotEEE Computer Society,
e) Impact analysisExample topics of impact analysis in 1998, p. 90,

database-intensive systems are the analyzes of schen@eshaf) H. v. d. Brink, R. v. d. Leek, and J. Visser, “Quality assment

[29], [30] and supporting test case selection (e.g. in rEgon for embedded SQL,” irSCAM '07: Proceedings of the Seventh IEEE
testing) [31]. International Working Conference on Source Code Analysds Manip-
ulation. |EEE Computer Society, 2007, pp. 163-170.
VII. CONCLUSIONS [15] J. Jasz, A. Beszédes, T. Gyiméthy, and V. Rajlich, ‘iSEatecute

. . . . After/Before as a Replacement of Traditional Software Deleacies,”
In this thesis we presented techniques to show how dif- i proceedings of the 2008 IEEE International Conference oitw@oe

ferent fields of static analysis can be utilized by reverse Maintenance (ICSM'08) IEEE Computer Society, 2008, pp. 137-146.

; ; ; i ; [16] K. Liu, H. B. K. Tan, and X. Chen, “Extraction of attribeitdependency
engineering methods in the context of data-intensive Byste graph from database applications,’Rmoceedings of the 2011 18th Asia-

As results of these research, we show that the simple fact pacific Software Engineering Conference IEEE Computer Society,
that such a system is designed in a database-centric way can 2011, pp. 138-145.

; ; J. luc Hainaut, “Introduction to database reverse iing,” Problems,
support quality assessment, program comprehensmn,rdeéfd] Methods and Tools, Tutorial notes, CAISE’95, TI:E,.] RgepOZO

or architecture recovery and testing among many other fiel@s) j. Henrard, “Program understanding in database revengineering,”
With the presented techniques we successfully analyzgd-lar ~ Ph.D. dissertation, University of Namur, 2003.

scale industrial projects written in ForrasSQL (~300 kLOleg] é'orcnls\lférT\}O'YleE ' ,‘?2“5 '_Fl,'b HfllgilitiéD,iLa;n;%ﬁwmm evolution”

Oracle PL/SQL (~3,000 kLOC) and Magic 4GL (~10,00@20] M. Marcozzi, W. Vanhoof, and J.-L. Hainaut, “Test inpgeneration
tasks). Thanks to the analysis of relations via databases we for database programs using relational constraints Pioceedings of

successfully created architecture maps supported dedel co the Fifth International Workshop on Testing Database Syste ACM,
! 2012, pp. 6:1-6:6.

elimination and identified coding issues. [21] K. Pan, X. Wu, and T. Xie, “Generating program inputs fiatabase
application testing,” ifProceedings of the 2011 26th IEEE/ACM Interna-
REEERENCES tional Conference on Automated Software Engineerifi§EE Computer

Society, 2011, pp. 73-82.
[1] C. Nagy, J. Pantos, T. Gergely, and A. Beszedes, “Towardsafe [22] M. Emmi, R. Majumdar, and K. Sen, “Dynamic test input geation
method for computing dependencies in database-intensgteras,” for database applications,” iRroceedings of the 2007 international
in Proceedings of the 2010 14th European Conference on Seftwar Symposium on Software testing and analysiCM, 2007, pp. 151-162.
Maintenance and ReengineeringIEEE Computer Society, 2010, pp. [23] M. Y. Chan and S. C. Cheung, “Testing database appdioatiwith

166—175. sgl semantics,” irProceedings of the 2nd International Symposium on

[2] C. Nagy, R. Ferenc, and T. Bakota, “A True Story of Refsicmp a Cooperative Database Systems for Advanced Applicatior@pringer,
Large Oracle PL/SQL Banking System,” Industrial Track of the 8th 1999, pp. 363-374.
joint meeting of the European Software Engineering Confezeand the [24] M. J. Suarez-Cabal and J. Tuya, “Using an sql coveragasarement for
ACM SIGSOFT Symposium on the Foundations of Software Earigige testing database applications,”Rmoceedings of the 12th ACM SIGSOFT
(ESEC/FSE 2011)2011. twelfth international symposium on Foundations of sofen@mgineering

[3] C. Nagy, L. Vidacs, R. Ferenc, T. Gyimothy, F. Kocsis, dnéovacs, ACM, 2004, pp. 253-262. y
“MAGISTER: Quality assurance of Magic applications for tsadre de- [25] F. Haftmann, D. Kossmann, and E. Lo, “A framework for @t
velopers and end users,” Rroceedings of the 2010 IEEE International regression tests on database applicatiombg VLDB Journalvol. 16,
Conference on Software MaintenancdEEE Computer Society, 2010, no. 1, pp. 145-164, Jan. 2007.
pp. 1-6. [26] J. Pantos, A. Beszedes, P. Gyenizse, and T. Gyimothypégences

[4] —, “Solutions for reverse engineering 4gl applicasiprrecovering in adapting a source code-based quality assessment tegirioln
the design of a logistical wholesale system Hroceedings of the 2011 Proceedings of the 2008 12th European Conference on Seftainte-
15th European Conference on Software Maintenance and Reigng nance and ReengineeringEEE Computer Society, 2008, pp. 311-313.
IEEE Computer Society, 2011, pp. 343-346. [27] C. Gould, Z. Su, and P. T. Devanbu, “Static checking ofaiyically

[5] C. Nagy, L. Vidacs, R. Ferenc, T. Gyiméthy, F. Kocsis, dntkovacs, generated queries in database applications.”Pioceedings of the
“Complexity measures in 4gl environment,” Rroceedings of the 2011 26th International Conference on Software EngineeringSEC2004
international conference on Computational science andajglications A. Finkelstein, J. Estublier, and D. S. Rosenblum, Eds. |EBEputer
- Volume Part V Springer-Verlag, 2011, pp. 293-309. Society, 2004, pp. 645-654. ' _ _

[6] D. Fritsi, C. Nagy, R. Ferenc, and G. Tibor, “A layout immdent gui [28] S. Brass a_md C. Goldberg, “Semantic errors in sqgl geerfe quite
test automation tool for applications developed in magigaas,” in complete list"J. Syst. Softwvol. 79, no. 5, pp. 630-644, May 2006.
Proceedings of the 12th Symposium on Programming Languagés [29] S. K. Gardikiotis and N. Malevris, A tw_o-folded }mpa(analyss of
Software Tools2011, pp. 248-259. schema_changes on da_ltabase applicatiohggrnational Journal of

[7] R. Ferenc, A. Beszédes, M. Tarkiainen, and T. GyimétiGoltimbus — Automation and Computingol. 6, no. 2, pp. 109-123, 2009.
Reverse Engineering Tool and Schema for C++ Pinceedings of the [30] A. Maule, W. Emmerich, and D. S. Rosenblum, “Impact sl
18th International Conference on Software MaintenanceS{C2002) of database schema changes,”|@SE '08: Proceedings of the 30th
IEEE Computer Society, Oct. 2002, pp. 172-181. international conference on Software engineeringACM, 2008, pp.

[8] G. Wassermann, C. Gould, Z. Su, and P. Devanbu, “Statzkihg of 451-460.) . . .
dynamically generated queries in database applicatioh6M Trans. [31] A. Orso, T. Apiwattanapong, and M. J. Harrold, “Leverag field data
Softw. Eng. Methodglvol. 16, no. 4, Sep. 2007. for impact analysis and regression testir§lGSOFT Softw. Eng. Notes

[9] A.S. Christensen, A. Miiller, and M. I. Schwartzbach, &éBise analysis vol. 28, no. 5, pp. 128-137, Sep. 2003.

of string expressions,” iProceedings of the 10th International Static
Analysis Symposium, SAS!03Springer-Verlag, 2003, pp. 1-18.

