
Ákos Kiss (Ed.)

13th Symposium on
Programming Languages and
Software Tools

SPLST’13

Szeged, Hungary, August 26–27, 2013

Proceedings

University of Szeged

13th Symposium on Programming Languages and Software Tools
SPLST’13
Szeged, Hungary, August 26–27, 2013
Proceedings

Edited by Ákos Kiss

University of Szeged
Faculty of Science and Informatics
Institute of Informatics
Árpád tér 2., H-6720 Szeged, Hungary

ISBN 978-963-306-228-9 (printed)
ISBN 978-963-482-716-0 (PDF)

Copyright c© 2013 The editor and the authors

Preface

On behalf of the steering and program committees, welcome to the 13th Sym-
posium on Programming Languages and Software Tools (SPLST’13). The series
started in 1989 in Szeged, Hungary, and since then, by tradition, it has been or-
ganized every second year in Hungary, Finland, and Estonia, with participants
coming from all over Europe. This year, the thirteenth edition of the symposium
is back again in Szeged on August 26–27, 2013.

The purpose of the Symposium on Programming Languages and Software
Tools is to provide a forum for software scientists to present and discuss recent
researches and developments in computer science. The scope of the symposium
covers ongoing research related to programming languages, software tools, and
methods for software development.

This volume contains the 20 full papers that were accepted by the program
committee based on an anonymous peer review process. We hope that the di-
versity of the papers will lead to stimulating discussions.

As the organizers of the symposium, we would like to thank all the authors
and reviewers for bringing together an interesting program for this year’s SPLST.

Ákos Kiss
General Chair

III

Organization

SPLST’13 was organized by the Department of Software Engineering, University
of Szeged.

General Chair

Ákos Kiss (University of Szeged, Hungary)

Steering Committee

Zoltán Horváth (Eötvös Loránd University, Hungary)
Kai Koskimies (Tampere University of Technology, Finland)
Jaan Penjam (Institute of Cybernetics, Estonia)

Program Committee

Hassan Charaf (Budapest University of Technology and Economics, Hungary)
Tibor Gyimóthy (University of Szeged, Hungary)
Zoltán Horváth (Eötvös Loránd University, Hungary)
Pekka Kilpeläinen (University of Eastern Finland, Finland)

Ákos Kiss (University of Szeged, Hungary)
Kai Koskimies (Tampere University of Technology, Finland)
Tamás Kozsik (Eötvös Loránd University, Hungary)
Peeter Laud (Cybernetica, Institute of Information Security, Estonia)
Erkki Mäkinen (University of Tampere, Finland)
Jyrki Nummenmaa (University of Tampere, Finland)
Jukka Paakki (University of Helsinki, Finland)
András Pataricza (Budapest University of Technology and Economics, Hungary)
Jari Peltonen (Tampere University of Technology, Finland)
Jaan Penjam (Institute of Cybernetics, Estonia)
Attila Pethő (University of Debrecen, Hungary)
Margus Veanes (Microsoft Research, Redmond, USA)

Additional Referees

Zoltán Alexin, Márk Asztalos, Vilmos Bilicki, István Bozó, Dimitrij Csetverikov,
Péter Ekler, Rudolf Ferenc, Zsolt Gazdag, Ferenc Havasi, Zoltán Herczeg, Judit
Jász, Róbert Kitlei, Tamás Mészáros, Zoltán Micskei, Ákos Szőke, Zalán Szűgyi,
Zoltán Újhelyi, András Vörös

IV

Table of Contents

Monitoring Evolution of Code Complexity in Agile/Lean Software
Development . 1

Vard Antinyan, Miroslaw Staron, Wilhelm Meding, Per Österström,
Henric Bergenwall, Johan Wranker, Jörgen Hansson, Anders
Henriksson

Configuring Software for Reuse with VCL . 16

Dan Daniel, Stan Jarzabek, Rudolf Ferenc

Identifying Code Clones with RefactorErl . 31

Viktória Fördős, Melinda Tóth

Code Coverage Measurement Framework for Android Devices 46

Szabolcs Bognár, Tamás Gergely, Róbert Rácz, Árpád Beszédes,
Vladimir Marinkovic

The Role of Dependency Propagation in the Accumulation of Technical
Debt for Software Implementations . 61

Johannes Holvitie, Mikko-Jussi Laakso, Teemu Rajala, Erkki Kaila,
Ville Leppänen

A Regression Test Selection Technique for Magic Systems 76

Gábor Novák, Csaba Nagy, Rudolf Ferenc

VOSD: A General-Purpose Virtual Observatory over Semantic Databases 90

Gergő Gombos, Tamás Matuszka, Balázs Pinczel, Gábor Rácz,
Attila Kiss

Service Composition for End-Users . 100

Otto Hylli, Samuel Lahtinen, Anna Ruokonen, Kari Systä

Towards a Reference Architecture for Server-Side Mashup Ecosystem 114

Heikki Peltola, Arto Salminen

Code Oriented Approach to 3D Widgets . 126

Anna-Liisa Mattila

The Browser as a Host Environment for Visually Rich Applications 141

Jari-Pekka Voutilainen, Tommi Mikkonen

Random number generator for C++ template metaprograms 156

Zalán Szűgyi, Tamás Cséri, Zoltán Porkoláb

V

The Asymptotic Behaviour of the Proportion of Hard Instances of the
Halting Problem . 170

Antti Valmari

Implementation of Natural Language Semantic Wildcards using Prolog . . 185
Zsolt Zsigmondi, Attila Kiss

Designing and Implementing Control Flow Graph for Magic 4th
Generation Language . 200

Richárd Dévai, Judit Jász, Csaba Nagy, Rudolf Ferenc

Runtime Exception Detection in Java Programs Using Symbolic Execution 215
István Kádár, Péter Hegedűs, Rudolf Ferenc

Composable hierarchical synchronization support for REPLICA 230
Jari-Matti Mäkelä, Ville Leppänen, Martti Forsell

Checking visual data flow programs with finite process models 245
Jyrki Nummenmaa, Maija Marttila-Kontio, Timo Nummenmaa

Efficient Saturation-based Bounded Model Checking of Asynchronous
Systems . 259

Dániel Darvas, András Vörös, Tamás Bartha

Extensions to the CEGAR Approach on Petri Nets . 274
Ákos Hajdu, András Vörös, Tamás Bartha, Zoltán Mártonka

VI

Monitoring Evolution of Code Complexity in Agile/Lean
Software Development

A Case Study at Two Companies

Vard Antinyan1), Miroslaw Staron1), Wilhelm Meding2), Per Österström3), Henric
Bergenwall3), Johan Wranker3), Jörgen Hansson4) Anders Henriksson4)

Computer Science and Engineering 2) Chalmers | 1) University of Gothenburg

3) Ericsson AB, Sweden4) AB Volvo, Sweden
SE 412 96 Gothenburg

Abstract. One of the distinguishing characteristics of Agile and Lean software development is
that software products “grow” with new functionality with relatively small increments. Contin-
uous customer demands of new features and the companies’ abilities to deliver on those de-
mands are the two driving forces behind this kind of software evolution. Despite the numerous
benefits there are a number of risks associated with this kind of growth. One of the main risks is
the fact that the complexity of the software product grows slowly, but over time reaches scales
which makes the product hard to maintain or evolve. The goal of this paper is to present a
measurement system for monitoring the growth of complexity and drawing attention when it
becomes problematic. The measurement system was developed during a case study at Ericsson
and Volvo Group Truck Technology. During the case study we explored the evolution of size,
complexity, revisions and number of designers of two large software products from the telecom
and automotive domains. The results show that two measures needed to be monitored to keep
the complexity development under control - McCabe’s complexity and number of revisions.

Keywords: complexity; metrics; risk; Lean and Agile software development; code;
potentially problematic; correlation; measurement systems;

1 Introduction
Actively managing software complexity has become an important aspect of continu-
ous software development in large software products. It is generally believed that
software products developed in a continuous manner are getting more and more com-
plex over time, and evidence shows that the rising complexity drives to decreasing
quality of software [1-3]. The continuous increase of code base and incremental in-
crease of complexity can lead to large, virtually unmaintainable source code if left
unmanaged.

A number of methods have been suggested to measure various aspects of soft-
ware complexity, e.g. [4-10], accompanied with a number of studies indicating how
adequately the proposed methods can relate to software quality. One of the well-
known complexity measures, McCabe’s cyclomatic complexity has been shown to be
a good quality indicator although it does not reveal all aspects of complexity [11-14].

Despite the considerable amount of research conducted about the influence of
complexity on software quality, little results can be found on how complexity influ-
ences on a continuously developed software product and how to effectively monitor
small yet continuous increments of complexity in growing products. Therefore a ques-

1

tion remains how the previously established methods can be as efficiently used for
software quality evaluation:

How to monitor complexity changes effectively when delivering feature incre-
ments to the main code branch in the product codebase?
The aim of this research is to develop methods and tool support for actively mon-

itoring increments of complexity and drawing the attention of product managers, pro-
ject leaders, quality responsible and the teams to the potentially problematic trends of
growing complexity. In this paper we focus on the level of self-organized software
development teams who often deliver code to the main branch for further testing,
integration with hardware and ultimate deployment to end customers.

We address this question by conducting a case study at two companies which
develop software according to Agile and Lean principles. The studied companies are
Ericsson AB in Sweden which develops telecom products and Volvo Group Truck
Technology which develops trucks under four brands – Volvo, Renault, Mack and UD
Trucks.

Our results show that using a number of complementary measures of complexity
and development velocity – McCabe’s complexity and number of revisions per week
– support teams in decision making, when delivering potentially problematic code to
the main branch. By saying potentially problematic we mean that there is a tangible
chance that the delivered code is fault prone or difficult to understand and maintain.
Monitoring trends in these variables effectively draws attention of the self-organized
Agile teams to a handful of functions and files which are potentially problematic. The
handful of functions are manually assessed, and before the delivery the team formu-
lates the decision whether they indeed might cause problems. The initial evaluation in
two ongoing software development projects shows that using the two measures indeed
draws attention to the most problematic functions.

2 Related Work

2.1 Continuous Software Evolution
A set of measures useful in the context of continuous deployment can be found in the
work of Fritz [15] in the context of market driven software development organization.
The metrics presented by Fritz measure such aspects as continuous integration pace or
the pace of delivery of features to the customers. These metrics complement the two
indicators presented in this paper with a different perspective important for product
management.

The delivery strategy, which is an extension of the concept of continuous de-
ployment, has been found as one of the three key aspects important for Agile software
development organizations in a survey of 109 companies by Chow and Cao [16]. The
indicator presented in this paper is a means of supporting organizations in their transi-
tion towards achieving efficient delivery processes.

Ericsson’s realization of the Lean principles combined with Agile development
was not the only one recognized in literature. Perera and Fernando [17] presented
another approach. In their work they show the difference between the traditional and
Lean-Agile way of working. Based on our observations, the measures and their trends
at Ericsson were similar to those observed by Perera and Fernando.

2

2.2 Related Complexity Studies
Gill and Kemerer [8] propose another kind of cyclomatic complexity metric – cy-
clomatic complexity density and they show its usefulness as a software quality indica-
tor. Zhang and Zhang [18] developed a method based on lines of code measure, cy-
clomatic complexity number and Halstead’s volume to predict the defects of a soft-
ware component. Two other studies provided evidence that files having large number
of revisions are defect prone and hard to maintain [19], [20].

2.3 Measurement Systems
The concept of an early warning measurement system is not new in engineering.
Measurement instruments are one of the cornerstones of engineering. In this paper we
only consider computerized measurement systems – i.e. software products used as
measurement systems. The reasons for this are: the flexibility of measurement sys-
tems, the fact that we work in the software field, and similarity of the problems – e.g.
concept of measurement errors, automation, etc. An example of a similar measure-
ment system is presented by Wisell [21] where the concept of using multiple meas-
urement instruments to define a measurement system is also used. Although differing
in domains of applications these measurement systems show that concepts which we
adopt from the international standards (like [22]) are successfully used in other engi-
neering disciplines. We use the existing methods from the ISO standard to develop the
measurement systems for monitoring complexity evolution.

Lowler and Kitchenham [23] present a generic way of modeling measures and
building more advanced measures from less complex ones. Their work is linked to the
TychoMetric [24] tool. The tool is a very powerful measurement system framework,
which has many advanced features not present in our framework (e.g. advanced ways
of combining metrics). A similar approach to the TychoMetric’s way of using metrics
was presented by Garcia et al. [25]. Despite their complexity, both the TychoMetric
tool and Garcia’s approach can be seen as alternatives in the context of advanced data
presentation or advanced statistical analysis over time.

Meyer [26, pp. 99-122] claims that the need for customized measurement sys-
tems for teams is one of the most important aspects in the adoption of metrics at the
lowest levels in the organization. Meyer’s claims were also supported by the require-
ments that the customization of measurement systems and development of new ones
should be simple and efficient in order to avoid unnecessary costs in development
projects. In our research we simplify the ways of developing Key Performance Indica-
tors exemplified by a 12-step model of Parmenter [27] in the domain of software de-
velopment projects.

3 Design of the Case Study
This case study was conducted using action research approach [28-30] where the re-
searchers were part of the company’s operations and worked directly with product
development units of the companies. The role of Ericsson in the study was the devel-
opment of the method and its initial evaluation, whereas the role of Volvo Group
Truck Technology was to evaluate the method in a new context.

3

3.1 Ericsson
The organization and the project within Ericsson, which we worked closely with,
developed large products for the mobile telephony network. The number of the devel-
opers in the projects was up to a few hundreds1. Projects were executed according to
the principles of Agile software development and Lean production system, referred to
as Streamline development (SD) within Ericsson [31]. In this environment, different
development teams were responsible for larger parts of the development process
compared to traditional processes: design teams (cross-functional teams responsible
for complete analysis, design, implementation, and testing of particular features of the
product), network verification and integration testing, etc.

The needs of the organization had evolved from metric calculations and presen-
tations (ca. 7 years before the writing of this paper) to using predictions, simulations,
early warning systems and handling of vast quantities of data to steer organizations at
different levels and providing information from teams to management.

3.2 Volvo Group Truck Technology (GTT)
The organization which we worked with at Volvo Group developed Electronic Con-
trol Unit (ECU) software for trucks for such brands like Volvo, Renault, UD Trucks
and Mack. The collaborating unit developed software for two ECUs and consisted of
over 40 designers, business analysts and testers at different levels. The process was
iterative, agile, involving cross functional teams.

The company used measures to control the progress of its projects, to monitor
quality of the products and to collect data semi-automatically, i.e. automatically gath-
ering of data from tools with the manual analysis of the data. The metrics collected at
the studied unit fall into the categories of contract management, quality monitoring
and control, predictions and project planning. The intention of the unit was to build a
measurement system to provide stakeholders (like project leaders, product and line
managers or the team) with the information about the current and predicted status of
their products.

3.3 Process
According to the principles of action research we adjusted the process of our research
with the operations of the company. We worked closely with project teams with dedi-
cated designers, architects and managers being part of the research team. We conduct-
ed the study according to the following pre-defined process:
• Obtaining access to the source code of the products and their different releases
• Calculate complexity of all functions in the code
• Identify functions which changed complexity through 4 main releases
• Identify functions which changed complexity in 5 service releases between the two

main releases
• Identify drivers for complexity changes in a subset of these functions
• Add new measures to the study:

─ Complexity per file
─ # revisions – to explore files which were changed often
─ # designers – to explore files which were changed by many designers in parallel

1 The exact size of the unit cannot be provided due to confidentiality reasons.

4

─ # Number of lines of code (size) – to explore large files and functions
• Correlate measures to explore their dependencies
• Develop a measurement system (according to ISO 15939) to monitor the potential-

ly problematic files.
• Monitor and evaluate the product during two releases

The above process was used during the development of the method at Ericsson
and replicated at Volvo Group Truck Technology.

3.4 Units of Analysis
During our study we analyzed two different products – software for a telecom product
at Ericsson and software for one electronic control unit from Volvo GTT from the
automotive domain.

Ericsson: The product was a large telecommunication product composed by over
one million lines of code with several tens of thousands C/C++ functions. Most of the
source code was developed using C. The product had a few releases per year with a
number of service releases in-between them. All versions of the source code of the
product including the main and service releases were stored in version control system,
IBM/Rational ClearCase. The product was a mature telecommunication product with
a stable customer base. The product has been in development for a number of years.

The measures specified in the previous section were collected from different
baseline revisions of the source code in ClearCase. In order to increase the internal
validity of data collection and the quality of data we communicated closely with a
reference group during bi-weekly meetings over a period of 8 months. The reference
group consisted of 2 senior designers, one operational architect, one research engineer
from the company, one manager and one metric team leader. The discussions consid-
ered the suitability of measures, measurement methods and functions (according to
ISO/IEC 15939), validity of results and effectiveness of our measurement system.

Volvo GTT: The product was an embedded software system serving as one of the
main computer nodes for a product line of trucks. It consisted of a few hundred thou-
sand lines of code and several thousand C functions. The version control system is
ClearCase. The software product had tight releases every 6-8 weeks. The analyses that
were conducted were replications of the case study at Ericsson under the same condi-
tions and using the same tools. The results were communicated with designers of the
software product after the data was analyzed.

At both companies we developed measurement systems for monitoring the files
and functions that can be risk driving when merging new code into the main branch.
We defined the risk of merging a newly developed or a maintained function to main
code base as a chance that the merged code would introduce new faults or would be
noticeably more difficult to understand and maintain.

3.5 Measures in the Study

Table 1 presents the measures which we used in our study and their definitions:
Table 1. Metrics and their definitions

Name of measure Abbre-
viation

Definition

Number of non-
commented lines of
code

NCLOC The lines of non-blank, non-comment source code in a function

5

McCabe’s cy-
clomatic complexi-
ty of a function

M The number of linearly independent paths in the control flow
graph of a function, measured by calculating the number of 'if',
'while', 'for', 'switch', 'break', '&&', '||' tokens

McCabe’s cy-
clomatic complexi-
ty of a file

File M The sum of all functions’ M in a file

McCabe’s cy-
clomatic complexi-
ty delta of a func-
tion

ΔM The increase or decrease of M of a function during a specified
time interval. We register the file name, class name (if available)
and function name in order to identify the same function and
calculate its complexity change in different releases.

McCabe’s cy-
clomatic complexi-
ty delta of a file

File ΔM The increase or decrease of File M during a specified time inter-
val

Number of revi-
sions of a file

NR The number of check-ins of files in a specified ClearCase
branch and its all sub-branches in a specified time interval

Number of design-
ers of a file

ND The number of developers that do check-in of a file on a speci-
fied ClearCase branch and all of its sub-branches during a speci-
fied time interval

Complexity of the
most complex func-
tion in a file

Max M f The complexity number M of the most complex function in a
file

3.6 Focus Group
During this study we had the opportunity to work with a reference group at Ericsson
and a designer at Volvo GTT. The aim of the reference group was to support the re-
search team with expertise in the product domain and to validate the intermediate
findings as prescribed by the principles of Action research. The group interacted with
researchers on a bi-weekly meeting basis for over 8 months. At Ericsson the reference
group consisted of:
• One product manager with over 10 years of experience and over 5 years of experi-

ence with Agile/Lean software development
• One measurement program/team leader with over 10 years of experience with

software development and over 5 years of experience with Agile/Lean at Ericsson
• Two designers with over 6 years of experience in telecom product development.
• One operational architect with over 6 years of experience
• One research engineer with over 20 years of experience in telecom product devel-

opment
At Volvo GTT we worked with one designer who had the knowledge about the prod-
uct and over 10 years of experience with software development at the company.

4 Results and analysis

4.1 Evolution of the Studied Measures Over Time
We measured M for 4 main and 5 service releases at Ericsson and for 4 releases for
the product at Volvo GTT. The results showed there are many new complex functions
introduced as part of service releases. We observed that a large number of functions
change the argument list during development. Many functions had long list of argu-
ments which meant that the designers need to add or remove an argument or change
the argument name to resolve a specific task. Thus the majority of the functions that

6

has been included as “new” in the statistics were actually old functions, which have
changed argument’s list. The designers agreed that these functions may introduce
risks but with considerably less exposure than if these functions were indeed newly
developed. Hence we disregarded the argument’s list of functions in our measure-
ment. Figure 1 shows the complexity evolution of functions in 5 service releases of
the telecom product. Each line on the figure represents a C/C++ function.

Figure 1. Evolution of complexity for functions with large complexity delta for one release

and subsequent service releases in Telecom product
Measuring the evolution of McCabe’s complexity M through releases in this manner
resulted in:
• Observation that it is the newly developed functions which drive complexity in-

crease between two major releases, as shows in Table 2.
• Observation that the majority of functions that are created complex keep the com-

plexity at the same level over many releases – e.g. see Figure 1.

Figure 2. Evolution of complexity for functions with large complexity delta for four re-

leases in product ECU of trucks
Figure 2 shows the complexity development of ECU of trucks for 4 releases.

The trends presented in Figure 2 are similar to the trends in Figure 1 and the
number of functions in the diagram reflects the difference in size of the products.

Rel_5Rel_4Rel_3Rel_2Rel_1

0

Releases

M
complexity evolution over time

rel_4rel_3rel_2rel_1

0

Releases

M

complexity evolution over time

7

Table 2 presents the results of complexity change between two service releases. The
dashes in the table, under old M column indicate that the functions did not exist in the
previous measurement point. The table shows that there are few functions that are
new and already complex. In this particular measurement interval there are also 5
functions that were removed from the release. These functions are indicated by dashes
under new M column (not shown in Figure 1). The results were consistent for all ser-
vice releases for the telecom product, irrespective if there was a new functionality
development or correction caused by customer’s feedback. As opposed to the telecom
product the number of newly introduced complex functions was dependent on wheth-
er a new end-to-end feature is implemented for truck. In Figure 2 we can see that for
ECU software after the first release the number of functions with increased complexi-
ty is 5, whereas from second and third release there are many of them.

Table 2. Top functions of telecom product with highest complexity change between two
service releases

In both products new complex functions appeared over time regardless the de-

velopment time period. We investigated the reasons for high complexity of newly
introduced functions in each release (both service and main) and unchanged complex-
ity of existing functions. We observed that both companies assure that the most com-
plex functions are maintained by the most skilled engineers to reduce the risks of
faultiness. One of these functions was function 4 in Table 2, which between two re-
leases increased the complexity significantly from an already high level. We observed
the change of complexity for both long time intervals (between main releases) and for
short time intervals (one week). Table 3 shows how the complexity of functions
changes over weeks. The initial complexity of functions is provided under column M
in the table (the real numbers are not provided for confidentiality reasons).We can see
the week numbers on the top of the columns, and every column shows the complexity
growth of functions in that particular week. Under ΔΜ column we can see the overall
delta complexity per function that is the sum of weekly deltas per function.

The fact that the complexity of these functions fluctuates irregularly was interest-
ing for the designers, as the fluctuations indicate active modifications of functions,
which might be due to new feature development or represent defect removals with
multiple test-modify-test cycles. Functions 4 and 6 are such instances illustrated in
Table 3.

file name function name old M new M Δ Μ
file 1 function 1 25 - -25
file 2 function 2 83 - -83
file 2 function 3 26 - -26
file 3 function 4 57 90 33
file 4 function 5 27 - -27
file 5 function 6 22 - -22
file 5 function 7 - 25 25
file 6 function 8 - 30 30
file 6 function 9 - 51 51
file 7 function 10 - 23 23
file 8 function 11 - 26 26
file 9 function 12 - 26 26
file 10 function 13 - 22 22
file 11 function 14 - 27 27

8

Table 3. Visualizing complexity evolution of functions over weeks

4.2 Correlation Analyses
When adding new measures to our analyses we needed to evaluate how the measures
relate to each other by performing correlation analyses. However, in order to correlate
the measures we need to define all the measures for the same entity (e.g. for a file or
for a function, see Table 1). The correlation analysis for the telecom product is pre-
sented in Table 4.

Table 4. Correlation of measures for telecom product
 File M File Δ Μ Max ΔΜ NR ND
NCLOC 0.9 0.27 0.33 0.56 0.47
File M 0.28 0.32 0.48 0.41
File Δ Μ 0.77 0.24 0.25
Μax Δ Μ f 0.35 0.37
NR 0.92

The correlations which are over 0.7 are in boldface, since it means that the corre-
lated variables characterize the same aspect of the code. Table 5 presents the Pearson
correlation coefficients between measures for the ECU for a truck. The correlations
are visualized using correlograms in Figure 3 and Figure 4.

Table 5. Correlation of measures for ECU of truck
 File M File Δ Μ Max ΔΜ NR ND
NCLOC 0.9 0.43 0.48 0.61 0.38
File M 0.48 0.5 0.68 0.4
File Δ Μ 0.84 0.13 0.19
Μax ΔΜ f 0.3 0.23
NR 0.46

The tables show that the M change is weakly correlated with NRs for both prod-
ucts. This was expected by the designers as the files with the most complex functions
are usually maintained by certain designers and do not need many changes. The files
with smaller complexity are not risky since they are easy to be modified. The design-
ers noted that the really risky files are those which contain multiple complex functions
that change often.

The strong correlation visible in the tables and diagrams above of NCLOC and
M has been manifested by a number of other researchers previously [32], [33], [8].

9

 Figure 3. Correlogram of measures for telecom software
The original complexity definition is for a function as a measurement unit, thus we
did correlation analyses on function’s level. The results were:
• Correl. (M; NCLOC) = 0.76 telecom product
• Correl. (M; NCLOC) = 0.77 truck’s software product

The correlation coefficient was weaker compared to correlation between the
complexity of a file, which was caused by the fact that we measure the complexity of
each file as a sum of complexities of all of its functions. This means that larger files
with functions of small complexity will result in higher correlation. Designers claimed
that there are many files having moderately complex functions that are solving inde-
pendent tasks, which did not mean that the file is risky. This resulted in that we used
the measure of complexity delta of functions rather than files in our measurement
system as a complementary base measure.

Another important observation was the strong correlation between the number of
designers and the number of revisions for telecom product Figure 3. Although at the
beginning of this study the designers in the reference group believed that a developer
of a file might check-in and check-out the file several times which probably is not a
problem.

Figure 4. Correlogram of measures for ECU software

10

They assumed that large number of revisions itself is not as large problem as
when many different designers change the file in parallel. This parallel development
most likely increase the risk of being uninformed of one another’s activities between
different developers. The high correlation between File ΔM and max ΔΜ shows that
the complexity change of the file is mainly due to complexity change of the most
complex function in that file. A later observation showed that most of the files contain
only one or two complex functions along with many other simple ones.

4.3 Design of the Measurement System
Based on the results that we obtained from investigation of complexity evolution and
correlation analyses, we designed two indicators based on M and NR measures. These
indicators capture the evolution of complexity and highlight potentially problematic
files over time. These indicators were designed according to ISO/IEC 15959. An ex-
ample definition of one indicator is presented in Table 6.

Table 6. ISO/IEC 15939 definition of the complexity growth indicator

Information
Need

Monitor cyclomatic complexity evolution over development time

Measurable
Concept

Complexity development of delivered source code

Relevant Enti-
ties

Source code

Attributes McCabe’s cyclomatic complexity of C/C++ functions
Base Measures Cyclomatic complexity number of C/C++ functions – M
Measurement
Method

Count cyclomatic number per C/C++ function according to the algorithm
in CCCC tool

Type of meas-
urement meth-
od

Objective

Scale Positive integers
Unit of meas-
urement

Execution paths over the C/C++ function

Derived Meas-
ure

The difference of cyclomatic number of a C/C++ function in one week
development time period

Measurement
Function

Subtract old cyclomatic number of a function from new one:
ΔM = M(week) – M(week-1)

Indicator Complexity growth: The number of functions that exceeded McCabe
complexity of 20 during the last week

Model Calculate the number of functions that exceeded cyclomatic number 20
during last week development period

Decision Crite-
ria

If the number of functions that have exceeded cyclomatic number 20 is
different than 0 then it indicates that there are functions that have ex-
ceeded established complexity threshold. This suggests the need of re-
viewing those functions, finding out the reasons of complexity increase
and refactoring if necessary

The other indicator is defined in the same way: the number of files that had NR > 20
during last week development time period.

11

The measurement system was provided as a gadget with the necessary information
updated on a weekly basis (Figure 5). The measurement system relies on two previous
studies carried out at Ericsson [34, 35].

Figure 5. Information product for monitoring ΔM and NR metrics over time

For instance the total number of files with more than 20 revisions since last week
is 5 (Figure 5). The gadget provides the link to the source file where the designers can
find the list of files or functions and the color-coded tables with details.

We visualized the NR and ΔM measures using tables as depicted in Table 3. Pre-
senting the ΔM and NR measures in this manner enabled the designers to monitor
those few most relevant files and functions at a time out of several thousands. As in
Streamline development the development team merged builds to the main code
branch in every week it was important for the team to be notified about functions with
drastically increased complexity (over 20). This table drew the attention of designers
to the potentially problematic functions on a weekly basis – e.g. together with a team
meeting.

5 Threats to Validity
In this paper we evaluate the validity of our results based on the framework described
by Wohlin et al. [36]. The framework is recommended for empirical studies in soft-
ware engineering.

The main external validity threat is the fact that our results come for an action re-
search. However, since two companies from different domains (telecom and automo-
tive) were involved, we believe that the results can be generalized to more contexts
than just one company.

The main internal validity threat is related to the construct of the study and the
products. In order to minimize the risk of making mistakes in data collection we
communicated with reference groups at both companies to validate the results.

The limit 20 for cyclomatic number established as a threshold in this study does
not have any firm empirical or theoretical support. It is rather an agreement of skilled
developers of large software systems. We suggest that this threshold can vary depend-
ent on other parameters of functions (block depth, cohesion, etc.). The number 20 is a
preliminary established number taking into account the number of functions that can
be handled on weekly basis by developers.

The main construct validity threats are related to how we match the names of
functions for comparison over time. The measurement has been in the following way:
We measured the M complexity number of all functions for two consequent releases,
registering in a table function name and file name that the function belongs to. We
register the class name of the functions also if it is a C++ function. Then we compare

12

the function’s, file’s and class’ names of registered functions for two releases. If there
is a function that has the same registered names in both releases we consider that they
are the same functions and calculate the complexity number variance for them.

Finally the main threat to conclusion validity is the fact that we do not use inferen-
tial statistics to monitor relation between the code characteristics and project proper-
ties, e.g. number of defects. This was attempted during the study but the data in defect
reports could not be mapped to individual files, this jeopardizing the reliability of
such an analysis. Therefore we chose to rely on the most skilled designers’ perception
of how fault-prone and unmaintainable code is delivered.

6 Conclusions
In Agile and Lean software development quick feedbacks on developed code and its
complexity is crucial. With small software increments there is a risk that the complex-
ity of units of code or their size can grow to unmanageable extensions through small
increments.

In this paper we explored how complexity changes by studying two software
products – one telecom product at Ericsson and one software for electronic control
unit at Volvo GTT. We identified that in short periods of time a few out of tens of
thousands functions have significant complexity increase. In large products software
development teams need automated tools to identify these potentially problematic
functions. We also identified that the self-organized teams should be able to make the
final assessment whether the “potentially” problematic is indeed problematic.

By analyzing correlations we found that it is enough to use two measures –
McCabe complexity and number of revisions – to draw attention of the teams and to
designate files as “potentially” problematic.

The automated support for the teams was provided in form of a MS Sidebar gadg-
et with the indicators and links to statistics and trends with detailed complexity devel-
opment. The method was validated on a set of historical releases.

In our further work we intend to extend our validation to products under devel-
opment and evaluate which decisions are triggered by the measurement systems. We
also intend to study how the teams formulate the decisions and monitor their imple-
mentation.

Acknowledgment
The authors thank the companies for their support in the study. This research has been
carried out in the Software Centre, Chalmers, University of Gothenburg and Ericsson
AB, Volvo Group Truck Technology.

References
[1] B. Boehm, "A view of 20th and 21st century software engineering," in Proceedings of the

28th international conference on Software engineering, 2006, pp. 12-29.
[2] T. Little, "Context-adaptive agility: managing complexity and uncertainty," Software, IEEE,

vol. 22, pp. 28-35, 2005.
[3] J. Bosch and P. Bosch-Sijtsema, "From integration to composition: On the impact of

software product lines, global development and ecosystems," Journal of Systems and
Software, vol. 83, pp. 67-76, 1// 2010.

13

[4] S. Henry and D. Kafura, "Software structure metrics based on information flow," Software
Engineering, IEEE Transactions on, pp. 510-518, 1981.

[5] T. J. McCabe, "A complexity measure," Software Engineering, IEEE Transactions on, pp.
308-320, 1976.

[6] B. Curtis, "Measuring the psychological complexity of software maintenance tasks with the
Halstead and McCabe metrics," IEEE Transactions on Software Engineering, vol. SE-5, p.
96.

[7] M. H. Halstead, Elements of software science vol. 19: Elsevier New York, 1977.
[8] G. K. Gill and C. F. Kemerer, "Cyclomatic complexity density and software maintenance

productivity," Software Engineering, IEEE Transactions on, vol. 17, pp. 1284-1288, 1991.
[9] R. P. L. Buse and W. R. Weimer, "A metric for software readability," in Proceedings of the

2008 international symposium on Software testing and analysis, 2008, pp. 121-130.
[10] Y. Wang, "On the Cognitive Complexity of Software and its Quantification and Formal

Measurement," International Journal of Software Science and Computational Intelligence
(IJSSCI), vol. 1, pp. 31-53, 2009.

[11] N. Nagappan, T. Ball, and A. Zeller, "Mining metrics to predict component failures," in
Proceedings of the 28th international conference on Software engineering, 2006, pp. 452-
461.

[12] T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Goel, "Early quality
prediction: A case study in telecommunications," Software, IEEE, vol. 13, pp. 65-71, 1996.

[13] B. Ramamurthy and A. Melton, "A synthesis of software science measures and the
cyclomatic number," Software Engineering, IEEE Transactions on, vol. 14, pp. 1116-1121,
1988.

[14] M. Shepperd and D. C. Ince, "A critique of three metrics," Journal of Systems and
Software, vol. 26, pp. 197-210, 9// 1994.

[15] T. Fitz. (2009). Continuous Deployment at IMVU: Doing the impossible fifty times a day.
Available: http://timothyfitz.wordpress.com/2009/02/10/continuous-deployment-at-imvu-
doing-the-impossible-fifty-times-a-day/

[16] T. Chow and D.-B. Cao, "A survey study of critical success factors in agile software
projects," Journal of Systems and Software, vol. 81, pp. 961-971, 2008.

[17] G. I. U. S. Perera and M. S. D. Fernando, "Enhanced agile software development - hybrid
paradigm with LEAN practice," in International Conference on Industrial and Information
Systems (ICIIS), 2007, pp. 239-244.

[18] H. Zhang, X. Zhang, and M. Gu, "Predicting defective software components from code
complexity measures," in Dependable Computing, 2007. PRDC 2007. 13th Pacific Rim
International Symposium on, 2007, pp. 93-96.

[19] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto, "Software quality analysis
by code clones in industrial legacy software," in Software Metrics, 2002. Proceedings. Eighth
IEEE Symposium on, 2002, pp. 87-94.

[20] R. Moser, W. Pedrycz, and G. Succi, "A comparative analysis of the efficiency of change
metrics and static code attributes for defect prediction," in Software Engineering, 2008.
ICSE'08. ACM/IEEE 30th International Conference on, 2008, pp. 181-190.

[21] D. Wisell, P. Stenvard, A. Hansebacke, and N. Keskitalo, "Considerations when Designing
and Using Virtual Instruments as Building Blocks in Flexible Measurement System

14

Solutions," in IEEE Instrumentation and Measurement Technology Conference, 2007, pp. 1-
5.

[22] International Bureau of Weights and Measures., International vocabulary of basic and
general terms in metrology = Vocabulaire international des termes fondamentaux et
généraux de métrologie, 2nd ed. Genève, Switzerland: International Organization for
Standardization, 1993.

[23] J. Lawler and B. Kitchenham, "Measurement modeling technology," IEEE Software, vol.
20, pp. 68-75, 2003.

[24] Predicate Logic. (2007, 2008-06-30). TychoMetrics. Available:
http://www.predicatelogic.com

[25] F. Garcia, M. Serrano, J. Cruz-Lemus, F. Ruiz, M. Pattini, and ALARACOS Research
Group, "Managing Software Process Measurement: A Meta-model Based Approach,"
Information Sciences, vol. 177, pp. 2570-2586, 2007.

[26] Harvard Business School, Harvard business review on measuring corporate performance.
Boston, MA: Harvard Business School Press, 1998.

[27] D. Parmenter, Key performance indicators : developing, implementing, and using winning
KPIs. Hoboken, N.J.: John Wiley & Sons, 2007.

[28] A. Sandberg, L. Pareto, and T. Arts, "Agile Collaborative Research: Action Principles for
Industry-Academia Collaboration," IEEE Software, vol. 28, pp. 74-83, Jun-Aug 2011 2011.

[29] R. L. Baskerville and A. T. Wood-Harper, "A Critical Perspective on Action Research as a
Method for Information Systems Research," Journal of Information Technology, vol. 1996,
pp. 235-246, 1996.

[30] G. I. Susman and R. D. Evered, "An Assessment of the Scientific Merits of Action
Research," Administrative Science Quarterly, vol. 1978, pp. 582-603, 1978.

[31] P. Tomaszewski, P. Berander, and L.-O. Damm, "From Traditional to Streamline
Development - Opportunities and Challenges," Software Process Improvement and Practice,
vol. 2007, pp. 1-20, 2007.

[32] G. Jay, J. E. Hale, R. K. Smith, D. Hale, N. A. Kraft, and C. Ward, "Cyclomatic
complexity and lines of code: empirical evidence of a stable linear relationship," Journal of
Software Engineering and Applications (JSEA), 2009.

[33]M. Shepperd, "A critique of cyclomatic complexity as a software metric," Software
Engineering Journal, vol. 3, pp. 30-36, 1988.

[34] M. Staron, W. Meding, G. Karlsson, and C. Nilsson, "Developing measurement systems:
an industrial case study," Journal of Software Maintenance and Evolution: Research and
Practice, vol. 23, pp. 89-107, 2011.

[35] M. Staron and W. Meding, "Ensuring reliability of information provided by measurement
systems," in Software Process and Product Measurement, ed: Springer, 2009, pp. 1-16.

[36] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslèn,
Experimentation in Software Engineering: An Introduction. Boston MA: Kluwer Academic
Publisher, 2000.

15

Con�guring Software for Reuse with VCL

Dan Daniel1,
∗
, Stan Jarzabek2, and Rudolf Ferenc1

1Department of Software Engineering
University of Szeged, Hungary

{danield,ferenc}@inf.u-szeged.hu
2School of Computing

National University of Singapore, Singapore
dcssj@nus.edu.sg

Abstract. Preprocessors such as cpp are often used to manage families
of programs from a common code base. The approach is simple, but code
instrumented with preprocessing commands may become unreadable and
di�cult to work with. We describe a system called VCL (variant con�g-
uration language) that enhances cpp to provide a better solution to the
same problem. The main extensions have to do with propagation of pa-
rameters across source �les during VCL processing, the ability to adapt
source �les for reuse depending on the reuse context, and the ability to
form general templates to represent any group of similar program struc-
tures (methods, functions, classes, �les, directories) in generic, adaptable
form. In the paper, we describe salient features of VCL, explain how they
alleviate some of the problems of cpp, and illustrate reuse capabilities of
VCL with an example.

1 Introduction

Preprocessors are often used to manage families of programs from a common code
base. In the paper, we focus on cpp which is a most commonly used preprocessor.
Variant code relevant to some but not all family members appears in the code
base under commands such as #ifdef for selective inclusion into family members
that need that code. preprocessor parameters (#define) control the process of
con�guring the code base to build a speci�c family member.

There are well-known problems involved in managing large number of con-
�guration options in the code base with cpp [10,16,12,11]. As the number of
con�guration options grows, programs instrumented with cpp macros become
di�cult to understand, test, maintain and reuse. It is di�cult to �gure out
which code is related to which options, and to understand or change program
in general. Managing con�guration options with #ifdefs is technically feasible,
but is error-prone and does not scale. Karhinen et al. observed that manage-
ment of con�guration options at the implementation level only is bound to be

∗ This work was done during author's internship at National University of Singapore.

16

complex [10]. They described problems from Nokia projects in which preprocess-
ing and �le-level con�guration management were used to manage con�guration
options. They proposed to address variability at the higher level of program de-
sign to overcome these problems. Similar problems with preprocessing were also
reported in a research project FAME-DBMS [12,6].

Today's mainstream approach to reuse is motivated by the above experiences.
Much emphasis is placed on architectural design as means to manage product
variants in reuse-based way [11,5]. Still, mappings between features, reusable
components and speci�c variation points in components a�ected by features
are often complex. Problems magnify in the presence of feature dependencies,
when the presence or absence of one feature a�ects the way other features are
implemented [4]. Feature dependencies lead to overly complex conditions under
#if, or many nesting levels under #ifdef macros.

Despite many bene�ts of architecture- and component-based approaches to
reuse, managing features that have �ne-grained impact on many reusable com-
ponents requires extensive manual, error-prone customizations during product
derivation [13]. Therefore, it is common to use variation mechanisms such as pre-
processing, con�guration �les or wizards, in addition to component/architecture
design, to manage features at the level of the component code.

We describe a system called VCL (variant con�guration language) that en-
hances cpp to provide a better solution to con�guring a code base for reuse.
The main extensions have to do with propagation of parameters across source
�les during VCL processing, the ability to adapt code for reuse depending in
the reuse context, and the ability to represent any group of similar program
structures (methods, functions, classes, �les, directories) in generic, adaptable
form.

This paper describes how VCL works. In Section 2, we describe salient fea-
tures of VCL and comment on how our extensions alleviate some of the problems
of cpp. In Section 3 we describe the most commonly used VCL commands, and
how the VCL processor works. In Section 4, we lead the reader through an ex-
ample that illustrates reuse capabilities of VCL. Concluding remarks close the
paper.

2 An Overview of VCL

VCL is an improved and enhanced version of XVCL [17]. Like XVCL, VCL
is based on Bassett's Frame Technology [3]. XVCL is a dialect of XML and
uses XML trees and parser for processing. VCL parts with XML syntax and
processing, and o�ers a �exible, user-de�ned syntax. VCL syntax is based on
cpp, just because cpp is so widely used and we see many good reasons and
bene�ts for cpp users to try VCL.

The overall scheme of VCL operation is similar to that of cpp: The goal is
to manage a family of program variants from a common code base. Program
variants are similar, but also di�er one from another in variant features. VCL
organizes and instruments the source �les for ease of con�guring variant features

17

into the base. VCL commands appear at distinct variation points in the code
base at which con�guring occurs.

As compared to cpp, VCL leads to more generic, more reusable code base,
giving programmers better control over the process of con�guring variant fea-
tures into the code. VCL's ability to organize code base in a way that replaces
any signi�cant pattern of repetition with a generic, adaptable VCL represen-
tation, leads to much smaller code base and simpler to work with. The main
di�erences between VCL and cpp are the following:

� VCL #adapt �le command is like cpp #include, except that with
#adapt the same source �le can be customized di�erently in di�erent con-
texts in which it is reused (i.e., adapted). Any kind of di�erences among
those custom versions of a �le can be handled by VCL. There are no tech-
nical limits of when and how to reuse source �les. However, for reuse to be
cost-e�ective, it is wise to reuse only if speci�cations of �le customizations
are reasonably simple.

� VCL variables assigned values in #set commands are like cpp variables as-
signed values in #define commands, except that VCL variable values propa-
gate to all adapted source �les (along #adapt links). In addition, the variable
propagation mechanism is subject to overriding rules that are supportive to
e�ective reuse of source �les in multiple contexts.

� VCL #while command allows us to de�ne code generation loops. Suppose
we have 20 similar source code structures fi in our system (where fi can be
a function, class method, class, �le, or directory). If the di�erences among fi
are not too extreme, it pays o� to de�ne a generic code structure F in VCL
representation. Then we set up a #while loop to generate 20 instances fi
by adapting F. Generated code can be conveniently placed in the directories
and �les of our choice.

Each XVCL command has a direct counterpart in VCL with the same mean-
ing. Based on XVCL usage experience, besides simpli�ed and more readable
syntax we introduced the following enhancements:

� Expanding the customization options under #adapt command: In
XVCL, the only command that can be placed under #adapt is #insert. In
VCL, it is possible to use any other VCL command here. Using #set, #while
and #select commands under #adapt proved to be particularly useful.

� Speci�cation of output �les: Rather than specifying output �le per
#adapt or per �le as it was the case in XVCL, we introduced a separate
command to control where VCL Processor is to emit output. Details about
#output command can be found in section 3.4

� Robust structure instead of unreadable loops: while loops using many
multi-value variables can be quite confusing. We introduced a structure
called set-loop which gives us the possibility to store and use more multi-
value variables together as one loop descriptor data structure.

� Flexible syntax: It is possible that VCL command words con�ict with
reserved words in the target language. For this case, we introduced the ability

18

Fig. 1. Salient VCL commands

to easily change any VCL command's syntax. This way the users can de�ne
their own syntax.

VCL Processor starts processing with the speci�cation (SPC) �le. VCL com-
mands in the SPC, and in each subsequently adapted �le, are processed in
the order in which they appear. Whenever the processor encounters an #adapt
"A.vcl" command, processing of the current �le is suspended and the Processor
starts processing the �le A.vcl. Once processing of the �le A.vcl is completed, the
Processor resumes processing of the current �le from the location just after the
#adapt "A.vcl" command. In that way processing ends when VCL Processor
reaches the end of the SPC �le.

In the example in Figure 1, #set command declares variables. VCL variables
parametrize code and also control the �ow of processing. Loop command #while
is controlled by a multi-value variable (in the above example 'Type'). Any ref-
erence to variable 'Type' in the ith iteration of the loop fetches the ith value of
the variable. Variable 'Type' also controls selection of one of the options under
#select command in �le A.vcl, namely the #option whose value matches the
current value of variable 'Type' is selected for processing. VCL #insert com-
mand inserts its contents into any matching #break. #insert plays a similar
role to weaving aspect code in Aspect-Oriented Programming [1]. The reader
will �nd a more detailed explanation of VCL commands in the next section.

19

3 VCL Commands

3.1 #adapt Command

Figure 2 shows how #adapt commands control the processing �ow of the source
�les instrumented with VCL. VCL Processor starts at the �rst line of the SPC.

Fig. 2. Processing the adapt commands

In Figure 2, this is text "Before adapting A". The Processor emits the text
to the output �le and then executes command #adapt "A.vcl". This suspends
processing of SPC and transfers processing to the �le A. VCL Processor emits the
text "Content of A" and continues processing this way. At the end of processing
we get the following output:

Before adapting A
Content of A
Before adapting B
Content of B
After adapting B
After adapting A
Before adapting C
Content of C
After adapting C

#adapt command may specify customizations that should be applied to the
adapted �le.

#adapt: file
<customizations>

#endadapt

20

Customizations may include any VCL commands. VCL applies customizations
to a designated �le and proceeds to processing it.

3.2 #set Command

#set command declares a VCL variable and sets its value. #set command is
similar to cpp's #define except that VCL variable values propagate across the
�les along #adapt links. With the #set command, we can declare single and
multi-value variables. A variable value can be an integer, string or expression.
For example:

#set x = 5 %assign integer 5 to x
#set y = x %assign value of x to y
#set z = y + 2 %assign 7 to z
#set a = “text” %string must be enclosed in double-quotes

The value of a multi-value variable is a list of values, for example:

#set X = 1,2,2+1
#set Y = ”one”, ”two”, ”three”

In the #set command, a direct reference to variable x can be written ?@x? or
simply x. There are three types of expressions in VCL, namely name, string and
arithmetic expressions. Expressions can be used in #set commands to assign a
value to a new variable, and they may also appear anywhere in the source �les.

Name Expression
A name expression can contain variable references (like ?@x?), and combina-
tions of variable references (like ?@x@y@z? or ?@@x?). The value of a name
expression is computed by applying the '@' operator from right to left. At
each step, the result of application of '@' is concatenated with the rest of
the expression. Example 1:

#set a = “b”
#set b = 20
?@a? %value of a
?@@a? %value of (value of a)

Output of the example:

b
20

Example 2:

#set x = “y”
#set y = “z”
#set z = “w”
#set yw = “u”

21

#set xu = “q”
?@x@y@z?

%Evaluation steps:
%1: replace @z with its value "w"
%2: replace @yw with its value "u"
%3: replace @xu with its value "q"

Output of the example:

q

String Expression
A string expression can contain any number of name expressions intermixed
with character strings. To evaluate a string expression, we evaluate its com-
ponent name expressions from the left to the right replacing them with their
respective values and concatenating with character strings. Example:

#set x = “y”
#set y = “z”
#set z = “w”
#set yw = “u”
#set xu = “q”
?@x@y@z?”String”?@xu?

%Evaluation steps:
%1: eval ?@x@y@z? -> “q”
%2: concat ”String”
%3: eval ?@xu? -> “q”

Output of the example:

qStringq

Arithmetic Expression
If an expression is a well-formed arithmetic expression, VCL Processor recog-
nizes it as such and evaluates its value. An arithmetic expression can contain
`+', `-', `*', `/' operators and nested parenthesis can be used. An arithmetic
expression used in #set command must yield to integer. In arithmetic ex-
pressions variables can be used by simple reference i.e.:

#set b = a * (c + 2)

3.3 Propagation of VLC Variable Values

Having executed #set x = 10, VCL Processor propagates value of x to all �les
reached along #adapt links. The �rst executed #set x overrides any subse-
quently found #set x commands in adapted �les. An exception from the above
rule is the situation where two #set commands assign values to the same variable
in the same �le. Example:

22

SPC:
#set x = 1
#adapt "A.vcl"
#set x = 2 %overriding in the same file
#adapt "A.vcl"

File A.vcl:
#set x = 3 %this command will be ignored
Value of x is: ?@x?

Output of the example:

Value of x is: 1
Value of x is: 2

3.4 #output Command

VCL Processor interprets VCL commands and emits any source code found in the
visited �les. VCL #output <path> command speci�es the output �le where the
source code should be placed. The <path> can be absolute or relative path. If the
output �le is not speci�ed, then VCL Processor emits code to an automatically
generated default �le named defaultOutput in the main folder of the installed
VCL Processor. It is recommended to use the #output command.

We can put #output command in many �les, so that VCL Processor orga-
nizes the emitted output as we like. Once #output f has been executed, all
subsequently emitted text is placed in �le f, until the next #output overrides f
with another �le name, as Figure 3 shows.

Fig. 3. Output example

23

When VCL Processor executes #output <path> and the path does not exist,
VCL Processor creates relevant folders and �le. The �rst #output f in a given
processing sequence command deletes any existing f and creates a new one. Any
subsequent #output f command in the same processing sequence appends the
new content to the �le.

3.5 #while Command

#while command is controlled by one or more multi-value variables. The ith value
of each of the control variables is used in ith iteration of the loop. This means
that all the control variables should have the same number of values, and the
number of values determines the number of iterations of the loop. VCL Processor
interprets the loop body in each iteration and emits custom text accordingly.
Example:

#set x = 1,2,3
#set y = "a","b","c"
#while x, y

Value of x is ?@x? and value of y is ?@y?
#endwhile

Output of the example:

Value of x is 1 and value of y is a
Value of x is 2 and value of y is b
Value of x is 3 and value of y is c

3.6 #select Command

Please refer to the example of Figure 1. #select control-variable command is
used to select one or more of given options, depending on the value of a control-
variable.

VCL Processor checks #option <value>-s in sequential order. If the value
given in the option clause is the same as the value of the #select`s control-
variable, the body of that #option will be processed. One #option clause can
specify more values separated with `|' character. For example #option 1|5 will
be executed if the value of the control variable is 1 or 5. A #select command can
include one #option-undefined and one #otherwise clause. #option-undefined
is executed if the control-variable of the #select command is not de�ned, the
#otherwise is executed if none of the #options matches the value of the control-
variable.

VCL Processor selects and processes in turn all the #options whose values
match the value of the control variable.

24

3.7 #insert Command

An #insert <name> command replaces all matching #break command's content
in all �les reached via adapt chain with its content. Matching is done by a
name. Commands #insert-before and #insert-after add their content before
or after matching #breaks, without deleting their content. Any #break may
be simultaneously extended by any number of #insert, #insert-before and
#insert-after commands.

In the following example we demonstrate how insert-break works in VCL.
Example:

SPC:
#adapt: "A.vcl"

#insert-before breakX
inserting before the breakpoint

#endinsert
#insert breakX

inserting into the breakpoint
#endinsert
#insert-after breakX

inserting after the breakpoint
#endinsert

#endadapt

File A.vcl:
#break: breakX

default text
#endbreak

VCL Processor emits the following output for the above example:

inserting before the breakpoint
inserting into the breakpoint
inserting after the breakpoint

The content under #break is called a default content: If no #insert matches a
#break, then the break's content is processed. The propagation and overriding
rules for #insert (#insert-before and #insert-after) are the same as for
VCL variables.

4 Java Bu�er Library Example

Studies show that even in well-designed programs, we typically �nd 50%-90% of
redundant code contained in program structures (functorial, classes, source �les
or directories) replicated many times in variant forms. , repeated many times.
For example, the extent of the redundant code in the Java Bu�er library is 68%

25

[9], in parts of STL (C++) - over 50% [2], in J2EE Web Portals � 61% [18], and
in certain ASP Web portal modules � up to 90% [15].

Redundant code obstructs program understanding during software mainte-
nance. The engineering bene�ts of non-redundancy become evident especially
if we pay attention to large granularity clones. In this section we demonstrate
VCL's potential to reduce program complexity by eliminating redundant codes.

4.1 An Overview of the Original Bu�er Library

A bu�er contains data in a linear sequence for reading and writing [14]. Bu�er
classes di�er in features such as a bu�er element type, memory allocation scheme,
byte ordering and access mode, as described in [8]. Bu�er classes can be found
in java.nio package. Each legal combination of features yields a unique bu�er
class. That is why, even though all the bu�er classes play essentially the same
role, there are 74 classes in the Java Bu�er library.

Bu�er classes di�er one from another in bu�er element type (byte, char,
int, �oat, double, long,short), memeory allocation scheme (direct, indirect), byte
ordering(native, non-native, big endian, little endian) and access mode (writable,
read-only). Classes that di�er in certain features are similar one to another.
Earlier studies showed that it is di�cult to eliminate these redundancies with
conventional techniques such as generics and refactorings.

4.2 Bu�er Classes in VCL

Representing repeated code with a generic adaptable form is a good approach
to make the code smaller and easier to understand. We start by creating groups
of similar Bu�er classes. For example, classes ByteBu�erR, IntBu�erR, Logn-
Bu�erR... form a group of similar classes. Figure 4 highlights similarities and
di�erences between classes HeapByteBu�erR and HeapIntBu�erR. 71 classes (all
classes except Bu�er, MappedByteBu�er and StringCharBu�er) can be catego-
rized into seven similartity groups as follows:

� [T]Bu�er: contains 7 bu�er classes of type T (level 1). T denotes one of the
bu�er element types, namely, Byte, Char, Int, Double, Float, Long, Short

� Heap[T]Bu�er: contains 7 Heap classes of type T (level 2)
� Direct[T]Bu�er[S|U]: contains 13 Direct classes (level 2) U denotes native
and S - non-native byte ordering.

� Heap[T]Bu�erR: contains 7 Heap read-only classes (level 3).
� Direct[T]Bu�erR[S|U]: contains 13 Direct read-only classes (level 3).
� ByteBu�erAs[T]Bu�er[B|L]: contains 12 classes (level 2) providing views
T of a Byte bu�er with di�erent byte orderings (B or L). T here denotes
bu�er element type except Byte. B denotes big endian and L � little endian
byte ordering.

� ByteBu�erAs[T]Bu�erR[B|L]: contains 12 read-only classes (level 2)
providing views T of a Byte bu�er with di�erent byte orderings (B or L). T
here denotes bu�er element type except Byte. B denotes big endian and L �
little endian byte ordering.

26

Fig. 4. Similarities and di�erences between two Bu�er classes

We can build a VCL generic representation for each group. This generic repre-
sentation can then be adapted to form each of the individual classes.

For example, generation of classes in the group Heap[T]Bu�erR is done as
follows:

1. We build a so-called meta-class which will lead the generation of all �les
from this group, in this case this meta-class will be named Heap[T]Bu�erR.
In the meta-class we declare the type of the Bu�er class (T) as a multi value
variable using #set command.

#set elmtType = "Byte", "Char", "Double", "Float",
"Int", "Long", "Short"

2. In a loop command we iterate over variable elmtType adapting the common
template for all classes using #adapt command.

#while elmtType
#adapt Heap[T]BufferR.tmp

#endwhile

3. Customizing the adapt command, we insert the unique codes in the template
using #insert commands. We decide about the insertions based on the value
of the variable elmtType using #select command inside of the #adapt com-
mand with #option and #otherwise clauses.

#while elmtType
#adapt: Heap[T]BufferR.tmp

#select elmtType

27

#option Byte
#insert-after moreMethods

#adapt byteMoreMethods
#endinsert

#endoption
#option Char

#insert-after moreMethods
#adapt charMoreMethods

#endinsert
#insert toString

#adapt chartoString
#endinsert

#endoption
#otherwise

#insert-after moreMethods
#adapt otherMethods

#endinsert
#endotherwise

#endselect
#endadapt

#endwhile

4. In the template �le Heap[T]Bu�erR.tmp we control generation of �les using
#output command, and we give place to #break commands for customizing
the content.

#output “output/Heap"?@elmtType?"BufferR.java"
... //Template content
#break moreMethods
... //Template content
#break: toString

[Default toString]
#endbreak

With this approach we can generate all the classes in the seven groups mentioned
earlier.

Bonding together the representation of the seven groups with a speci�cation
(SPC) �le, we can de�ne a structure that generates the whole Bu�er library code.
The groups of the similar classes are represented by the meta-classes marked in
Figure 5. Meta-methods are representations of similar Java methods and meta-
fragments are representations of smaller code fragments. In Figure 5 we indicate
adaption of meta-components by a black arrow. Any meta-component can adapt
other meta-components, and any meta-component can be easily reused with
parametrization.

The original representation of the mentioned 71 classes consists of 16299 lines
of code including comments. The representation with VCL consists of 3720 lines
of code. With the VCL representation we could eliminate 77.2% of the code
using the commonalities between �les.

28

Fig. 5. An overview of the complete solution in VCL

The reader can �nd complete VCL representation of the Bu�er library on
our web site [7].

5 Conclusions

We presented a new, improved and enhanced implementation of a variability
management technique �rst implemented in Frame TechnologyTM [3] and then
popularized as XVCL [17]. Like its predecessors, VCL builds on the tradition of
preprocessors such as cpp, but extends them to provide better support for man-
aging program variants from a common base of reusable code. These extensions
include propagation of parameters across source �les during VCL processing, the
ability to adapt code for reuse depending in the reuse context, and the ability to
form general templates that represent any group of similar program structures
(methods, functions, classes, �les, directories) in generic, adaptable form. VCL
parts with XML syntax and processing, and o�ers a �exible, user-de�ned syntax.
VCL o�ers new constructs that allow programmers to write simpler and clearer
code. In the paper, we described salient features of VCL, explained how they
alleviate some of the problems of cpp, and illustrated reuse capabilities of VCL
with an example.

The power of VCL is mostly in its simplicity and scalability. It is easy to
understand, to learn and there are strategies to take conventional programs
under control of VCL.

In future work, we plan to conduct experiments on a bigger scale, further
re�ne VCL mechanisms and formulate methodological guidelines for applying
VCL.

References

1. Sven Apel, Christian Kästner, Thomas Leich, and Gunter Saake. Aspect
re�nement-unifying aop and stepwise re�nement. Journal of Object Technology,
6(9):13�33, 2007.

2. Hamid Abdul Basit, Damith C. Rajapakse, and Stan Jarzabek. Beyond templates:
a study of clones in the stl and some general implications. In Proceedings of the

27th international conference on Software engineering, ICSE '05, pages 451�459,
New York, NY, USA, 2005. ACM.

29

3. P. Bassett. Framing software reuse - lessons from real world, 1997.
4. P. Clements and D. Muthig. Proc. workshop on variability management � working

with variation mechanisms, 2006.
5. Paul Clements and Linda Northrop. Software product lines. Addison-Wesley

Boston, 2002.
6. S. Jarzabek. E�ective software maintenance and evolution: Reuse-based approach,

2007.
7. S. Jarzabek and D. Daniel. Variant con�guration language. http://vcl.comp.
nus.edu.sg, 2013.

8. S. Jarzabek and S Li. Unifying clones with a generative programming technique:
a case study. J. Softw. Maint. Evol.: Res. Pract., pages 267�-292, 2006.

9. Stan Jarzabek and Li Shubiao. Eliminating redundancies with a "composition
with adaptation" meta-programming technique. SIGSOFT Softw. Eng. Notes,
28(5):237�246, September 2003.

10. Anssi Karhinen, Alexander Ran, and Tapio Tallgren. Con�guring designs for reuse.
In Proceedings of the 19th international conference on Software engineering, ICSE
'97, pages 701�710, New York, NY, USA, 1997. ACM.

11. C. Kastner, S. Apel, and D. Batory. A case study implementing features using as-
pectj. In Software Product Line Conference, 2007. SPLC 2007. 11th International,
pages 223�232, 2007.

12. Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in software
product lines. In Proceedings of the 30th international conference on Software

engineering, ICSE '08, pages 311�320, New York, NY, USA, 2008. ACM.
13. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,

Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. Springer,
1997.

14. Oracle. Bu�er javadoc. http://docs.oracle.com/javase/6/docs/api/java/nio/
Buffer.html, 2011.

15. Ulf Pettersson and Stan Jarzabek. An industrial application of a reuse technique
to a web portal product line. submitted for publication, 2005.

16. Henry Spencer and Geo� Collyer. Ifdef considered harmful, or portability experi-
ence with c news, 1992.

17. National University of Singapore (XVCL) Team. Xml-based variant con�guration
language. http://xvcl.comp.nus.edu.sg, 2011.

18. J. Yang and S. Jarzabek. Applying a generative technique for enhanced reuse
on jee platform. Conf. on Generative Programming and Component Engineering,
(4):237�255, September 2005.

30

Identifying Code Clones with RefactorErl ?

Viktória Fördős, Melinda Tóth

ELTE-Soft Ltd., Eötvös Loránd University, Budapest, Hungary
{f-viktoria,tothmelinda}@elte.hu

Abstract. Code clones, the results of “copy&paste programming”, have
a negative impact on software maintenance. Therefore several tools and
techniques have been developed to identify them in the source code.
However most of them concentrate on imperative, well known languages.
In this paper we give an AST/metric based clone detection algorithm for
the functional programming language Erlang and evaluate it on an open
source project.

1 Introduction

Duplicated code detectors are software [2, 5, 13, 16], which help in the identifica-
tion of duplicates. Various approaches have been proposed, including the analysis
of code tokens [11], the syntax tree built up using the tokens [7], and using dif-
ferent metrics [14]. The majority of these methods and algorithms have been
constructed specifically for the most common programming paradigm today,
that is imperative programming, and for the leading imperative programming
languages.

Imperative programming languages have several duplicates detector algo-
rithms and software, whilst in functional programming only a few exist, such as
[9] developed for the Haskell language, and [12] for the Erlang [1] language.

Most duplicated code detection software do not work directly on the source
code, but rather on a transformed representation. Such representations include
the series of tokens and the abstract syntax tree, from which crucial information
for the analysis can be retrieved faster and more efficiently. RefactorErl [4, 8, 18]
is a static source code analyser and transformer tool for Erlang, that provides a
representation that contains more information about the source beyond that of
the abstract syntax tree.

In this paper we show an AST/metric based algorithm for duplicated code
detection in Erlang programs. The implementation of this work uses the Refac-
torErl framework. A short test run is also presented to show the results of the
algorithm on open source projects.

? Supported by Ericsson–ELTE-Soft–ELTE Software Technology Lab

31

2 Erlang & RefactorErl

2.1 Erlang

Erlang is a declarative, dynamically typed, functional, concurrent programming
language, which was designed to develop soft real-time, distributed applications.

The compilation unit of Erlang programs is called a module, which is built up
from attributes and function definitions. The encapsulating module, the name
of the function, and the arity of the function can identify a function uniquely in
Erlang. Pattern matching features are a prominent way to define functions by
case. The cases of a function definition are called function clauses, and they are
separated from each other by ; token. A one-arity function which consists of two
function clauses is shown in Erlang source 1. This function will be our running
example through out the paper.

clone_fun(L) when is_list(L)->

ShortVar = L,

A = 1,

B = lists:max([I || I<-lists:seq(1, 10)]),

(A == 1) andalso throw(badarg),

self ! B;

clone_fun(_)->

V = f(g(42)),

LongVariableName = V,

B = lists:max([J || J<-lists:seq(V, V*2)]),

X = fun(E) -> E + B end,

self ! X.

Erlang source 1: clone fun/1 function definition form

A function clause is built up from either one expression, called the top-level
expression, or a sequence of top-level expressions as defined in the Erlang gram-
mar. There are no statements in Erlang, only expressions. Contrary to state-
ments, every expression has a value, which is the value of its last top-level ex-
pression.

Other branching expressions, such as case, if, receive and the try expres-
sion, are also built up from clauses, for which the previous statements, analo-
gously hold, too.

2.2 RefactorErl

The main aim of RefactorErl is to support the daily work of Erlang programmers
with both code comprehension and refactoring tools. It provides the ability to re-
trieve semantic information and metric values about the source code, to perform

32

dependency analysis and to visualise the results of the analysis. It facilitates
code reorganisation with clustering algorithms and several refactoring methods.
The incremental and asynchronous analyser architecture allows the programmer
to track source code changes. The tool has multiple user interfaces to choose
from. These include a web-based interface, an interactive console or one can use
Emacs or Vim with RefactorErl plugins.

The source code has to be loaded into RefactorErl in order to be analysed.
The code is first transformed into a series of tokens using whitespace- and layout-
preserving lexical analysis, and is then passed on to the RefactorErl preprocessor.
After preprocessing, the abstract syntax tree is constructed from the token series
based on Erlang syntactical rules. Next, semantic analysers decorate the AST
with attributes and links, resulting in a graph, called Semantic Program Graph,
which is the internal data model of RefactorErl.

The labelled vertices of the Semantic Program Graph are the lexical, syntac-
tic and semantic units of the source code, while the directed edges between them
represent the lexical, syntactic and semantic relations between the entities. Infor-
mation from the Semantic Program Graph is gathered by the evaluation of path
expressions and traversal of the graph. For this purpose, RefactorErl provides a
complete, high-level API.

The algorithm presented in this paper uses information from the Semantic
Program Graph and metrics of RefactorErl.

3 Clone IdentifiErl

In this section, we present a new algorithm for clone detection. Our algorithm
combines a number of existing techniques, but introduces a novel filtering com-
ponent, as described in Section 3.4. As to our current knowledge these techniques
have never been used specifically in Erlang.

What does clone detection mean intuitively? One may try to compare ev-
ery code fragment to every other. The original representation of a code is too
particular, thus generalisation is needed and the generalised form of code needs
to be used. The similarity of each pair of code fragments can be represented
by a matrix. The first component of our algorithm produces this matrix, which
is detailed in Section 3.2. From this matrix, the initial clones can be extracted
along diagonals. This is what the second component of our algorithm does, which
is described in Section 3.3. Irrelevant clones can be found among these clones,
which are removed by evaluating filters which are described in Section 3.4. The
ideas behind each filter have been based on case studies using Mnesia[3].

3.1 Unit

The generalisation part of the first component of the algorithm is described in
this section.

33

Choosing the unit The unit of a clone instance has to be chosen as cautiously
as possible. One of our goals was to design and construct an algorithm that
can be successfully used on legacy code, so the source code of several Erlang
programs were studied.

The abstraction level of Erlang is extremely high. Due to this abstraction,
an application written in Erlang is so brief that 1 line of Erlang code can be
expressed with 8 to 10 lines of C code generally. It follows that block-based
algorithms cannot be used. It also follows that the size of the chosen unit should
be small. Tokens and sub-expressions are small enough to be selected. However,
they are too small to be used efficiently. A function clause is not small enough,
therefore the top-level expression becomes the unit of the algorithm.

Transforming the unit The program text of a top-level expression is consid-
ered too particular, thus generalisation is needed. A good idea is to use a formal
alphabet over a formal language which can cover unneeded specialisations of the
tokens. Algorithm 1 shall be used for generalising.

function TransformWithAlphabet(TopLevelExpression)
ε is the empty word

Word← ε
for all Token ∈ Tokenizer(TopLevelExpression) do

’·’ operator expresses the concatenation between words
Word←Word ·WordOverAlphabet(Token)

end for
return Word

end function

Algorithm 1: Algorithm of the alphabet

A generalised top-level expression is a sentence over the fixed alphabet that
is made of the concatenation of words. Every word is produced by the function
WordOverAlphabet based on the type of the token. Tokens are produced by
tokenizing expressions in the same order as given by the lexical analyser. It is
necessary to preserve this order to keep the characteristics of the original expres-
sion. The alphabet of the language is not injective, in order to cover unneeded
differences, for example, the difference between a variable and a constant (either
a number or an atom).

Example After generalisation, our running example will be the same as shown
in Figure 1. What we can see there, that every top-level expression got indexed
and generalised.

3.2 Matrix

How do code clones occur? Usually, they are the result of “copy&paste pro-
gramming”. For example, let us assume, that one has copied a three-unit long

34

Index Top-level expression Generalised top-level expr.

clone_fun(L) when is_list(L)->

i-1 ShortVar = L, A=A

i A = 1, A=A

i+1 B = lists:max([I || I<-lists:seq(1, 10)]), A=A:A([AlAvA:A(A,A)])

i+2 (A == 1) andalso throw(badarg), (AfA)FA(A)

i+3 self ! B; A!A

clone_fun(_)->

j-1 V = f(g(42)), A=A(A(A))

j LongVariableName = V, A=A

j+1 B = lists:max([J || J<-lists:seq(V, V*2)]), A=A:A([AlAvA:A(A,A*A)])

j+2 X = fun(E) -> E + B end, A=x(A)zA+Ae

j+3 self ! X. A!A

Fig. 1. Demonstrating the transformation part of the first component

sequence and has modified the second unit of the sequence, but the order of the
sequence has been kept.

Usually larger clones are preferred, so we want to collect the three-unit long
sequence as one clone instead of collecting two one-unit long clones. To be able
to do it, modifications should be handled flexibly. Our algorithm works primarily
on a matrix, which is a view of the problem, with which the flexibility criteria
can be satisfied. Each element of the matrix expresses the similarity between two
expressions and while a clone is made by preserving its original, correct order
of its elements, the diagonals of a matrix are enough to be focused on. In other
words, the fragments of diagonals are completely isomorphic to the fragments
of code sequences found in the code directly. We put this idea in perspective in
the following subsections.

Introducing the matrix Let us assume that every top-level expression is
numbered (indexed) sequentially, as shown in Figure 1. By taking the cardinality
of the indexes as the size (denoted by n), a square matrix can be constructed,
whose elements express similarity between the defining rows and columns, which
are the top-level expressions identified by their indexes.

The relation, denoted by Similarity, between two top-level expressions, sat-
isfies the following properties:

– Similarity is a binary relation.
– Similarity is reflexive, namely all values are related to themselves.
– Similarity is symmetric.
– Similarity expresses the equivalence of two top-level expressions in a signif-

icant manner.

If the symmetric property holds, then only the elements of the lower trian-
gular matrix need to be computed. If the reflexive property also holds, it follows
that the elements of the main diagonal do not need to be computed. With these

35

two properties the volume of computation is slightly reduced to the following
cardinality:

1
2n

2 − n

Clone IdentifiErl uses Dice-Sørensen metric[10, 17] for determining similarity,
which does satisfy the properties of Similarity relation, too. The authors see
no reason why the metric should not be replaced with other string similarity
metric. Let Dice-Sørensen metric be portrayed by the m function

m : String × String → [0 . . . 1] ⊂ R

Let n be the cardinality of the top-level expressions, A be the n- sized, square
matrix. Let selecttle be a selector function which returns the top-level expression
indexed by the given index. Now, the matrix can be exactly defined:

A(i, j) ::=

{
m(selecttle(i), selecttle(j)) if i, j ∈ [1 . . . n], i < j;
0 otherwise.

Example Let us consider the following code fragments that are shown in Fig-
ure 1 with indexes. By using Dice-Sørensen metric the matrix can be constructed,
whose relevant part is shown in Figure 2.




1 i− 1 i i+ 1 i+ 2 i+ 3 n

1 .

j − 1
... 0.5 0.5 0.43 0.46 0

...

j
... 1.0 1.0 0.21 0 0

...

j + 1
... 0.19 0.19 0.94 0.23 0

...

j + 2
... 0.17 0.17 0.22 0.24 0

...

j + 3
... 0 0 0 0 1.0

...
n .




Fig. 2. Similarities are represented by a matrix

Patterns in the matrix What we expect, that the clauses are clones of each
other, except that the (i-1)-th line differs from the (j-1)-th line and the (i+2)-
th line also differs greatly from (j+2)-th line. Therefore, it can be said, that 3
clones are present: the first one is a one-unit long pair, namely ([i-1], [j]),
the second one is also a one-unit long pair, namely ([i+3], [j+3]) and the
third one is a two-unit long pair, namely ([i, i+1], [j,j+1]).

What we expect, that the following pairs are related to each other according
to relation isClone:

{. . . , (i− 1, j), (i, j), (i + 1, j + 1), (i + 3, j + 3), . . . } = isClone

36

In practice, the one-unit long clone pairs are not interesting and multi-unit
long clone pairs should be focused on.

Let us assume that the starting units of a k-unit long clone pair can be found
on the a-th, and b-th indexes (k is a positive, fixed integer). Then

{(a + i, b + i) | i ∈ [0 . . . k − 1] ⊂ Z} ⊆ isClone

As observed by Baxter [6], every pair in the defined set is an element of the
matrix, and based on a k-unit long clone pair one of the diagonals of the matrix
can be partially formed.

What we cannot find in inter-diagonals (inside a diagonal) is the following.
Let us assume that the first clause of clone fun/1 is the same as shown in
Figure 1, but its second clause contains one newly inserted top-level expression.
The new definition of clone fun/1 is shown in Figure 3.

Index Top-level expression Generalised top-level expr.

clone_fun(L) when is_list(L)->

i-1 ShortVar = L, A=A

i A = 1, A=A

i+1 B = lists:max([I || I<-lists:seq(1, 10)]), A=A:A([AlAvA:A(A,A)])

i+2 (A == 1) andalso throw(badarg), (AfA)FA(A)

i+3 self ! B; A!A

clone_fun(_)->

j-1 V = f(g(42)), A=A(A(A))

j LongVariableName = V, A=A

j+1 B = lists:max([J || J<-lists:seq(V, V*2)]), A=A:A([AlAvA:A(A,A*A)])

j+2 X = fun(E) -> E + B end, A=x(A)zA+Ae

j+3 Y = lists:zip([1,2,3],[3,21]), A=A:A([A,A,A],[A,A,A])

j+4 self ! X. A!A

Fig. 3. The new definition of clone fun/1

The ([i+3],[j+4]) clone pair and the ([i, i+1], [j,j+1]) clone pair are
in different diagonals. If the instances of a clone differ from each other in that
way, then the full clone cannot be collected from the same diagonal, for instance,
when the cardinality of inserted, deleted or rewritten top-level expressions differ
from each other.

To summarise, instead of finding any pattern in the matrix, it is enough to
search in diagonals. Although a full clone cannot be collected from the same
diagonal in every case, its parts can be collected from different diagonals.

3.3 Determining initial clones

In this section, we describe a parallel, efficient algorithm for determining initial
clones.

37

As demonstrated in a previous example with Figure 3, a clone may be divided
into sub clones due to insertions, deletions or other kinds of modifications. It
would be practical if a full clone could be gathered somehow, therefore we need
to add a new parameter, called the invalid sequence length. An invalid sequence
length is the maximum length of a sequence whose middle elements can differ
too much from each other. This limitation to the elements is naturally needed
because of the beginnings and the endings of the clones should be similar to each
other. By introducing invalid sequence length, one can customise the allowable
maximum deviation of a clone.

If the chosen metric is exactly a distance, its values should be normalised to
the 0 to 1 interval to be able to handle the threshold correctly.

Now, we are able to define exactly the isClone relation which expresses
whether two units are considered to be clones of each other. The Dice-Sørensen
metric is portrayed by the m function, and Threshold contains a previously
defined non-negative real number less than one. Let isClone be a general Boolean
function operating on string pairs.

isClone : String × String → L

The truth set of this function is:

disClonee ::= {(a, b)|a ∈ String, b ∈ String,m(a, b) > Threshold}

As shown in Section 3.2, it is enough to focus only on the diagonals, thus, if
the set of diagonals is constructed first, the elements of the set can be computed
in parallel, because every element of the matrix is affected by only one complete
diagonal.

Let n be the cardinality of the top-level expressions, then the set of diagonals
is the following:

Diagonals ::= {〈(i, 1), (i + 1, 2) . . . , (n, (n− i + 1))〉 | i ∈ [2 . . . n]}

Working with diagonals has a deficiency: the gathered instances of a clone
can overlap the natural boundaries of the clone. The overlap should be avoided if
possible, so a boundary needs to be defined as a trimming rule of the production
of initial clones, as follows: every top-level expression of a clone must belong to
the same function clause per instance. This rule works, because function clauses
act like natural boundaries.

Algorithm 2 for calculating the initial clones is detailed below. The inputs of
the algorithm are the followings:

– N is the cardinality of the top-level expressions,

– T is the value of the threshold,

– InvSeqLength is the maximum length of a sequence which is built-up with
invalid items.

38

function InitialClonesBasedOnDiagonals(N,T, InvSeqLength)
Diagonals← {〈(i, 1), (i+ 1, 2) . . . , (N, (N − i+ 1))〉 | i ∈ [2 . . . N]}
parallel for all Diagonal ∈ Diagonals do

InitialClones← ∅
〈〉 is the empty sequence

InitialClone← 〈〉
InvSeqCount← 0
for all Index ∈ Diagonal do

T lePair ← SelectTlePairs(Index)
if isClone(T lePair, T) then

if isSameClone(InitialClone, T lePair) then
⊕ operator express the concatenation between sequences

InitialClone← InitialClone⊕ 〈T lePair〉
InvSeqCount← 0

else
InitialClones← InitialClones ∪Trim(InitialClone)
InitialClone← 〈T lePair〉
InvSeqCount← 0

end if
else

if InvSeqCount < InvSeqLength ∧
isSameClone(InitialClone, T lePair) then
InitialClone← InitialClone⊕ 〈T lePair〉
InvSeqCount← InvSeqCount+ 1

else
InitialClones← InitialClones ∪Trim(InitialClone)
InitialClone← 〈〉
InvSeqCount← 0

end if
end if

end for
return InitialClones

end parallel for
end function

Algorithm 2: Parallel algorithm of the initial clones detector

The output of the algorithm is a set of the initial clones which are produced
in parallel, so a union is needed to be constructed from them by ”adding” them
together.

Every diagonal is calculated in parallel in Algorithm 2, where the local vari-
ables are independent from each other, so no interference can happen between
the parallel processes.

The algorithm never enters an infinite loop; it always terminates due to
the iterations which are based on items, which are pre-calculated, cannot be
expanded and also the cardinality of the items decreases at each iteration.

– SelectTlePairs is a function returning a pair of indexed top-level expres-
sions, whose indexes are given as input.

39

– isClone is a function which determines if the given pair can form a clone by
examining whether the calculated metric is greater then the given threshold.

– isSameClone is a function which determines if the given pair can be ap-
pended to the actual clone (InitialClone). A pair can be appended to the
given clone only if the top-level expressions of the resulting clone belong to
the same function clause per instance. This limitation is needed, because as
mentioned above, overlapping must be avoided.

– Trim is a function which trims the beginnings and endings of the given pair.
It is needed because invalid items may occur in the forming sequence of
a clone. Invalid items are only allowed in the middle of the sequence, as
described above, so the beginnings and endings of a pair must be cut out.

Example The three initial clones which are detected by the described algorithm
with using 1 for invalid sequence length are shown below:

1. LongVariableName = Var and ShortVar = L

2. A = 1,

B = lists:max([I || I<-lists:seq(1, 10)]),

(A == 1) andalso throw(badarg),

self ! B and
LongVariableName = Var,

B = lists:max([J || J<-lists:seq(Var, Var*2)]),

X = fun(E) -> E + B end,

self ! X

3. A = 1 and ShortVar = L

Alternative method A more efficient way might be to exploit transitivity in
calculating the elements of the matrix. In order to do so, we need to replace the
string similarity metric with a transitive relation.

Let us assume that isClone is a binary relation between duplicates. Two
items are duplicates of each other if the value of the Dice-Sørensen metric (DC)
computed for them is greater then 0.3. The relation isClone is not transitive
because of the intransitivity of the string similarity metric, consider the following
example:

DC(”aabb”, ”bbcc”) = 0.33 > 0.3 =⇒ (”aabb”, ”bbcc”) ∈ isClone,

DC(”bbcc”, ”ccdd”) = 0.33 > 0.3 =⇒ (”bbcc”, ”ccdd”) ∈ isClone,

DC(”aabb”, ”ccdd”) = 0.0 < 0.3 =⇒ (”bbcc”, ”ccdd”) /∈ isClone.

3.4 Filtering and trimming unit

A parallel algorithm for a new filtering system is detailed in this section.
In practice, the set of initial clones is too large and contains many false

positive or irrelevant clones, therefore further operations are needed to narrow

40

down the result set. An example for an irrelevant clone can be A = 1 and X =

5.
First of all, note the difference between one-unit long, and multi-unit long

clones. Due to the high abstraction level of the alphabet and the usage of the
similarity metrics, lots of false positive clones appear in the result set of the
production of initial clones, if only the one-unit long clones are taken into con-
sideration. It follows that the filters on one-unit long clones need to be stronger
than the filters on the multi-unit long clones.

In Section 3.3, invalid sequence length is used as a new parameter of the
algorithm. This parameter is also used in the filtering unit to process the multi-
unit long clones. During the filtering, it can happen that a multi-unit long clone
is split into a one-unit long clone and the rest of a multi-unit long clone. In
this case, the one-unit long clone has to be also processed by the filters that are
relevant for one-unit long clones.

As mentioned in Section 2.2, RefactorErl provides ready-to-use source code
metrics and a Semantic Program Graph which is rich in information and easy
to query. Thus every filter concentrates only on one characteristic of the code,
computed by using the libraries of RefactorErl.

A clone appears in the result set of the algorithm only if it meets all the
requirements which are stated in the corresponding filters. For all clone in
InitialClones, we have:

∧

Filter∈Filters

Filter(clone) =⇒ clone ∈ ResultClones

If only one clone is examined in each iteration, a parallel algorithm, called
FilteringAndTrimmingUnit, can be constructed along initial clones. If the cur-
rently examined clone is a one-unit long clone, then the FiltersForOneLongs

function is responsible for dealing with it, otherwise the FiltersForMultiLongs
function is the one in charge.

The FiltersForOneLongs function forms the conjunction of the results of
evaluated filters, which are dedicated for one-unit long clones. If the conjunction
is true, then the examined clone is returned, otherwise an empty set is returned.

The FiltersForMultiLongs function, which focuses only on the multi-unit
long clones, is detailed in Algorithm 3.

The input of the FilteringAndTrimmingUnit algorithm is the set of the
initial clones and the invalid sequence length.

The algorithm always terminates, because the cardinality of the unprocessed
items decreases at each iteration.

The output of the algorithm is a set of clones which are produced in parallel,
so a union is needed to be constructed from them.

A bit more explanation is needed for the FurtherTrim function. This function
is responsible for trimming invalid items from the beginnings and endings of the
given clone. The result of a trimming is a set, whose one-unit long elements
are further filtered by the FiltersForOneLongs to check whether the examined
clone fulfils the stronger filters.

41

function FiltersForMultiLongs(Clone, InvSeqLength)
Clones← ∅
AClone← 〈〉
InvSeqCount← 0
for all UnitPair ∈ Clone do

if ∧FilterFun∈FilterFuns∗FilterFun(UnitPair) then
AClone← AClone⊕ 〈UnitPair〉
InvSeqCount← 0

else
if InvSeqCount < InvSeqLength then

AClone← AClone⊕ 〈UnitPair〉
InvSeqCount← InvSeqCount+ 1

else
Clones← Clones ∪ FurtherTrim(AClone)
AClone← 〈〉
InvSeqCount← 0

end if
end if

end for
Clones← Clones ∪ FurtherTrim(AClone)
return Clones

end function

Algorithm 3: Filtering and trimming unit of the multi-unit long clones

Used filters The ideas behind filters were based on separate case studies on
the results of the algorithm on a real life application, called Mnesia. Mnesia is a
database management system and belongs to the standard Erlang/OTP library.
It is written in Erlang. There are three types of filters in Clone IdentifiErl:

– Filters for one-unit long clones.
These filters try to eliminate such pairs, which are basic expressions, or which
are match or send expressions having basic right sides. Basic expressions are
atoms, integers, floats, chars, variables, lists, tuples, record operations or
function applications. It may seem to be too strict, but nobody takes care
of these clones.

– Filters for multi-unit long clones.
These filters work similarily to the ones in the previous group, but they are
not so strict.

– Filters for any clones.
These filters focus on different branching expressions and list comprehen-
sions. If the cardinalities of clauses, the function applications or the head
expressions of the list comprehensions differ from each other then the exam-
ined clone is not needed.

Example From the three initial clones, only the four-unit long clone is the result
of the algorithm, the two one-unit long clones are filtered out. These clones are
object-lessons for irrelevant clones.

42

3.5 Short test run on Mnesia

Clone IdentifiErl has been implemented to the best of our knowledge, it is also
extremely specialised on Erlang.

Clone IdentifiErl was tried out on Mnesia, which has 22594 effective lines of
code. (The number of empty lines is not included in the sum.) It consists of 31
modules, 1687 functions, 5393 top-level expressions.

Clone IdentifiErl detected 801 clone pairs in Mnesia around 120 seconds.
Neither irrelevant nor false positive clones were found. The main types of the
clones are duplicated configurations, handler branchings, debugging sequences,
constructions of validator functions and message processings. A non-trivial ex-
ample is shown below.

Left one (found in mnesia_loader):

case ?catch_val(send_compressed) of

{’EXIT’, _} ->

mnesia_lib:set(send_compressed, NoCompression),

NoCompression;

Val -> Val

end

Right one (found in mnesia_controller):

case ?catch_val(no_table_loaders) of

{’EXIT’, _} ->

mnesia_lib:set(no_table_loaders,1),

1;

Val -> Val

end

3.6 Comparison with Wrangler

Wrangler is a refactoring tool for Erlang which introduces a duplicated code
detection algorithm [12]. They build a suffix tree, and calculate the code clones
based on this representation.

It is hard to compare our result to the result of Wrangler, because the tools
work on different granularity of the source code. Wrangler can identify code
clones inside top-level expressions, while the smallest unit of the analysis of
RefactorErl is a top-level expression. Thus Wrangler can identify smaller clones.
However Clone IdentifiErl can identify larger code clones because of the invalid
sequence length and filter out the non-relevant clones.

4 Related work

Usually, duplicated code detectors consist of two phases: the first phase is re-
sponsible for making the internal representation and the second phase collects
clones from this representation. The techniques used by duplicated code detec-
tion software are the concrete realisation of these components. The techniques
for each component can be chosen independently as long as their composition is
well typed.

43

The simplest approach to the first phase is line-based detection. It occurs
when the selected unit is the line of the source code. This method is infrequent
in practice, therefore further discussion is disregarded.

The most commonly used techniques are the token and AST based methods.
Token-based detection [11] uses lexical units of the source code as base units.
Tokens are transformed according to their characteristics over an abstract al-
phabet over a formal language. Clone detection algorithms can be performed on
this representation, or an extended suffix tree can be constructed from the trans-
formed token resulting in the suffix tree becoming the set of clone candidates,
where all the occurrences of every duplicate can be gathered as a sub-suffix tree.
This technique is used by Wrangler [12] and the previous, unstable, unfinished
prototype within RefactorErl.

Syntax/metric based detection [7] usually comes in two variants. Block-based
methods use program blocks as unit of the instance, whilst function-based meth-
ods use function bodies. The source code is partitioned and transformed accord-
ing to the chosen unit. Usually the transformation results in a hash value or
fingerprint. Even a sequence database can be constructed from the transformed
units. The algorithm described in [15] operates on the blocks created from the se-
quence of statements, and uses fingerprints and sequence database for detection
of clones.

Another possibility is the transformation of the sub-trees into simple val-
ues, thereby flattening the syntax tree, and using composition to produce the
candidates. In the case, that the syntactical structure chosen for the units is
too large, it is suggested to pair every unit with every other to form the clone
candidates. The constructed abstract syntax tree should also be preserved, as
the information inside may be used by the detection algorithm to provide more
precise results. This technique is used by [14] by having functions as base units.

5 Conclusions

Duplicated code detection is a special static analysis, where code clones (either
identical, or similar) are identified in the source code. Code clones can result
several bugs and inconsistency during software maintenance.

In this paper we have described and evaluated an own duplicated code de-
tection algorithm to identify code clones in Erlang programs. We have shown
the three main parts of the algorithm: candidate production, initial clone detec-
tion, trimming and filtering possibilities. We use the representation of Erlang
programs defined by RefactorErl (a static analyser and transformer tool) to
build the internal representation and to calculate metric values. We have also
evaluated our technique on open source projects.

Acknowledgement

The authors would like to thank Julia Lawall and Christian Rinderknecht for
their useful advices.

44

References

1. Erlang Programming Language. http://erlang.org.
2. Finding Duplicate Code by using Code Clone Detection.

http://msdn.microsoft.com/en-us/library/hh205279.aspx.
3. Mnesia Reference Manual. http://www.erlang.org/doc/apps/mnesia/.
4. RefactorErl Homepage. http://plc.inf.elte.hu/erlang.
5. Simian - Similarity Analyser. http://www.harukizaemon.com/simian/.
6. B. S. Baker. A program for identifying duplicated code. In Computer Science and

Statistics: Proc. Symp. on the Interface, pages 49–57, March 1992.
7. I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using

abstract syntax trees. In Software Maintenance, 1998. Proceedings., International
Conference on, pages 368–377, 1998.

8. I. Bozó, D. Horpácsi, Z. Horváth, R. Kitlei, J. Kőszegi, T. M., and M. Tóth.
RefactorErl - Source Code Analysis and Refactoring in Erlang. In Proceedings of
the 12th Symposium on Programming Languages and Software Tools, ISBN 978-
9949-23-178-2, pages 138–148, Tallin, Estonia, October 2011.

9. C. Brown and S. Thompson. Clone Detection and Elimination for Haskell. In
J. Gallagher and J. Voigtlander, editors, PEPM’10: Proceedings of the 2010 ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation, pages 111–
120. ACM Press, January 2010.

10. L. R. Dice. Measures of the amount of ecologic association between species. Ecology,
26(3):297–302, July 1945.

11. T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multilinguistic token-based
code clone detection system for large scale source code. Software Engineering,
IEEE Transactions on, 28(7):654–670, 2002.

12. H. Li and S. Thompson. Clone detection and removal for erlang/otp within a
refactoring environment. In Proceedings of the 2009 ACM SIGPLAN workshop
on Partial evaluation and program manipulation, PEPM ’09, pages 169–178, New
York, NY, USA, 2009. ACM.

13. Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: a tool for finding copy-paste
and related bugs in operating system code. In Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Implementation - Volume 6, OSDI’04,
pages 20–20, Berkeley, CA, USA, 2004. USENIX Association.

14. J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic detection of
function clones in a software system using metrics. In Software Maintenance 1996,
Proceedings., International Conference on, pages 244–253, 1996.

15. S. H. Randy Smith. Detecting and Measuring Similarity in Code Clones. IWSC,
2009.

16. S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: local algorithms for
document fingerprinting. In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, SIGMOD ’03, pages 76–85, New York, NY,
USA, 2003. ACM.

17. T. Sørensen. A method of establishing groups of equal amplitude in plant sociology
based on similarity of species and its application to analyses of the vegetation on
Danish commons. Biol. Skr., 5:1–34, 1948.

18. M. Tóth and I. Bozó. Static analysis of complex software systems implemented
in Erlang. In Proceedings of the 4th Summer School conference on Central Euro-
pean Functional Programming School, CEFP’11, pages 440–498, Berlin, Heidelberg,
2012. Springer-Verlag.

45

Code Coverage Measurement Framework for

Android Devi
es

Szabol
s Bognár

1
, Tamás Gergely

1
, Róbert Rá
z

1
, Árpád Beszédes

1
, and

Vladimir Marinkovi

2

1
University of Szeged, Department of Software Engineering

{bszabi,gertom,rrobi,beszedes}�inf.u-szeged.hu

2
University of Novi Sad, Fa
ulty of Te
hni
al S
ien
es vladam�uns.a
.rs

Abstra
t. Software testing is a very important a
tivity in the software

development life
y
le. Numerous general bla
k- and white-box te
h-

niques exist to a
hieve di�erent goals and there are a lot of pra
ti
es for

di�erent kinds of software. The testing of embedded systems, however,

raises some very spe
ial
onstraints and requirements in software testing.

Spe
ial solutions exist in this �eld, but there is no general testing method-

ology for embedded systems. One of the goals of the CIRENE proje
t

was to �ll this gap and de�ne a general testing methodology for em-

bedded systems that
ould be spe
ialized to di�erent environments. The

proje
t in
luded a pilot implementation of this methodology in a spe
i�

environment: on an Android-based Digital TV re
eiver (Set-Top-Box).

In this pilot, we implemented method level
ode
overage measurement of

Android appli
ations. This was done by instrumenting the appli
ations

and
reating a framework for the Android devi
e that
olle
ted basi

information from the instrumented appli
ations and
ommuni
ated it

through the network towards a server where the data was �nally pro-

essed. The resulting
ode
overage information was used for many pur-

poses a

ording to the methodology: test
ase sele
tion and prioritiza-

tion, tra
eability
omputation, dead
ode dete
tion, et
.

In this paper, we introdu
e this pilot implementation and, as a proof-

of-
on
ept, present how the
overage results were used for di�erent pur-

poses.

1 Introdu
tion

Software testing is a very important quality assuran
e a
tivity of the software

development life
y
le. With testing, the risk of a residing bug in the software
an

be redu
ed, and by rea
ting to the revealed defe
ts, the quality of the software

an be improved. Testing
an be performed in various ways. Stati
 testing � for

example �
an be performed on any workprodu
ts of the proje
t; it in
ludes

the manual
he
king of do
uments and the automati
 analysis of the sour
e

ode without exe
uting the software. During dynami
 testing the software or a

spe
i�
 part of the software is exe
uted. Many dynami
 test design te
hniques

exist, the two most well known groups among them are bla
k-box and white-box

te
hniques.

46

Bla
k-box test design te
hniques
on
entrate on testing fun
tionalities and

requirements by systemati
ally
he
king whether the software works as intended

and produ
es the expe
ted output for a spe
i�
 input. The te
hniques take the

software as a bla
k box, examine �what� the program does without having any

knowledge on the stru
ture of the program, and they are not intrerested in the

question �how?�.

On the other hand, white-box testing examines the question �How does the

program do that?�, and tries to exhaustively examine the
ode from several

aspe
ts. This exhaustive examination is given by a so-
alled
overage
riterion

whi
h de�nes the
onditions to be ful�lled by the set of instru
tion sequen
es

exe
uted during the tests. (E.g. 100% instru
tion
overage
riterion is ful�lled if

all instru
tions of the program are exe
uted during the tests.) Coverage measures

give a feedba
k on the quality of the tests themselves.

The reliability of the test
an be improved, by
ombining bla
k-box and

white-box te
hniques. During the exe
ution of test
ases generated from the

spe
i�
ations using bla
k-box te
hniques, white-box te
hniques
an be used to

measure how
ompletely the a
tual implementation is
he
ked. If ne
essary, re-

liability of the tests
an be improved by generating new test
ases for the not

veri�ed
ode fragments.

1.1 Spe
i�
 problems with embedded system testing

Testing in embedded environments has spe
ial attributes and
hara
teristi
s.

Embedded systems are neither uniform nor general-purpose. Ea
h embedded

system has its own hardware and software
on�guration typi
ally designed and

optimized for a spe
i�
 task, whi
h a�e
ts the development a
tivities on the

spe
i�
 system. Development, debugging, and testing are more di�
ult sin
e

di�erent tools are required for di�erent platforms.

However, high produ
t quality and testing that ensures this high quality

is very important as the
orre
tion of residual bugs
an be very di�
ult for

these systems. For example, the software of a digital TV with play-from-USB

apabilities fails to re
over after opening a spe
i�
 media �le format and this

bug
an only be repaired by repla
ing the ROM of the TV. On
e the TVs are

produ
ed and sold, it might be impossible to
orre
t this bug without spending

a huge amount of money on logisti
 issues. Although there are some solutions

aiming at the uniformisation of the software layers of embedded systems (e.g. the

Android platform [1℄), there has not been a uniform methodology for embedded

systems testing.

1.2 The CIRENE proje
t

One of the goals of the CIRENE proje
t [2℄ is to �ll this gap and de�ne a

general testing methodology for embedded systems that
opes with the above

mentioned spe
ialities and whose parts
an be implemented on spe
i�
 systems.

The methodology
ombines bla
k-box tests responsible for the quality assesment

of the system under test and white-box tests responsible for the quality assesment

47

of the tests themselves. Using this methodology the reliability of the test results

and the quality of the embedded system
an be improved. As a proof-of-
on
ept,

the CIRENE proje
t in
luded a pilot implementation of the methodology for

a spe
i�
, Android-based digital Set-Top-Box system. Although the proposed

solution was developed for a spe
i�
 embedded environment, it
an be used for

any Android-based embedded devi
es su
h as smart phones or more general-

purpose tablets.

The methodology spe
ialized to the Set-Top-Box in the pilot implementation

an be seen on Figure 1. The
overagemeasurement tool
hain plays an important

role in the methodology. Many
overage measurement tools (e.g. EMMA [3℄)

exist that are not spe
i�
 but
an be used on Android appli
ations. However,

these are appli
able only during the early development phases as they are able to

measure
ode
overage on the development platform side. This kind of testing

ommits to test the real environment, misses the hardware-software
o-existan
e

issues whi
h
an be essential in embedded systems. We are not aware of any

ommon tool
hain that measures
ode
overage dire
tly on Android devi
es.

Our
overage measurement tool
hain starts with the instrumentation of the

appli
ation we want to test, whi
h allows us to the measure
ode
overage of the

given appli
ation during test exe
ution. As the devi
e of the pilot proje
t runs the

Java-based Android operation system, Java instrumentation te
hniques
an be

used. Then, the test
ases are exe
uted and the
overage information is
olle
ted.

In the pilot implementation, the
olle
tion is split between the Android devi
e

and the used testing tool RT-Exe
utor [4℄: the servi
e
olle
ts the information

from the individual appli
ations of the devi
e, while the testing tool pro
esses

the information (through its plug-ins).

Fig. 1. Coverage
olle
tion methodology on the Set-Top-Box

48

The
overage information gathered with the help of the
overage framework

an be utilized by many appli
ations in the testing methodology. They
an be

used for sele
ting and prioritizing test
ases for further test exe
utions, or for

helping to generate additional test
ases if the
overage is not su�
ient. It is

also useful for dead
ode dete
tion or tra
eability links
omputation.

The rest of the paper is organized as follows. In Se
tion 2, we give an overview

on the related work. In Se
tion 3, the implementation of the
overage measure-

ment framework is presented. In Se
tion 4, some use
ases are presented to

demonstrate the usefulness of
overage information. In Se
tion 5, we summarize

our a
hievements and elaborate on some possible future works.

2 Related Work

Software testing is a very important a
tivity during the software development

pro
ess. It helps redu
ing the risk of residual bugs and so
ontributes to the

quality of the released software. Di�erent testing te
hniques
an be
ategorized

by many
riteria. One of these
ategories
ontain the dynami
 testing meth-

ods where testing in
ludes the exe
ution of the program under test. There are

two well known groups of dynami
 testing te
hniques: bla
k-box and white-box

testing te
hniques. While bla
k-box te
hniques help to assess the quality of the

software under test, white-box te
hniques rather assess the quality of the exe-

uted test sets. A good test in
ludes a wide range of testing te
hniques,
ombines

them to lessen the weaknesses of the individual methods, and utilizes the advan-

tages of the
ombination. For example, tests prepared using bla
k-box te
hniques

are usually measured for
ode
overage (a white-box te
hnique), whi
h helps to

estimate the remaining risks more a

urately.

In the CIRENE proje
t, one of our �rst tasks was to assess the state-of-the-art

in embedded systems testing te
hniques with spe
ial attention to the
ombined

use of bla
k and white-box te
hniques. We prepared a te
hni
al report on it [5℄.

In this paper, we report only a few number of
ombined testing te
hniques that

have been spe
ialized and implemented in the embedded environment.

Gotlieb and Petit presented a path-based test
ase generation method [6℄.

They used symboli
 program exe
ution and did not exe
ute the software on

the embedded devi
e prior to the test
ase de�nitions. We use
ode
overage

measurement of real exe
utions to determine information that
an be used in

test
ase generation.

José et al. de�ned a new
overage metri
 for embedded systems to indi
ate

instru
tions that had no e�e
t on the output of the program [7℄. Their im-

plementation used sour
e
ode instrumentation and worked for C programs at

instru
tion level, and had a great in�uen
e on the performan
e of the program.

Biswas et al. also utilized C
ode instrumentation in embedded environment

to gather pro�ling information for model-based test
ase prioritization [8℄. We

use binary
ode instrumentation at method level, use traditional metri
 that

indi
ates whether the method is exe
uted during the test
ase or not, and our

49

solution has a minimal overhead on exe
ution time. The resulting
overage in-

formation
an also be used for test
ase sele
tion and prioritization.

Hazelwood and Klauser worked on binary
ode instrumentation for ARM-

based embedded systems [9℄. They reported the design, implementation and

appli
ations of the ARM port of the Pin, a dynami
 binary rewriting framework.

However, we are working with Android systems that hides the
on
rete hardware

ar
hite
ture but provides a Java-based one.

There are many solutions for Java
ode
overage measurement. For example,

EMMA [3℄ provides a
omplete solution for tra
ing and reporting
ode
overage

of Java appli
ations. However, it is, as well as others are general solutions not

on
erning the spe
ialities of Android or any embedded systems.

Most of the
overage measurement tools utilize
ode instrumentation. In

Java-based systems, byte
ode instrumentation is more popular than sour
e
ode

instrumentation. There are many frameworks providing instrumenting fun
tion-

alities (e.g. DiSL [10℄, InsECT [11,12℄, jCello [13℄, BCEL [14℄, et
.) for Java.

These are very similar to ea
h other regarding their provided fun
tionalities. We

hose Javassist [15℄ to be our instrumentation framework in the pilot proje
t.

3 Coverage Measurement Tool
hain

The implemented
overage measurement tool
hain
onsists of several parts.

First, the appli
ations sele
ted for measurement have to be prepared. The prepa-

ration pro
ess in
ludes program instrumentation that inserts extra
ode in the

appli
ation so that the appli
ation
an produ
e the information ne
essary for

tra
ing its exe
ution path during the test exe
utions. The modi�ed appli
ations

and the environment that helps
olle
t the results must be installed on the devi
e

under test.

Next, tests are exe
uted using this measurement environment and the pre-

pared appli
ations, and
overage information is produ
ed. In general, test exe-

ution
an be either manual or automated. In the
urrent implementation, we

use the RT-Exe
utor [4℄ for test automation. The RT-Exe
utor is a bla
k-box

test automation tool developed for testing multimedia devi
es by RT-RK
orpo-

ration in Novi Sad [16℄. During the exe
ution of the test
ases, the instrumented

appli
ations produ
e their tra
es whi
h are
olle
ted, and
overage information

is sent ba
k to the automation tool.

Third, the
overage information resulted from the previous test exe
utions

is pro
essed and used for di�erent purposes e.g. for test sele
tion and prioriti-

zation, additional test
ase generation, tra
eability
omputation, and dead
ode

dete
tion.

In the rest of this se
tion, we des
ribe the te
hni
al details of the
overage

measurement tool
hain.

3.1 Preparation

In order to measure
ode
overage, we have to prepare the environment and/or

the programs under test to produ
e the ne
essary information on the exe
uted

50

items of the program. In our
ase, the Android system uses the Dalvik virtual

ma
hine to exe
ute the appli
ations. Although modifying this virtual ma
hine

to produ
e the ne
essary information would result in a more extensive solution

that would not require the individual preparation of the measured appli
ations,

we de
ided not to do so, as we assumed that modifying the VM itself had higher

risks than modifying the individual appli
ations. With individual preparation

it is mu
h easier to de
ide what to measure and at what level of details. So,

we de
ided to individually prepare the appli
ations to be measured. As we were

interested in method level granularity, the methods of the appli
ations were

instrumented before test exe
ution, and this instrumented version of the appli-

ation was installed on the devi
e. In addition, a servi
e appli
ation serving as

a
ommuni
ation interfa
e between the tested appli
ations and the network was

also ne
essary to be present on the devi
e.

Instrumentation During the instrumentation pro
ess, extra instru
tions are

inserted in the
ode of the appli
ation. These extra instru
tions should not mod-

ify the original fun
tionality of the appli
ation ex
ept that they are logging the

ne
essary information and slowing down the exe
ution. Instrumentation
an be

done on the sour
e
ode or on the binary
ode.

In our pilot implementation, we are interested in method level
ode
overage

measurement. It requires the instrumentation of ea
h method inserting a
ode

that logs the fa
t that the method is
alled. As our targets are Android appli
a-

tions usually available in binary form, we have
hosen binary instrumentation.

Fig. 2. Instrumentation tool
hain

Android is a Java-based system whi
h in our
ase means that the appli-

ations are written in Java language and
ompiled to Java Byte
ode before a

further step
reates the �nal Dalvik binary form of the Android appli
ation.

The transformation from Java to Dalvik is reversible, so we
an use Java tools

to manipulate the program and instrument the ne
essary instru
tions. We used

the Javassist [15℄ library for Java byte
ode instrumentation, apktool [17℄ for

unpa
king and repa
king the Android appli
ations, the dex2jar [18℄ tool for
on-

verting between the Dalvik and the Java program representations, and aapt [19℄

51

tool for sign the appli
ation. The Instrumentation tool
hain (see Figure 2) is the

following:

� The Android binary form of the program needs to be instrumented. It is an

.apk �le (a spe
ial Java pa
kage, similar to the .jar �les, but extended with

other data to be
ome exe
utable).

� Using the apktool the .apk �le is unpa
ked and .dex �le is extra
ted. This

.dex �le is the main sour
e pa
kage of the appli
ation, it
ontains its
ode

in a spe
ial binary format. [19,20℄

� For all .dex �les the dex2jar is used to
onvert them to .jar format.

� On the .jar �les we
an use the JInstrumenter. The JInstrumenter is our

Java instrumentation tool based on the Javassist library [15℄.

JInstrumenter �rst adds a new
olle
tor
lass with two responsibilities to

the appli
ation. On the one hand, it
ontains a
overage array that holds the

numbers indi
ating how many times the methods (or any other items that is

to be measured) were exe
uted. On the other hand, this
lass is responsible

for the
ommuni
ation with the servi
e layer of the measurement framework.

Next, the JInstrumenter assigns a unique number as ID to ea
h of the

methods. This number indi
ates the method's pla
e in the
overage array of

the
olle
tor
lass. Then a single instru
tion is inserted in the beginning of

all methods whi
h updates the
orresponding element of the
overage array

on all exe
utions of the method.

The result of the instrumentation is a new .jar �le with instrumented meth-

ods and another �le with all the methods' names and IDs.

� The instrumented .jar �les are
onverted to .dex �les using the dex2jar

tool again.

� Finally, the .apk �le instrumented appli
ation is
reated by repa
king the

.dex �les with the apktool and signing it with the aapt tool.

During the instrumentation, we give a name to ea
h appli
ation. This name

will uniquely identify the appli
ation in the measurement tool
hain, so the ser-

vi
e appli
ation
an identify and separate the
overage information of di�erent

appli
ations.

After the instrumentation, the appli
ation is ready for installation on the

target devi
e.

Servi
e appli
ation In our
overage measurement framework implementation

it is ne
essary to have an appli
ation that is
ontinuously running on the An-

droid devi
e in parallel with the program under test. During the test exe
ution,

this appli
ation is serving as a
ommuni
ation interfa
e between the tested ap-

pli
ations and the external tool
olle
ting and pro
essing the
overage data. On

the one hand this is ne
essary be
ause of the rights management of the Android

systems. Using the network requires spe
ial rights from the appli
ation and it

is mu
h simplier and more
ontrollable to give these rights to only a single ap-

pli
ation than to all of the tested appli
ations. On the other hand, this solution

52

provides a single interfa
e to query the
overage data even if there are more

appli
ations tested and measured simultaneously.

In Android systems, there are two types of appli
ations: �normal� and �ser-

vi
e�. Normal appli
ations start, do something while they are visible on the

s
reen, and are destroyed on
losing. Servi
es are running in the ba
kground

ontinuously and are not destroyed on
losing. So, we had to implement this

interfa
e appli
ation as a servi
e. It serves as a bridge between the Android

appli
ations under test and the �external world� as it
an be seen on Figure 3.

The tested appli
ations are measuring their own
overage and the servi
e queries

these data on-demand. As the
ommuni
ation is usually initiated before the start

and after the end of the test
ases, this means no regular
ommuni
ation over-

head in the system during the test
ase exe
utions.

Fig. 3. Servi
e Layer

Messages are a

epted from and sent to the external
overage measurement

tools. The
ommuni
ation uses JSON [21℄ obje
ts (type-value pairs) over the

TCP/IP proto
ol. Implemented messages are:

NEWTC The testing tool sends this message to the servi
e to sign that there

is a new test
ase to be exe
uted and asks it to perform the required a
tions.

ASK The testing tool sends this message to query the a
tual
overage informa-

tion.

COVERAGE DATA The servi
e sends this message to the testing tool in

response to the ASK message. The message
ontains
overage information.

Internally, the servi
e also uses JSON obje
ts to
ommuni
ate with the in-

strumented appli
ations. Implemented messages are:

reset The servi
e sends this message to the appli
ation to reset the stored
ov-

erage values.

53

ask The servi
e sends this message to query the a
tual
overage information.

overage data The appli
ation sends this message to the servi
e in response

to the ask message. The message
ontains
overage information.

Installation To measure
overage on the Android system, two things need to

be installed: the parti
ular appli
ation we want to test and the
ommon servi
e

appli
ation that
olle
ts
overage information from any instrumented appli
ation

and provides a
ommuni
ation interfa
e for querying the data from the devi
e.

The servi
e appli
ation needs to be installed on a devi
e only on
e; this single

entity
an handle the
ommuni
ation of all tested appli
ations.

The instrumented version of ea
h appli
ation that is going to be measured

must be installed on the Android devi
e. The original version of su
h an ap-

pli
ation (if there was one) must be removed before the instrumented version

an be installed. It is ne
essary be
ause Android ideti�es the appli
ations by

their spe
ial android-name and pa
kage, and our instrtumentation pro
ess does

not
hange these attributes of the appli
ations; it only inserts the appropriate

instru
tions into the
ode. Our tool
hain uses the adb tool (
an be found in

Android Development Kit) to remove and install pa
kages.

3.2 Exe
ution

During test exe
ution, the Android devi
e exe
utes the program under test and

the servi
e appli
ation simultaneously. The program under test
ounts its own

overage information and sends this information when the servi
e layer appli-

ation asks for it. The
overage information
an be queried from this servi
e

layer appli
ation through network
onne
tion. We implemented a simple query

interfa
e in Java for manual testing and a plugin for the RT-Exe
utor [4℄ (a

bla
k-box test automation tool we used in this proje
t) for automated testing.

In our pilot proje
t, we used two possible modes of test exe
ution: manual and

automatized. Either mode is used, the servi
e layer appli
ation must be started

prior to the beginning of the exe
ution of the test
ases. It is done automati
ally

by the instrumented appli
ations if the servi
e is not running already.

In the
ase of automated testing, the RT-Exe
utor reads the test
ase s
ripts

and exe
utes the test
ases. The
lient side of the measurement framework is

ontained in a plug-in of the automation tool, and this plug-in must be
ontrolled

from the test
ase itself. Thus, the test
ase s
ripts must be prepared in order

to measure the
ode
overage of the exe
uted appli
ations.

The plug-in
an indi
ate the beginning and the end of the parti
ular test
ases

to the servi
e, so the servi
e
an distinguish the test
ases and
an separate the

olle
ted information. In order to measure the test
ase
overages individually,

one instru
tion must be inserted in the beginning of the test s
ript to reset the

overage values and one instru
tion must be inserted in the end instru
ting the

plug-in to
olle
t and store
overage information belonging to the test
ase.

During test exe
ution the following steps are taken:

� Start the program under test.

54

� The start of the program triggers the start of the measurement servi
e if

ne
essary. Then the program under test
onne
ts to the servi
e and registers

itself by its unique name given to it in instrumetnation pro
ess.

� The test automation system starts a test
ase. The test
ase for
es the au-

tomation system plug-in to send a NEWTC message to the servi
e. The

servi
e sends the reset message to the program under test. The PUT resets

the
overage array in its
olle
tor
lass. The servi
e returns the a
tual time

to the plug-in.

� The test automation system performs the test steps. The PUT
olle
ts the

overage data.

� The test
ase ends. The automation tool plug-in sends the ASK signal to

the servi
e. The servi
e sends the ask signal to the PUT. The PUT sends

ba
k the
overage data to the servi
e. The servi
e sends ba
k the
overage

data and the a
tual time to the automation tool plug-in.

� The plug-in
al
ulates the ne
essary information from the
overage data and

stores it in the lo
al �les. The stored data are: exe
ution time, tra
e length,

overage value, lists of
overed and not
overed methods. Another plug-in

de
ides if the test
ase was passed or failed and stores this information in

other lo
al �les.

These steps are repeated during the whole test suite exe
ution. At the end,

the
overage information of all the exe
uted test
ases are stored in lo
al �les

and are ready to be pro
essed by di�erent stages of the testing methodology.

3.3 Pro
essing the Data

As we mentioned above, the
lient side of the
overage measurement system is

realized as a plug-in of the RT-Exe
utor tool.

The plug-in is
ontrolled from the test
ases. It indi
ates the beginning and

the end of a test
ases to the servi
e layer appli
ation. The servi
e replies to

these signals by sending the valuable data ba
k. When the measurement
lient

indi
ates the start of a test
ase (by sending the NEWTC message to the

servi
e), the servi
e replies with the
urrent time whi
h is stored by the
lient.

At the end of a test
ase (when the ASK signal is sent by the
lient), the

servi
e replies with the
urrent time and the
olle
ted
overage information of

the methods.

When the
overage data is re
eived, the measurement
lient
omputes the

exe
ution time, tra
e length (the number of method
alls), and the list of
overed

and not
overed methods' IDs. Then, the
lient stores these data in a result �le

for further use. The
lient makes other �les, the tra
e �les, separately for ea
h

test
ase. Su
h a tra
e �le stores the identi�ers of the methods
overed during

the exe
ution of the test
ase.

As an alternative
lient, we implemented a simple standalone java appli
a-

tion that is able to
onne
t to the measurement servi
e (and this way it repla
es

the RT-Exe
utor plug-in). This
lient is able to visualize the
ode
overage in-

formation online, and is useful during the manual testing a
tivities (e.g. during

exploratory tests).

55

Fig. 4. Test exe
ution framework with
overage measurement

3.4 Appli
ations on the Measurement Framework Results

The
ode
overage and other information
olle
ted during the test exe
ution

an be used in various ways. In the pilot proje
t, we implemented some of the

possible appli
ations. These implementations pro
ess the data �les lo
ally stored

by the
lient plug-in.

Test Case Sele
tion and Prioritization Test
ase sele
tion is a pro
ess that

de�nes a subset of a test suite based on some properties of the test
ases. Test

ase prioritization is a pro
ess that sorts the test suite elements a

ording to

their properties [22℄. A prioritized list of test
ases
an be
ut at some points

resulting in a kind of sele
tion.

Code
overage data
an be used for test
ase sele
tion and prioritization.

We implemented some sele
tion and prioritization algorithms as a plug-in of

the RT-Exe
utor, whi
h utilizes the
ode
overage information
olle
ted by the

measurement framework:

� A
hange-based sele
tion algorithm was implemented that used the list of

hanged methods and the
ode
overage information to sele
t the test
ases

that
overed some of the
hanged methods. Exe
uting the sele
ted test
ases

an only redu
e the time required for regression test exe
ution while the

failure dete
tion
apability of the suite is not redu
ed.

� We implemented two well-known
overage-based prioritization algorithms:

one that prefers test
ases
overing more methods; and another that aims at

higher overall method
overage with less test
ases.

� We also implemented a simple prioritization that used the tra
e length of the

test
ases. It
an prioritize the tests either in the des
ending or the as
ending

order of the length of their tra
es.

Not Covered Code Not
overed
ode plays an important role in program

veri�
ation. There are two possible reasons for a
ode part not being
overed by

any test
ase exe
utions. The test suite
an simply omit its test
ase, in whi
h

56

ase we have to de�ne some new test
ases exe
uting the missed
ode. It
an also

happen that the not
overed
ode
annot be exe
uted by any test
ases, whi
h

means that it is a dead
ode. In the latter
ase, the
ode
an be dropped from

the
odebase.

In our pilot implementation, automati
 test
ase generation is not imple-

mented. We simply
al
ulate the lists of methods
overed and not
overed during

the tests. These lists
an be used by the testers and the developers to examine

the methods in question and generate new test
ases to
over the methods, or

to simply eliminate the methods from the
ode.

Tra
eability Cal
ulation Tra
eability links between di�erent software devel-

opment artifa
ts play a very important role in the
hange management pro
esses.

For example, tra
eability information
an be used to estimate the required re-

sour
es to perform a spe
i�

hange or to sele
t the test
ases related to the

hange of the spe
i�
ation. Relationship exists between di�erent types of de-

velopment artifa
ts. Some of them
an simply be re
orded when the artifa
t is

reated, some of them must be determined later.

We implemented a very simple tra
eability
al
ulator that
omputes the
or-

relation between the requirements and the methods, based on the pre-de�ned

relationships between the requirements and the test
ases and between the test

ases and the methods (
ode
overage). If a requirement-method pair is assigned

with high
orrelation, we
an assume that the required fun
tionality is imple-

mented in the method. This information
an be used to asses the number of

methods to be
hanged if the parti
ular requirement
hanges.

4 Usage and Evaluation

In this se
tion, we present and evaluate some use
ases to demonstrate the

usability of the measurement tool
hain.

4.1 Additional Test Case Generation

In the pilot proje
t our target embedded hardware was an Android-based Set-

Top-Box. We had this devi
e with di�erent pre-installed appli
ations and test

ases for some of these apps. A media-settings appli
ation was sele
ted for testing

our methodology and implementation. After exe
uting the tests of this appli
a-

tion with
overage measurement, we found that the pre-de�ned tests
overed

only 54% of the methods. We examined the methods and de�ned new test
ases.

Although the sour
e
ode of this appli
ations was not available, based on the not

overed method names and the GUI, we were able to de�ne new test
ases that

raised the number of
overed methods to 69%. This is still less than the required

100% method level
overage, but shows that the feedba
k on
ode
overage
an

be used to improve the quality of the test suite.

57

4.2 Tra
eability Cal
ulation

In the pilot proje
t a simple implementation that is able to determine the
orre-

lation between the
ode segments and the requirements was made. We did not

ondu
t detailed experimentation in this topi
, but we did test the tool. Instead

of the requirements, we de�ned 12 fun
tionalities performed by three media ap-

pli
ations (players) on our target Set-Top-Box devi
e. Then, we assigned these

fun
tionalities to 15
omplex bla
k-box test
ases of the media appli
ations and

exe
uted the test
ases with
overage measurement. The tra
eability tool
om-

puted
orrelations between the 12 fun
tionalities and 608 methods, and was able

to separate the methods relevant in implementing a fun
tionality from the not

relevant methods.

5 Con
lusions and Future Work

In this paper, we presented a methodology for method level
ode
overage mea-

surement on Android-based embedded systems. Although there were more solu-

tions allowing the measure of the
ode
overage of Android appli
ations on the

developers'
omputers, no
ommon methods were known to us that performed

overage measurement on the devi
es. We also reported the implementation of

this methodology on a digital Set-Top-Box running Android. The
overage mea-

surement was integrated in the test automation pro
ess of this devi
e allowing

the use of the
olle
ted
overage data in di�erent appli
ations like test
ase sele
-

tion and prioritization of the automated tests, or additional test
ase generation.

There are many improvement possibilities of this work. Regarding the imple-

mentation of
ode
overagemeasurement on Android devi
es, we wish to examine

if the granularity of tra
ing
ould be �ned to sub-method level (e.g. to basi
 blo
k

or instru
tion levels) without signi�
antly a�e
ting the runtime behaviour of the

appli
ations. This would allow us to extra
t instru
tion and bran
h level
over-

ages that would result in more reliable tests. We are also thinking of improving

the instrumentation in order to build dynami

all trees for further use. The
ur-

rent implementation (simple
overage measurement) does not need to deal with

timing, threads and ex
eption handling, both of whi
h are ne
essary for building

the more detailed
all trees. It would also be interesting to help the integration

of this
overage measurement in
ommonly used
ontinuous integration and test

exe
ution tools.

We are also examining the utilization possibilities of the resulting
overage

data. For example, tra
eability information between
ode and the visible graph-

i
al elements
ould be established, and this information might help to partially

automate
olle
ting data for usability tests and to establish usability models.

The implemented
ode
overage measurement and the testing pro
ess that uti-

lizes this information are a good base for measuring the e�e
t of using
overage

measurement data on the e�
ien
y and reliability of testing. We are planning

to
ondu
t resear
hes in these topi
s.

58

A
knowledgement

This work was done in the Cross-border ICT Resear
h Network (CIRENE)

proje
t (proje
t number is HUSRB1002/214/044) supported by the Hungary-

Serbia IPA Cross-border Co-operation Programme,
o-�nan
ed by the

European Union.

Referen
es

1. Google: Android homepage.

https://www.android.
om/ (June 2013)

2. Kukolj, S., Marinkovi¢, V., Popovi¢, M., Bognár, Sz.: Sele
tion and prioritization of

test
ases by
ombining white-box and bla
k-box testing methods. In: Pro
eedings

of the 3

rd
Eastern European Regional Conferen
e on the Engineering of Computer

Based Systems (ECBS-EERC 2013). (2013)

3. Vlad Roubtsov: EMMA: a free java
ode
overage tool.

http://emma.sour
eforge.net/ (June 2013)

4. RT-RK Institute: RT-Exe
utor.

http://bbt.rt-rk.
om/software/rt-exe
utor/ (May 2013)

5. Beszédes, Á., Gergely, T., Papp, I., Marinkovi¢, V., Zlokoli
a, V.: Survey on test-

ing embedded systems. Te
hni
al report, Department of Software Engineering,

University of Szeged and Fa
ulty of Te
hni
al S
ien
es, University of Novi Sad

(2012)

6. Gotlieb, A., Petit, M.: Path-oriented random testing. In: Pro
eedings of the 1st

international workshop on Random testing. RT '06, New York, NY, USA, ACM

(2006) 28�35

7. Costa, J.C., Devadas, S., Monteiro, J.C.: Observability analysis of embedded soft-

ware for
overage-dire
ted validation. In: In Pro
eedings of the International Con-

feren
e on Computer Aided Design. (2000) 27�32

8. Biswas, S., Mall, R., Satpathy, M., Sukumaran, S.: A model-based regression test

sele
tion approa
h for embedded appli
ations. SIGSOFT Softw. Eng. Notes 34(4)

(July 2009) 1�9

9. Hazelwood, K., Klauser, A.: A dynami
 binary instrumentation engine for the arm

ar
hite
ture. In: Pro
eedings of the 2006 international
onferen
e on Compilers,

ar
hite
ture and synthesis for embedded systems. CASES '06, New York, NY, USA,

ACM (2006) 261�270

10. Marek, L., Zheng, Y., Ansaloni, D., Sarimbekov, A., Binder, W., T·ma, P., Qi,

Z.: Java byte
ode instrumentation made easy: The disl framework for dynami

program analysis. In Jhala, R., Igarashi, A., eds.: Programming Languages and

Systems. Volume 7705 of Le
ture Notes in Computer S
ien
e. Springer Berlin

Heidelberg (2012) 256�263

11. Chawla, A., Orso, A.: A generi
 instrumentation framework for
olle
ting dynami

information. In: Online Pro
eedings of the ISSTAWorkshop on Empiri
al Resear
h

in Software Testing (WERST 2004), Boston, MA, USA (july 2004)

12. Seesing, A., Orso, A.: InsECTJ: A Generi
 Instrumentation Framework for Colle
t-

ing Dynami
 Information within E
lipse. In: Pro
eedings of the e
lipse Te
hnology

eX
hange (eTX) Workshop at OOPSLA 2005, San Diego, CA, USA (o
tober 2005)

49�53

13. Slife, D., Chesney, M.: jCello. http://j
ello.sour
eforge.net/ (June 2013)

59

14. Apa
he Commons: BCEL homepage.

http://
ommons.apa
he.org/proper/
ommons-b
el/ (June 2013)

15. Chiba, Shigeru: Javassist homepage.

http://www.
sg.
i.i.u-tokyo.a
.jp/�
hiba/javassist/ (May 2013)

16. RT-RK Institute: Homepage.

http://rt-rk.
om/
orporate-profile/ (May 2013)

17. Google: apktool homepage.

https://
ode.google.
om/p/android-apktool/ (May 2013)

18. Google: dex2jar.

https://
ode.google.
om/p/dex2jar/ (May 2013)

19. Google Android Developers: Building and running an android appli
ation.

http://developer.android.
om/tools/building/index.html (May 2013)

20. Bornstein, D.: Presentation of Dalvik VM internals (2008)

21. Developers: JSON.

http://www.json.org/ (June 2013)

22. Yoo, S., Harman, M.: Regression testing minimization, sele
tion and prioritization:

a survey. Software Testing, Veri�
ation and Reliability 22(2) (2012) 67�120

60

The Role of Dependency Propagation in the
Accumulation of Technical Debt for Software

Implementations

Johannes Holvitie, Mikko-Jussi Laakso, Teemu Rajala, Erkki Kaila, and Ville
Leppänen

TUCS - Turku Centre for Computer Science, Turku, Finland
&

University of Turku, Department of Information Technology, Turku, Finland
{jjholv, milaak, temira, ertaka, ville.leppanen}@utu.fi

Abstract. Technical debt management requires means to identify, track,
and resolve technical debt in the various software project artifacts. There
are several approaches for identifying technical debt from the software
implementation but they all have their shortcomings in maintaining this
information. This paper presents a case study that explores the role of
dependency propagation in the accumulation of technical debt for a soft-
ware implementation. A clear relation between the two is identified in
addition to some differentiating characteristics. We conclude that formal-
ization of this relation can lead to solutions for the maintenance problem.
As such, we use this case study to improve the propagation method im-
plemented in our DebtFlag tool.

Keywords: technical debt, technical debt propagation modeling, soft-
ware implementation assessment, refactoring

1 Introduction

Technical debt is a metaphor that describes how various trade-offs in design de-
cisions affect the future development of the software project. Trade-offs are made
between development driving aspects - for example meeting a delivery date by
relaxing some quality requirements - and they incur the project’s technical debt
while providing the organization with a short-term gain. Similarly to its financial
counterpart, technical debt - for example through reuse in software implemen-
tations - accumulates interest over a principal until it has been paid back in
full. Inability to manage the projects technical debt results to increased interest
payments in the form of additional resources being consumed when implement-
ing new requirements and ultimately to exceeding development resources and
premature ending of the project. [1]

Technical debt management is a software development component and an
actively researched area of software engineering [2]. It is interested in providing
projects with means to identify, track, and payback technical debt in order to

61

provide similar control to technical debt as there exists for other project com-
ponents. There are various software project artifacts, such as process, testing,
architecture, implementation, and documentation, that are prone to the afore-
mentioned decisions and thus to hosting technical debt. As these fields differ
from each other to a large degree, techniques for managing technical debt are
separate for each of them.

For the software implementation artifact, we can divide the technical debt
identification techniques into automated [3] and manual approaches [4]. What
is problematic is that the information produced by either of these approaches is
only applicable to the assessed implementation version: automated approaches
can produce results for all implementation versions, but they only highlight
modules that are in violation when compared against a static model, leaving out
information regarding module relations and links to previous implementation
versions. Manual approaches on the other hand do provide some information re-
garding the history of a certain technical debt occurrence, but update frequencies
to this information make these approaches only capable for tracking and manag-
ing technical debt on higher levels. These observations have lead us to conclude
that if the relation between software implementation updates and increases in
technical debt could be made explicit, we could extend the applicability of tech-
nical debt information, produced for a certain implementation version, to future
versions. This would greatly increase the efficiency of technical debt information
production for software implementations.

In this paper we present a case study that explores the aforementioned op-
portunity. Basing onto related research we make an assumption that dependency
propagation is largely responsible for the accumulation of technical debt in the
software implementation and that by better understanding this relationship we
can increase the efficiency of technical debt information production and main-
tenance for this area. We focus on exploring this relationship by deriving two
objectives for this case study: to identify technical debt and its structure in the
studied system as well as to establish the role of dependency propagation in the
formation of this structure.

The presented study is part of a research into establishing if a tool-assisted
approach can be introduced for software projects in order to efficiently identify,
track, and resolve technical debt in developed implementations. The results of
this case study will be used to further develop the DebtFlag-tool [5] (see Figure
1) and its propagation model for technical debt. The DebtFlag-tool is a plug-in
for the Eclipse IDE and it implements the DebtFlag-mechanism described in [5].
The tool is used to identify technical debt instances from the implementation and
to merge them into entities allowing management at both the implementation
and project levels.

2 Technical Debt

The term technical debt was first introduced by Ward Cunningham in his techni-
cal report to OOPSLA’92 [1]. Complementary definitions have been provided, in

62

Fig. 1. DebtFlag code highlighting and content-assist cues in the Eclipse IDE [5]

amongst others, in the works of Brown et al. [6] and Seaman et al. [7]. A general
consensus between these definitions is that technical debt bases on a principal
on top of which some interest is paid. The principal corresponds to the size and
amount of unfinished tasks that emerge as design decisions make trade-offs be-
tween development driving aspects. Principal is paid back by correctly finishing
these tasks. Interest is increased by making more solutions depend onto areas
where there are unfinished tasks. When creating these solutions, if additional
work is required due to nonoptimality of these areas, this constitutes as paying
interest. Seaman et al. formalize this further by defining interest as an occur-
rence probability coupled with a value [4]. The occurrence probability takes into
account that not all technical debt affects the project: for example if a part of the
software implementation is never re-used, the probability of this part hindering
further implementation updates is zero.

Management of technical debt can be either implicit - like in many agile
software practices, where reviews are made during and in between iterations
to ensure that the sub-products meet the organizations definition of done - or
explicit - like employing a variation of the Technical Debt Management Frame-
work [4], [8]. In either case, the success of technical debt management is largely,
if not solely, dependent onto the availability of technical debt information [7].

2.1 Technical Debt in Software Implementations

Following the definition of technical debt (see Section 2) we can see that for
software implementations the unfinished tasks are components that, in their
current state, are unable to fulfill their requirements. The size of these tasks
corresponds to how difficult it is to finish each component and together they
form the principal of the software implementation’s technical debt. Similarly, we
can see how the interest of technical debt forms in software implementations:
dependency onto unfinished components indicates that the dependent may have

63

had to accommodate this in some manner. This accommodation accounts as in-
creased interest for the depended upon component’s principal and if the amount
of work required to implement the dependent is increased then this corresponds
to paying interest.

To clarify, in the previous paragraph, a software implementation component
refers to an entity that is defined by the used programming paradigm and tech-
nique and is capable of forming dependencies. The target system of this case
study is implemented using the Java programming language. Here, like in many
object oriented languages, direct references and inheritances create dependencies
to public interfaces formed out of variables and methods [9].

In order to maintain the technical debt information produced either by means
of automatic or manual identification, there needs to exist a model explaining
how technical debt propagates in the software implementation. A theory on the
propagation of technical debt in ecosystems by McGregor et al. [10] acknowl-
edges some of the issues relating to this, which will be discussed in the next
section. Additionally, certain implementation technique and paradigm specific
characteristics need to be taken into account when identifying possible propaga-
tion routes for technical debt. Especially interfaces which can hide partitions of
technical debt or decouple dependents from refactorizations.

Software implementation technical debt is paid back through refactoring the
software product. Fowler et al. [11] define refactoring as “changes made to the
internal structure of software to make it easier to understand and cheaper to
modify without changing its observable behavior”. In the following, we use this
definition to identify which software components where affected by technical
debt.

2.2 Related Work on Debt Propagation

Previously referenced work by McGregor et al. [10] is an important motivator
for our research. In this, they hypothesize that technical debt has the ability
to aggregate within elements of the software implementation and provide two
concurrent mechanisms for it. In the first one “technical debt for a newly created
asset is the sum of the technical debt incurred by the decisions during develop-
ment of the asset and some amount based on the quality of the assets integrated
into its implementation”. In respect of this, they note that technical debt may
diminish as a result of increased implementation layer nesting. The second mech-
anism providing another possibility in that “the technical debt of an asset is not
directly incurred by integrating an asset in object code form, but there is an in-
direct effect on the user of the asset”. For a software implementation this can
mean for example that the implementation of a new element does not necessar-
ily increase the technical debt quota but deficiencies in the documentation still
result into more consumed resources.

Research is scarce in relating technical debt accumulation with the mechan-
ics of software dependency propagation. Thus, we refer to research on software
evolution and change impact analysis to gain insight into dependency propa-
gation and its characteristics. Avellis discusses the implementation of a change

64

impact function in [12] and notes that for domain-specific areas the informa-
tion encoded into the domain models can be used to parameterize the change
propagation rules while monitoring the ripple-effect of a change requires deep
knowledge about the modification’s implications. It is also concluded that the
use of more specialized information in the definition of the propagation paths,
results into a more specific and accurate impact set.

In Bianchi et al. [13] the authors note that the number of outgoing depen-
dencies from a component is related to the number of paths through which the
effects of a change may propagate. Robillard [14] presents an algorithm for pro-
viding an interest ranking for directly dependent change candidates. The ranking
of elements is based onto specificity and reinforcement, where the former rules
that structural neighbors that have few structural dependencies are more likely
to be interesting because their relation to an element of interest is more unique
and the latter that structural neighbors that are part of a cluster that contains
many elements already in the set of interest are more likely to be interesting
because . . . [they] probably share some structural property that associates them to
the code of interest.

3 ViLLE

The system on which we will conduct this case study is called ViLLE (see Figure
2). It is a collaborative education platform that is being developed and researched
at the University of Turku [15,16]. The system specializes in enabling the creation
and to being host to various exercises with education enhancing features such
as rich visualizations and immediate feedback [17, 18]. To date, the system has
foregone 8 years of development, comprises circa 150k physical lines of code,
serves over 1.5M immediate feedbacks annually, has circa 300 registered teachers
and 6500 students, is being employed in over 20 countries and in its current
state of robustness, trialled to become the selected system for providing electric
matriculation examinations for the Finnish education ministry.

During its eight years of development ViLLE has gone over several smaller
and two larger revamps. The first major revamp unified the platform into a single
Java Applet and introduced automatically assessable exercises. Conversion to
a Java Applet allowed the system to be run from the TRAKLA server which
made the system accessible through the Internet and enabled its integration into
distance teaching. The second major revamp enhanced this further: in order
to reduce requirements to the end user to a bare minimum the system was
converted into a SaaS (Software as a Service) by way of utilizing the Vaadin
framework [19]. [16]

As the SaaS conversion made the system available to a larger audience, the
research and development team simultaneously wanted to serve a broader spec-
trum of education subjects through extending the set of available exercise types.
The old legacy exercise system was found to be too rigid for this purpose and
it was decided that this part of the system was to be refactored. The authors
have taken part in this process and it has also been the focus of a thesis [20].

65

Fig. 2. The interactive student view of a ViLLE-coding-exercise [16]

The thesis has documented the entire refactorization project that is used in the
case study presented in this paper.

4 Case Study

4.1 Research Problem

The case study examines the role of dependency propagation in the accumula-
tion of technical debt for a software implementation. Approaching the research
problem we have divided it into two objectives. The first objective is to iden-
tify and produce a structured documentation for technical debt in the target
implementation. The second objective is to understand the role of dependency
propagation in the formation of this structure.

Fulfilling the first objective requires that we are first able to distinguish
between modifications made to develop the implementation and modifications
made to refactor the implementation. After identifying modifications that be-
long to the latter - and count as paying of technical debt, further information
is required to identify relations between the modifications. Revealing these rela-
tions allows us to arrange the individual modifications to form a structure that
indicates how technical debt has accumulated in the implementation.

The second objective is to understand the role of dependency propagation in
the formation of this structure. Dependencies are formed between elements of the
implementation. These elements and the rules for dependency formation between
them are defined by the programming paradigm as well as the programming

66

language. As each identified modification operates on a set of implementation
elements we can utilize the dependency formation rules to identify all elements
that are dependent onto this set. Comparing the revealed dependencies to the
connections in the technical debt accumulation structure is used in this case
study to examine the role of dependency propagation in the accumulation of
technical debt for the software implementation.

4.2 Case Selection

The case study is conducted on the results of the ViLLE refactorization project
(see Section 3). This case selection is made to expand on earlier research de-
scribed in [20]. We consult this research to establish what parts of the system
were targeted in the refactorization, what are the tools and practices used for
the refactorization, what are the motivations as well as the requirements for the
refactorization and finally access to the version control system which is queried
for information regarding the conduction of this refactorization.

The ViLLE system is a web-application that is implemented using the Vaadin
web-application framework. The used development language is Java. At the time
of the refactoring the running configuration of the ViLLE system was comprised
out of 122k physical lines of code organized into a hierarchy of 26 Java packages
encompassing a total of 460 Java classes.

The thesis [20] documented that the motivation for the refactorization was
that the development team perceived the exercise system to be too rigid to
accommodate efficient development in the future. Further analysis in [20] pin-
pointed this problem to four Java classes. These core system classes were respon-
sible for the execution, modification, storing and retrieving, as well as modeling
of interactive exercises in ViLLE. For each of these [20] documented a set of
problems as well as a set of reparative actions, which were used as the starting
point for the refactorization.

The refactorization used a well defined refactorization process - adapted from
The Rhythm of Refactoring by Fowler et al. [11] and The Legacy Code Change
Algorithm by Feathers et al. [21] - as well as a library of best practices - compiled
from the Design Patterns by Martin et al. [22], Refactorizations by Fowler et al.
[11], and Dependency-Breaking-Techniques by Feathers et al. [21] - to implement
the suggested reparations. [20]

An example of the refactorization process and the resulting refactorizations
is the abstraction of the exercise execution class via decoupling it from exercise
type specific information. Applying this five step process first called for identi-
fying change points. In this case, all references to specific exercises. The next
step of finding test points consisted from identifying change routes and under-
standing how the system could be shielded from unintended changes by way of
constraining these routes with tests. The third step called for breaking depen-
dencies in order to get the tests in place. The end result of this was a set of
unit tests adhering to the JUnit framework. The last, fifth, step was to make
changes and refactor. An example of a singular refactoring here was the removal
of specific exercise information from the constructor of the exercise executor.

67

The Replace Constructor with Factory Method [11] refactorization was used to
relocate a switch case from the constructor to a separate method, making the
use of the constructor possible without first modifying its implementation.

Development towards refactoring the system was done independent from the
main development line. In practice, a separate version control branch was used.
Further, due to the nature of this project the branch in question could only
contain commits that corresponded to meeting the requirements of the refac-
torization. From the point-of-view of this case study, we interpreted this as all
modifications observable from this version control branch as constituting to pay-
ing of technical debt and thus relevant data to the study in question.

4.3 Data Collection and Analysis

The data provider in this case study was the version control system for ViLLE’s
implementation. We constrained this data set to the branch in the version control
system identified in Section 4.2. As this constriction limited the data set to only
containing modifications that corresponded to refactorizations, we proceeded to
building the structured representation for technical debt accumulation for this
implementation (see Section 4.1).

In Section 2.1 we discussed how technical debt manifests in software imple-
mentations: reliance onto technically incomplete objects may call for adaptation
in dependents. Successfully paying off technical debt for the implementation im-
plies that individual refactorizations are able to nullify the adaptations as well
as to remove the root cause. In this case the root cause was confined within four
Java classes (Section 4.2). Each of these classes were responsible for implement-
ing an independent and distinctive functionality in the system. As the structured
representation for technical debt accumulation was to reflect how inabilities in
implementing system functionalities had affected the system, four root nodes
were chosen. Each root node consisted out of a set of modifications correspond-
ing to all refactorizations made to repair the functionality of - and to remove
the root cause from - one aforementioned class.

Having identified the root nodes and their modification sets, we continued
to study the remaining modifications. Links between modifications were deter-
mined as cause-effect-relations: a link existed between modifications if success-
ful completion of the cause-one required a successful completion of the effect-
one. The chronological order - of cause-modifications taking place before effect-
modifications - was ensured by observing that the effect-ones could only exist in
revisions that were the same or superseded that of the cause-ones’. The two step
process was repeated until all modifications were associated with the structure
for technical debt accumulation.

To facilitate the fulfillment of the second objective, we related information
about the propagation of dependencies to the structured representation for tech-
nical debt accumulation. As the system in question is implemented using the
Java language the object-oriented paradigm as well as the Java technology can
be consulted for information about the propagation of dependencies in the im-
plementation. Exploiting this, for each modification, the set of implementation

68

elements dependent onto its target implementation element were identified. This
set was then queried to find out if it contained elements being targets of mod-
ifications linked with the modification used to spawn the set. The results were
then associated with the structure for technical debt accumulation in order to
clearly indicate the role of dependency propagation in its formation. Analysis of
the resulting structures is done to fulfill the second objective.

5 Results

This case study was conducted in order to examine the role of dependency prop-
agation in the accumulation of technical debt for a software implementation.
The research problem was divided into two objectives: determining and provid-
ing a structured representation for the accumulation of technical debt in the
implementation as well as relating dependency propagation information to this
structure in order to understand its role in the formation of the structure. The
data used in the analysis of this case study is an interval of version control revi-
sions encompassing an entire refactorization undertaking for a software system.

Analyzing revisions of the ViLLE system, we found that the refactorization
consisted out of 140 individual modifications or refactorizations which affected a
total of 71 Java classes. Amongst these were the four Java classes encompassing
what [20] had identified as the root cause. Observing which modifications realized
the removal of the root cause in these four classes lead to the formation of four
modification sets that served as the root nodes for our structured representation
for technical debt accumulation. According to the case study design (see Section
4.3) an iterative process of identifying cause-effect-relations lead to populating
the four substructures with rest of the modifications. Identification of cause-
effect-relations for all modifications also indicated that a modification could only
be associated with a single substructure.

The resulting technical debt accumulation structure was then associated with
information regarding the propagation of dependencies. This corresponded to
identifying the target elements for all modifications, identifying sets of elements
that were dependent on the target elements, searching for possible relations
between element dependencies and modification links and finally relating this
information to the technical debt accumulation structure. The resulting structure
is presented in the following as four Technical Debt Propagation Trees (TDPT).

5.1 Technical Debt Propagation Trees

Figures 3 through 6 depict the resulting Technical Debt Propagation Trees when
modifications made to Java classes responsible for execution, modification, stor-
ing and retrieving, as well as data modeling the exercises in the ViLLE system
are respectively used as root nodes for the analysis presented in Section 4.

The same visual aids apply for all presented TDPTs. Nodes represent modi-
fications (Section 5.2 discusses a common modification and its implementation).
Arrows indicate cause-effect-relations between modifications. The root node - the

69

used modification set - is modeled as a triangle. If a dependency exists between
the target elements of modifications of a cause-effect-relationship, then the node
for the effect-modification is modeled as an ellipse. If not, the node is modeled
as a rectangle. If the modification type is addition of new implementation el-
ements, then the node is colored green (light shade). Else, if the modification
type is removal of implementation elements, then the node is colored red (dark
shade). Finally, the number inside each node is the sum of dependencies to target
elements of the modifications.

12

2 8 16

11 1 1 4 2

3 4 2 3 2 2 2 3 2 1 2 5

Fig. 3. The Technical Debt Propagation Tree having the modifications made to the
exercise execution implementation as its root node

6

10 3 1 1 4 3 3

1 1 1 1 1 1 1 1 1 1

Fig. 4. The Technical Debt Propagation Tree having the modifications made to the
exercise storing and retrieval implementation as its root node

70

4

1

11

1 1 1 1 1 1 1 1 1 1

Fig. 5. The Technical Debt Propagation Tree having the modifications made to the
exercise modification implementation as its root node

71

44 50 55 1 1 1 12 2 1 1 3 3 1 2 1 1 1 1 1 1 3 1 2 2 1 4 8 18 3

4 2 3 2 2

Fig. 6. The Technical Debt Propagation Tree having the modifications made to the
exercise data modeling implementation as its root node

5.2 Analysis of the Technical Debt Propagation Trees

In analyzing the TDPTs (see Figures 3 through 6) we have observed the fol-
lowing. First, modifications to implementation elements with a large number of
incoming dependencies seem to invoke an increased number of further modifica-
tions. This however is not consistent as the number of incoming dependencies
deviates from the number of invoked modifications, which is evident for example
by observing the TDPT for data modeling (Figure 6): at the second tier of the
tree where the number of incoming dependencies greatly exceeds the number of
invoked modifications in five occasions - more than ten incoming dependencies
while number of invoked modifications is five for one case and zero for others.

Second, examining the cause-effect-relations forming the edges of our TDPTs,
in all but two cases there exists a dependency between underlying implementa-
tion elements for an observed cause-effect-relationship between modifications.
Close examination of the first non-dependency case (between the root and a
second tier node in TDPT for storing and retrieving in Figure 4) revealed that
refactoring here separated functionality from the original area and the newly
formed element hierarchy was thus made completely independent from its origi-

71

nal element leading to non-dependency between modifications’ target elements.
In the second non-dependency case (between the root and a second tier node
in TDPT for data modeling in Figure 6) similar motivation could be observed.
Exercise type declarations were separated here from the generic exercise data
model and placed into their own containing class. Hence, it seemed that in al-
most all cases dependency propagation was the evident cause for technical debt
accumulation.

Third, examining the depths of the TDPTs we can observe the following. In
the case of TDPTs for storing and retrieval as well as data modeling the tree
depth is three, while for TDPTs for execution and modification the tree depth
is four (see Figures 4, 6, 3, and 5 respectively). Further, for all leaf modifications
the number of dependencies incoming to their target elements is rather low -
under ten. Except for the few cases mentioned in the previous paragraph.

Fourth, an observation made from the evident differences in the tree struc-
tures. In the case studied system modifying a component that is responsible for
providing a data model in the implementation (see TDPT for data modeling
in Figure 6) seemed to invoke a series of modifications that could be described
as shallow but wide. While, modifications responsible for implementing specific
features of the system seemed to invoke a series of modifications that were more
narrow and focused than the former (see TDPTs for execution, modifying, and
storing and retrieval in Figures 3, 5, and 4 respectively). This seems to indicate
that for refactored-to-be elements of the implementation, their role in the system
could be used to postulate the course of the refactorization undertaking in this
part of the system.

6 Conclusions and Validity

This case study has examined the role of dependency propagation in the accu-
mulation of technical debt for a software implementation. The research problem
was divided into two objectives and an approach was derived to fulfill them.
Applying this approach to case study data resulted into the successful formation
of four Technical Debt Propagation Trees. Analysis of these trees lead to the
following observations.

The number of incoming dependencies correlates with the number of propa-
gation paths for technical debt with the exception of a small number of events
which does not adhere to this. Secondly, dependency propagation can be seen
to drive the accumulation of technical debt in this software implementation, ex-
cept for two cases where this can not be observed. Thirdly, examination of the
TDPTs supports what has been earlier hypothesized about technical debt di-
minishing due to dependency propagation. Finally, as an additional observation,
the role of a system component could be used to explain how technical debt had
propagated in the system.

Concluding onto these observations: it is evident that dependency propaga-
tion plays a significant role in the accumulation of technical debt for a software
implementation. The propagation of dependencies, which are possible to explic-

72

itly indicate for a software implementation, can be used to predict the size and
distribution of technical debt. If differences between the propagation paths for
technical debt and implementation dependencies can be taken into account, this
information could be automatically generated for indicated sources of technical
debt providing a mean to forecast the state of the software implementation as
well as a tool to estimating the size and urgency of reparative efforts. Finally,
these conclusions indicate that the approach derived for this case study is vi-
able for examining the role of dependency propagation in the accumulation of
technical debt.

6.1 Validity

As this case study examines a unique phenomenon in a specific context, appli-
cability of the results requires that certain threats to validity are discussed. A
matter affecting the validity of the case study’s construct is the definition used
for an acceptable modification. In this case study all observed modifications were
accepted as paying off technical debt. This acceptance criteria was based firstly
on to the provided definition of a refactorization in Section 2.1 as well as the
limitation of the data set discussed in Section 4. It can be argued that the used
acceptance criteria was too loose, and the resulting TDPTs were over popu-
lated. However, it can also be counterclaimed that as the case study specifically
targeted a refactorization project with the foremost intend of not altering the
system’s behavior this bias will be small in size.

The results of this case study required that we identified a causal relation be-
tween the propagation of dependencies and the accumulation of technical debt.
Matters distorting the identification affect the case study’s internal validity. Sec-
tion 4 explained the processes used for determining both cause-effect-relations
between modifications as well as the propagation of dependencies between im-
plementation elements. Here, the latter is determined based on static rules and
confirmed in the ability for the program to function. However, determining of
cause-effect-relations was based on the researchers’ ability to distinguish if two
modifications shared a context. While most information in the contexts - for
example close chronological ordering and linkage between affected implemen-
tation areas - lead to a strong conclusion, the possibility of making a wrong
decision can not be excluded. However, issue-free and successful association of
all modifications indicates that uncertainty played a small role in this step.

7 Future Work

Research following this case study will build on the conclusions in Section 6.
Firstly, we intend to employ the approach derived and used in this case study
for additional data sets. We expect this to provide more details on the intrin-
sics of technical debt accumulation in software implementations in addition to
further examining the role of dependency propagation in this process. We are

73

especially interested in identifying if certain dependency types accumulate tech-
nical debt differently, if the role of system components can be used to further
explain the size and distribution of technical debt, and if other mechanisms can
be established for the non-dependency driven accumulation of technical debt.

Further, the results of this and following analyses will be used to build and
assess the propagation model used by the DebtFlag-tool [5]. As the tool relies
on the ability to maintain technical debt notions through this model, explicitly
presenting the differences in the propagation paths of technical debt and depen-
dencies between implementation elements will allow for further enhancements.
As such, our ongoing research is focused on assessing and evaluating possible
models to identify viable solutions. A strong candidate is the link structure al-
gorithm PageRank by Page et al. [23]. Initial analyses with the data provided
in this paper has yielded promising results especially in accommodating the
diminishment characteristic of technical debt.

References

1. Cunningham, W.: The WyCash portfolio management system. In: Addendum to
the proceedings on Object-oriented programming systems, languages, and appli-
cations (OOPSLA). Volume 18. (1992) 29–30

2. Ozkaya, I., Kruchten, P., Nord, R.L., Brown, N.: Managing technical debt in soft-
ware development: report on the 2nd international workshop on managing technical
debt, held at icse 2011. SIGSOFT Softw. Eng. Notes 36(5) (September 2011) 33–35

3. Izurieta, C., Vetrò, A., Zazworka, N., Cai, Y., Seaman, C., Shull, F.: Organizing
the technical debt landscape. In: Managing Technical Debt (MTD), 2012 Third
International Workshop on, IEEE (2012) 23–26

4. Seaman, C., Guo, Y.: Measuring and monitoring technical debt. Advances in
Computers 82 (2011) 25–46

5. Holvitie, J., Leppänen, V.: DebtFlag: Technical Debt Management with a Devel-
opment Environment Integrated Tool. In: Managing Technical Debt (MTD), 2013
Fourth International Workshop on, IEEE (2013)

6. Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E., MacCor-
mack, A., Nord, R., Ozkaya, I., et al.: Managing technical debt in software-reliant
systems. In: Proceedings of the FSE/SDP workshop on Future of software engi-
neering research, ACM (2010) 47–52

7. Seaman, C., Guo, Y., Izurieta, C., Cai, Y., Zazworka, N., Shull, F., Vetrò, A.:
Using technical debt data in decision making: Potential decision approaches. In:
Managing Technical Debt (MTD), 2012 Third International Workshop on, IEEE
(2012) 45–48

8. Guo, Y., Seaman, C., Gomes, R., Cavalcanti, A., Tonin, G., Da Silva, F., Santos,
A., Siebra, C.: Tracking technical debtan exploratory case study. In: Software
Maintenance (ICSM), 2011 27th IEEE International Conference on, IEEE (2011)
528–531

9. Barowski, L.A., Cross, J., et al.: Extraction and use of class dependency informa-
tion for java. In: Reverse Engineering, 2002. Proceedings. Ninth Working Confer-
ence on, IEEE (2002) 309–315

10. McGregor, J., Monteith, J., Zhang, J.: Technical debt aggregation in ecosystems.
In: Managing Technical Debt (MTD), 2012 Third International Workshop on,
IEEE (2012) 27–30

74

11. Fowler, M., Beck, K.: Refactoring: improving the design of existing code. Addison-
Wesley Professional (1999)

12. Avellis, G.: Case support for software evolution: A dependency approach to control
the change process. In: Computer-Aided Software Engineering, 1992. Proceedings.,
Fifth International Workshop on, IEEE (1992) 62–73

13. Bianchi, A., Caivano, D., Lanubile, F., Visaggio, G.: Evaluating software degra-
dation through entropy. In: Software Metrics Symposium, 2001. METRICS 2001.
Proceedings. Seventh International, IEEE (2001) 210–219

14. Robillard, M.P.: Topology analysis of software dependencies. ACM Transactions
on Software Engineering and Methodology (TOSEM) 17(4) (2008) 18

15. Rajala, T., Laakso, M.J., Kaila, E., Salakoski, T.: Ville: a language-independent
program visualization tool. In: Proceedings of the Seventh Baltic Sea Conference
on Computing Education Research-Volume 88, Australian Computer Society, Inc.
(2007) 151–159

16. Rajala, T., Kaila, E., Laakso, M.J.: ViLLE. http://ville.cs.utu.fi/ (2013)
17. Laakso, M.J.: Promoting Programming Learning: Engagement, Automatic Assess-

ment with Immediate Feedback in Visualizations. PhD thesis, Turku Centre for
Computer Science (2010)

18. Kaila, E., Rajala, T., Laakso, M., Salakoski, T.: Important features in program
visualization. In: Appeared in ICEE: An International Conference on Engineering
Education. (2011) 21–26

19. Grönroos, M., et al.: Book of Vaadin. Vaadin Limited (2011)
20. Holvitie, J.: Code level agility and future development of software products. Mas-

ter’s thesis, Department of Information Technology, University of Turku (2012)
21. Feathers, M.: Working effectively with legacy code. Prentice Hall (2004)
22. Martin, R.C.: Agile software development: principles, patterns, and practices.

Prentice Hall PTR (2003)
23. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:

bringing order to the web. (1999)

75

A Regression Test Sele
tion Te
hnique for Magi

Systems

Gábor Novák, Csaba Nagy, Rudolf Feren

Department of Software Engineering

University of Szeged, Hungary

{novakg|n
saba|feren
}�inf.u-szeged.hu

Abstra
t. Regression testing is an important step to make sure that

after
ommitting a
hange to our software we do not make unwanted

hanges to other, untou
hed features. For larger and faster evolving soft-

ware, however, exe
uting all the test
ases of a regression test
an easily

be
ome a tremendous pro
ess whi
h takes too mu
h time to thoroughly

test ea
h
hanges separately. In our paper, we present a method to sup-

port regression testing with impa
t analysis based test sele
tion. As a

result, we
an show a limited set of test
ases that must be re-exe
uted

after a
hange, to test the
hanged part of the
ode and its related
ode

elements. Our te
hnique is implemented for a spe
ial 4th generation lan-

guage, the Magi
 xpa development environment. The te
hnique was im-

plemented in
ooperation with our industrial partner, SZEGED Software

In
, who has been developing Magi
 appli
ations for more than a de
ade.

1 Introdu
tion

While the evolution of programming languages make the development pro
ess

faster and faster, the new generations of programming languages allow us to

reate larger programs in less time than before. This faster program development

needs new, faster testing methods, whi
h allow us to test the new
ode as fast

as the
ode has been
reated. A
ost-e�e
tive pra
ti
e for testing one part of

the
ode or a fun
tion is to
reate a test
ase to
he
k the fun
tionality of the

on
erned
ode. Later if we want to
he
k again the fun
tionality somewhere

be
ause of some sour
e
ode
hanges, we just rerun that test
ase, whi
h veri�es

the
on
erned part, and we
ompare the result of the test with the expe
ted, good

result. There are well de�ned standards about testing too whi
h de�ne main steps

of testing software and its do
umentation, e.g. standards
reated in 1998 [3,1,4℄.

In the standard, they de�ne the software testing as a pro
ess
entered around the

goal of �nding defe
ts in system. The IEEE standard [4℄ de�nes test
ase as the

basi
 element of software testing: "the test
ase is a set of input values, exe
ution

pre
onditions, expe
ted results and exe
ution post
onditions, developed for a

parti
ular obje
tive or test
ondition, su
h as to exer
ise a parti
ular program

path or to verify
omplian
e with a spe
i�
 requirement." There are a lot of

di�erent IDEs whi
h allow the developer to tra
e the run of a test
ase with

a dynami
 monitoring or tra
king me
hanisms. That is, the IDE tra
ks all the

76

events performed by the user during the test run of the test
ase, and with this

event log we know every little detail about the test run.

While the sour
e
ode is
ontinuously
hanging, developers need to re-run

these test
ases time to time to make sure the
hanged sour
e
ode still gives the

appropriate result on the test
ases. To make sure that we did not introdu
e a

new bug, or unwanted
hanges of existing features, one must always re-run all the

existing test
ases. However, in most
ases one
hange does not a�e
t all the test

ases, but only those one, whi
h are
losely related to the
hanged sour
e
ode

elements. These
hanges does not require to re-run the whole test
ase set, but

it is hard to �nd the smallest set of related test
ases. Test sele
tion [4℄ ta
kles

solutions to this problem. Its main purpose is to sele
t the a�e
ted test
ases.

This problem usually emerges in regression test sele
tion [4℄. In regression tests

the goal is to
hose those test
ases whi
h are the most a�e
ted by modi�
ations

in the sour
e
ode, and re-run these
ases. In most
ases this works stati
ally,

and requires only the sour
e
ode of the system. Furthermore we are able to

measure the per
entage of the
overed
ode (
overed by the
urrent test
ase),

this method is the test
overage [4℄.

There are a number of tools implemented for regression tests or measuring

test
overage for popular 3rd generation programming languages (E.g.: Squish

[10℄, Appperfe
t [8℄), but in the
ontext of 4th generation languages (4GLs),

there are no universal solutions for these problems.

Impa
t analysis [7,13℄
an be a great support in regression test sele
tion. The

aim of impa
t analysis is to get the transitive a�e
ted part of a
ertain
hange

in the sour
e
ode. A simple
hange (e.g. renaming a method) might impa
t a

larger part of the
ode, even though we wanted to
hange only small part of

it. This impa
ted
ode set is
alled the impa
t set. In this paper we represent a

on
eptual ba
kground of a regression test sele
tion me
hanism, that is based on

impa
t analysis, and an implementation of this me
hanism, to solve presented

problems in Magi
 xpa, as a spe
ial 4 GL programming language.

Test sele
tion and espe
ially regression test sele
tion is useful when the test

rerun demands a lot of resour
es. We
an save time, and money with the fast

test rerun. Our presented te
hnique is based on
al
ulating the test
overage (for

every single test
ase) in the same time, while exe
uting the regression test and

then, next time, use the previously
olle
ted
overage data for sele
ting a subset

of test
ases that must be rerun to test the modi�ed
ode.

In Se
tion 2 we introdu
e the reader to the world of the Magi
 programming

language, and the main stru
tures of a Magi
 appli
ation. Then, in Se
tion 3 we

show the
on
eptual ba
kground of the presented test sele
tion te
hnique, after

that we present some results a
hieved in Se
tion 4 and �nally we
on
lude our

paper in Se
tion 6.

2 Stru
ture of Magi
 Appli
ations

Higher level, so
alled 4th generation programming languages (4GLs) do not

use sour
e
ode in the traditional way. The
ode is not dire
tly written by the

77

developer, but it is generated automati
ally by an appli
ation development en-

vironment, and in most
ases the generated underlying
ode is hidden from

the developer. The developer develops the appli
ation at a higher,
on
eptual

level, and he uses ready solutions of the development environment. Usually the

programmer de�ne the expe
ted me
hanism in a well de�ned UI, and the de-

velopment environment generates the
ode whi
h represent that me
hanism. In

ase of Magi
 the generated program runs on the Magi
 Runtime Engine. In

the development environment, Magi
 xpa, we de�ne the program, the expe
ted

me
hanisms, and when we want to run it, the Magi
 xpa starts the generated

ode on the engine.

The "sour
e
ode" of a Magi
 appli
ation is a set of XML �les. In fa
t this

sour
e
ode of a Magi
 appli
ation is an XML snapshot of the a
tual state of

the appli
ation loaded into the development environment. This XML format

is appropriate for stati
 analysis as it des
ribes the whole appli
ation. Magi

is based on a spe
ial way of development with spe
ial
oding elements. The

two most important elements for us in Magi
 are the Tasks (or Programs), and

the Data Obje
ts. A Task is
onstru
ted of Logi
 Units and one or more other

Tasks, so-
alled Sub Tasks. None of them are ne
essary, but the most important

fun
tion in a Task, is the Task
all me
hanism. There are 2 di�erent kinds of

Tasks in Magi
, the Bat
h Task and the Online Task. Every single Task is able to

all another Task, whether it is Sub Task or an other, independent Program (a

top level Task). A Data Obje
t is a persistent obje
t, whi
h allows the program

to use di�erent data sour
es with the same me
hanism, hide the spe
i�
ation of

the data sour
e (The data sour
e
an be database, XML �le ...).

Analysing a program is usually
ondu
ted by stati
 analysis, sin
e analysing

the program during runtime
an be really di�
ult task. The stati
 analysis

methods is usually based on Abstra
t Semanti
 Graph (ASG) [15℄. The XML

based sour
e of a Magi
 appli
ation is not signi�
antly di�erent from this ASG

format, this is due to the XML stru
ture, whi
h is also a graph representation

of the system in a way.

Magix xpa allows us to
reate dynami
 runtime tra
es, while the program

under test is running on the appli
ation engine. This tra
e �le is a text �le where

every line is an entry about one event in the program. The level of the re
orded

events
an be also spe
i�ed, but �ner granularities have greater in�uen
e on the

exe
ution time of the program under test. The log level is enough for our test

sele
tion purposes, but it might not be enough to get information for deeper

analysis. For example Magi
 does not log the entered text in a text �eld or a

text area. There is one very important log entry in the tra
e �le for the regression

test sele
tion, and this re
ord is a task start entry.

<253693576794033600> 13:50:58.406 [A
tion ℄ - >>Starts load Bat
h

Task - 'Main Program (Cal
ulator)' in Query mode (Task Instan
e: 1)

78

3 Test Sele
tion in Magi

In the system developing pro
ess
reating the test
ases is one of the most

important steps. The developer needs to rethink on
e more the a
tual part of

the program what she or he wants to test with that test
ase, be
ause if the

program will
hange, this test
ase ensures, that fun
tion works as it was spe
i�ed

before the modi�
ation. This idea leads us to the Test Driven Development

(TDD) model [6℄. In TDD, the main
on
ept is to
reate the test
ase before

writing the a
tual program, or fun
tion. This method en
ourages the developer

to rethink the me
hanism and
reate a better test
ase before the a
tual program

or fun
tion is
ompleted.

Regardless of the development model that we
urrently use in our develop-

ment methods, over the time we need to re-run the
ompleted test
ases more

often then
reating new ones. From that point the regression test sele
tion pro-

grams have many advantages. A regression test sele
tion tool is responsible to

hoose the most a�e
ted test
ases with a sour
e
ode
hange, but this task is

not easy at all. After the tool
hooses the test
ases, just rerun the
hosen ones,

or maybe the tool do this for us. If we have tons of test
ases, we
an save a

lot of resour
e with this te
hnique. We need to keep in mind, the best way is to

always rerun every test
ase, but there are many situations when we are not able

to rerun every single test
ase after every
hange of the
ode. We
reate a new

method to
hose the most
on
erned test
ases for a Magi
 appli
ation, whi
h

of
ourse depend on a sour
e
ode
hange. Before we des
ribe the te
hnique we

need to know whi
h inputs are ne
essary for the test sele
tion. Figure 1. shows

the required inputs and the generated outputs of the test sele
tion methods.

There are 3 essential inputs for the test sele
tion. In the appli
ation whi
h

implement this method we use a test manager [5℄ tool and an SVN repository

to give the input to the test sele
tion tool. These are the required inputs for the

method:

� Test
ases: First of all, the program needs to identify every test
ases, so

the �rst important information about a test
ase is its unique identi�er. In

our
ase this information
ame from the test manager tool [5℄. This test

manager tool was
reated to manage test
ases for Magi
 appli
ations. The

other important information, whi
h
ame from this test manager tool is the

tra
e �les for every test
ase. This tra
e �le, as mentioned earlier, is the test

ase run log. It
ontains every important information, about the user, and

the program a
tivities (For example: Task
alls, mouse
li
k events). Every

test
ase has at least one tra
e �le in the test manager, and we get these

tra
e �les for the test sele
tion.

� The sour
e of the Magi
 proje
t: The tool needs to know the stru
ture

of the Magi
 program. That is, the tool performs a stati
 analysis on the

ode to
olle
t all the ne
essary information. In Magi
 the sour
e
ode of

a program is a set of XML �les. In the implementation of the program we

ask for an SVN repository, whi
h
ontains a Magi
 program's sour
e
ode.

Basi
ally the tool looking for 2 important information from the sour
e
ode.

79

Changes

(from SVN)

Source of the

system

(from SVN)

Test cases (from the Test Manager)

Test case #1 Test case #2

Test case #3 …

Magic Regression Test Selection Tool
System

analysis

Test cases to rerun

Test case #1 Test case #2

Test case #3 …

Result of

the system

analysis.

Test coverage

Test case #1 – 12%

Test case #2 – 25%

…

Fig. 1. The inputs and the outputs of the regression test sele
tion method.

The �rst is the data obje
t des
riptions from the DataSour
e.xml �le. This

information important be
ause be
ause the task des
riptions
ontains data

obje
t referen
es and before pro
essing tasks, the tool needs to know the data

obje
ts of the program. The se
ond essential information is the task hierar-

hy. The tool
reates a dire
ted graph from the tasks and data obje
ts whi
h

is required for the test sele
tion. The task des
riptions is in the Progs.xml

�le, this �le
ontains the basi
 informations about the root tasks, the de-

tailed information and the sub task des
riptions are in the Prog_{i}.xml

�les. Where i is between 1 and the highest task id in the Progs.xml.

� Sour
e
ode
hanges: Another required input for the algorithm is the

hanged sour
e
ode parts. The method needs to know whi
h task was mod-

i�ed, be
ause if there were no
hanges in the
ode, there is nothing to rerun.

In the implementation we give this information to the tool in the guise of two

SVN revision number. The program in the prepro
essing part analyzes the

diff informations between this two revisions, and
olle
ts the modi�ed task

set. Be
ause of the task's hierar
hi
al stru
ture the tool always
hooses just

the dire
tly a�e
ted tasks into the modi�ed task set. The algorithm needs

a task list, whi
h
ontains the modi�ed tasks, nothing else. If we
reate a

new prepro
essor to analyze Magi
 appli
ation version
ontrolled in GIT or

Mer
urial we
an still use the method.

The operations in the algorithm:

� Pro
essing test
ases: As mentioned earlier every test
ase has a unique

identi�er, and at least one tra
e �le. In this step we pro
ess the tra
e �les

80

for the test
ases. We pro
ess every tra
e �le's every line and look for spe
ial

entries. The entries, what we look for are the "task su

essfully started"

entries. There are two kinds of tasks in Magi
, the bat
h and the online tasks.

Every kind of task has a spe
ial unique entry in the tra
e �le, whi
h
ontains

the unique identi�er of the task. We
olle
t every
alled task identi�er from

every tra
e �le for every test
ase. When we �nish this step we have a set of

a�e
ted task identi�ers for every test
ase. This is the pseudo
ode of this

pro
ess:

pro
essTestCases ():

tasks = ∅
For every test
ase

For every test
ase's tra
e file

For every line in the tra
e file

If it's a su

essful task
all entry

tasks = tasks ∪ new
alled task

End if

End for

End for

End for

End

� The system sour
e
ode pro
essing: In this step we pro
ess the des
rip-

tor �les of data obje
ts and tasks from the SVN repository and
ompute a

spe
ial graph from those informations. First of all, we need to pro
ess the

data obje
t information in the DataSour
e.xml �le. The tasks refer to the

data obje
t with its unique identi�er (a number), so we need to
olle
t the

available data obje
t names and identi�er numbers before we analyze the

tasks. After this step we have this set:

D = {d1, . . . , dm}, di = The i. data obje
t (1)

In the next step we need to pro
ess every Prg_{i}.xml �le, and extra
t

the ne
essary informations about the tasks. While we pro
ess the �les we

reate a spe
ial tree or if there are more than one Prg_{i}.xml �les then

we
reate a forest hierar
hy from the tasks. Every Prg_{i}.xml represent a

tree, where the root vertex is the main task, and the parent-
hild
onne
tions

represented with the task-subtask
onne
tions. When we �nish this step we

have the following F (Vf , Ef) forest:

F = {f1, . . . , fn}, fi = A tree, represent the Prg_{i}.xml (1 ≤ i ≤ n) (2)

After this step, we
reate a graph from the data obje
t set and the forest of

the tasks. The �nal G(Vg, Eg) graph
reated with the following rules:

∀v ∈ Vg, v ∈ D ∨ v ∈ Vf (fi)(∃fi ∈ F)

∀e(vi, vj) ∈ Eg, (vi,j ∈ Vf (fk) ∧ e ∈ Ef (fk)) ∨
(vi ∈ Vf (fk) ∧ vj ∈ D ∧ vi task use vj data obje
t) , where fk ∈ F

(3)

81

The algorithm whi
h
reates the G graph is the following:

pro
essSystemSour
e ():

dataObje
ts = ∅
tasks = ∅
V = E = ∅
For all data obje
t entry in dataSoru
es.xml

dataObje
ts = dataObje
ts ∪
urrent data obje
t

V = V ∪
urrent data obje
t

End for

For all Prg_{i}.xml

mainTask = Getting the main task

getSubTask(mainTask, tasks, V, E)

End for

G = (V, E)

End

getSubTasks (task, tasks, V, E):

tasks = tasks ∪ task

V = V ∪ task

For all data obje
t, whi
h used by the task

//Currently in the graph, be
ause we pro
essed on
e before

E = E ∪ (task �
urrent data obje
t)

End for

subTasks = All task's sub task

For every task in the subTasks

E = E ∪ (task �
urrent sub task)

getSubTasks(
urrent sub task, tasks, V, E)

End for

End

� Get the
hanged tasks list: In the implementation of the algorithm, we get

two SVN revision numbers, whi
h represent the
hanges in the sour
e
ode.

When we
ompare the di�eren
e between these two revisions we know the

exa
t lo
ation of the
hanges. In this method, we pay attention only the task

hanges. We
an use the SVN diff
ommand to get the
hange information

between the two revision. When we get the diff log from the SVN, we look

for the Prg_{i}.xml �le
hanges. If we know one Prg_{i}.xml �le
hanged,

we need to narrow it down for one task. We need to pro
ess the diff and

get only the modi�ed task or tasks from that �le. As we mentioned before,

every Prg_{i}.xml �le may
ontain sub-tasks, and if the
hanges a�e
t only

one sub-task we
an not mark "
hanged" the main task. We mark "
hanged"

only the a�e
ted task, be
ause if we start a task in runtime, that does not

mean the sub-task start dire
tly after that. The result of this step is a task

set. In this set every task's one or more line of
ode
hanged between the

two revision. The following pseudo
ode des
ribe this method:

82

pro
essChanges ():

tasks = ∅
Every diff entry in svn

If Prg_{i}.xml modified

task = Get the task whi
h modified by the diff

tasks = tasks ∪ task

End if

End for

End

� Test
overage de�nition: The test
overage de�nition or
al
ulation in

this
ase is a per
entage value for every test
ase. This per
entage is derived

from the number of a�e
ted tasks by the test
ase divided by the number of

tasks in the appli
ation. This rate shows us what per
entage
overed with

the test
ase, of the whole system.

� The system's dependen
ies: In this step we
al
ulate a per
entage for

every data obje
t in the Magi
 system. This per
entage des
ribes a ratio

between the
urrent data obje
t and the related tasks of the system. In this

al
ulation we spe
ify for every data obje
t the number of tasks, whi
h use

this data obje
t.

� Test
ases to rerun: This is the most important part of the algorithm.

In this step, we give the information, whi
h test
ase is ne
essary to rerun.

It depends on the previously extra
ted information: the
hanged tasks set

and the G(Vg, Eg) graph. The method uses 2 di�erent steps to get this in-

formation. In the �rst step the algorithm
omputes the dire
tly a�e
ted test

ases, whi
h means this test
ases are the most important ones. This is a

fast step, be
ause we already have every ne
essary information. For ea
h

test
ase, the algorithm interse
ts the
urrent test
ase's set of tasks and the

set of
hanged tasks. If the interse
tion is not empty, then the a�e
ted test

ases are those whi
h belong to tasks in the interse
tion. These test
ases

are dire
tly a�e
ted, so we sele
t them for re-run. Figure 2. shows this step.

Modified tasks

Task A

Task C

Task A : Task B

Task D

Task A : Task B Task E

Test Case #1

Task G

Task D : Task F

Task A : Task B

Fig. 2. The dire
tly a�e
ted test
ases has a not empty interse
tion with the
hanged

tasks.

During the se
ond step the method
al
ulates the transitive dependen
ies,

reate the impa
t set of the a�e
ted
odes, and
hose the indire
tly a�e
ted

test
ases. For this, we need to
reate a new graph from the existingG(Vg, Eg)

83

one. We mark "a�e
ted" every task in the graph, whi
h are in the
hanged

tasks set. After that we mark "a�e
ted" every vertex in the marked graph

vertex's Markov blanket [2℄. When we �nished this step we do the �rst step

with this extended a�e
ted tasks set and if the algorithm �nds new a�e
ted

test
ases, that means those test
ases are indire
tly a�e
ted by the sour
e

ode
hange. With the Markov blanket we make sure to
hose all ne
essary

test
ases, but with some restri
tions we
an redu
e the size of the result set

(the test
ases whi
h need to re-run).

We tested the following me
hanisms:

� Full Markov blanket.

� Chose only the
onne
ted data obje
ts, and the tasks whi
h use those

data obje
ts.

� Chose only the parent and
hild tasks.

Figure 3. and 4. show this step.

The created graph from the system

Data object #1

Data object #2

Task A : Task BTask A

Data object #3

Task C

Test Case #1

Task G

Task D : Task F

Task A : Task B

Test Case #2

Task C

Task D : Task F

Task D : Task BTask D

Task E

Fig. 3. The dire
tly a�e
ted test
ases immediately sele
ted for rerun.

We
an des
ribe this method with the following pseudo
ode:

//At that point we have:

// - The G graph,

// - Every test
ase (testCases) and the set of the affe
ted tasks

// - The modified tasks set from the svn diff (modifiedTasks)

84

The created graph from the system

Data object #1

Data object #2

Task A : Task BTask A

Data object #3

Task C

Test Case #1

Task G

Task D : Task F

Task A : Task B

Test Case #2

Task C

Task D : Task F

Task D : Task BTask D

Task E

Fig. 4. When we expand the a�e
ted set with for example a Markov blanket we sele
t

indere
tly a�e
ted test
ases for rerun.

getRetesteredCases1():

retesteredCases = ∅
For every test
ase

tasks = The affe
ted tasks by the
urrent test
ase \
modifiedTasks

retesteredCases = retesteredCases ∪
urrent test
ase

End for

hangedTasks = modifiedTasks

For every task in the modifiedTasks

hangedTasks =
hangedTasks ∪ The Markov blanket of

the
urrent modified task in the G graph.

End for

For every test
ase

tasks = The affe
ted tasks by the
urrent test
ase \

hangedTasks

retesteredCases = retesteredCases ∪
urrent test
ase

End for

End

As we see, we
an migrate the two steps into one. In the implementation

of the algorithm we migrate these two steps into one, but the result is the

85

same, we just show separately to show the di�erent reason's of the two step.

The migrated algorithm is the following:

getRetesteredCases2():

retesteredCases = ∅

hangedTasks = modifiedTasks

For every task in the modifiedTasks

hangedTasks =
hangedTasks ∪ The Markov blanket of

the
urrent modified task in the G graph.

End for

For every test
ase

tasks = The affe
ted tasks by the
urrent test
ase \

hangedTasks

retesteredCases = retesteredCases ∪
urrent test
ase

End for

End

4 Evaluation

The test sele
tion method and the implementation were mostly tested on self-

onstru
ted small proje
ts and on Demo proje
ts provided with the Magi
 xpa.

Our test proje
t has more than 300 tasks, 20 data obje
ts and in the Magi
 Test

Manager system we
reated 329 real test
ases for it. Despite of the size of the

proje
t the result is very promising. With few
hanges, whi
h mean 4-5 modi�ed

tasks, the tool su

essfully redu
ed the 329 test
ases to 5. Although,
hanging 4-

5 tasks is not a huge modi�
ation in the
ode. The result was 5 sele
ted test
ases,

when the tool marked just the dire
tly a�e
ted test
ases. When we enabled the

impa
t analysis, the result set was getting bigger and bigger, depending on the

impa
t analysis method. We got the biggest (� 100 sele
ted test
ases) set if we

used the Markov blanket to expand the impa
t set. Of
ourse, that means that

we
hose the test
ases, whi
h a�e
ted in the slightest degree too, but the result

was still better than the whole set of the test
ases. If we
hose the
onne
ted

data obje
ts, and the tasks whi
h use those data obje
ts, for the impa
t set,

the result was � 50 test
ases. With this tool we
an redu
e the size of the set

of "must rerun" test
ases to 15-30%. If we need a lot of resour
es or time to

rerun the test
ases that means we save the 70-85% of the resour
e or the time.

Note, the result is not that attra
tive if the
hange modify a lot of task, but in

that
ase the only failsafe pra
ti
e is to rerun all the test
ases, be
ause a lot of

hanges usually means
hanging the stru
ture of the system.

5 Related Work

With the help of test sele
tion the developers and testers are able to save a lot

of time and resour
es, and if rerunning the test
ases requires a lot of time or

resour
e than it
an be measured in money of
ourse. This is the main reason

86

why this topi
 is so popular. There are plenty of books and papers in this �eld,

but espe
ially for Magi
 language (and in general about the 4 GL languages)

there are only a few available in the s
ope of regression testing. A
omprehensive,

mostly pra
ti
al study on methods about software testing is
olle
ted in the The

Art of Software Testing [14℄ book. In this book authors
olle
t and des
ribe the

most useful methods, in the aspe
t of resour
e requirement. Emelie Engström's

et al. [9℄ systemati
ally
olle
t information about the empiri
al evaluations of

regression test sele
tion te
hniques. They
olle
t 28 di�erent methods for regres-

sion test sele
tion evaluations. They
on
lude that they
an not make a �nal

de
ision, about whi
h method is the best, be
ause every method depends on a

di�erent aspe
ts and fa
tors. Mary Jean Harrold et al. [11℄ wrote a paper about

a new regression test sele
tion te
hnique for the Java programming language.

This method is usable when the Java program's sour
e
ode is not
ompletely

�nished or the program uses 3rd party libraries. This RETEST te
hnique su
-

essfully redu
ed the size of the test environment. This te
hnique is similar to

our method, but RETEST works on Java, a 3rd generation programming lan-

guage. Gregg Rothermel et al. [16℄ des
ribe a method, whi
h uses the system's

Control Flow Graph (CFG [17℄) for regression test sele
tion. The bene�t of the

CFG usage is that they are able to use this method in every 3 GL. This method

has a lot of bene�ts, but it works on 3GLs.

In
ase of 4 GLs existing regression test sele
tion te
hniques
annot be applied

expli
itly, they must be adopted to the spe
i�
 language, be
ause ea
h language

has a di�erent stru
ture. This di�erent stru
ture is the result of the di�erent

purpose of the 4GLs. A book, entitled Testing SAP Solutions [12℄
olle
t and

des
ribe the available methods for testing an SAP ABAP appli
ation, whi
h

are also popular 4GLs. For Magi
 appli
ations there is no
urrently available

solution for the regression test sele
tion.

6 Con
lusions and Future Work

The method whi
h we presented in this paper, su

essfully redu
es the resour
e

and time requirement of the regression test sele
tion method of Magi
 develop-

ment pro
esses. This method has
learly bene�ts in regression testing. Besides,

the developers
an easily use the system analysis results and the test
ase
ov-

erage informations to make better test
ases or �lter out the most useless test

ases, or refa
toring the system. With those extra fun
tions this test sele
tion

method and the program implementing it, are very powerful tools, whi
h
an be

used in the whole software development phase. Be
ause the tool does not need

a lot of input for the analysis and the test sele
tion, and most of them auto-

mati
ally extra
ted from other tools (Magi
 Test Manager, SVN), this is a good

hoi
e for almost every time in a Magi
 appli
ation development. The prototype

of the implementation is
urrently able to use only SVN to identify
hanges in

the sour
e
ode, but it is easy to expand it for other version
ontrol systems

too. One drawba
k is that the developers need to frequently use the tool to have

up-to-date
overage data for test
ases. Also, when the
hange set is so large that

87

it a�e
ts too many test
ases the result might simply
ontain almost every test

ases. In the future plans we want to test this method and the implementation

on bigger Magi
 appli
ations, and we want to generalize this method for more

programming languages, not just Magi
.

A
knowledgements

This resear
h was supported by the Hungarian national grant GOP-1.1.1-11-

2011-0039.

Referen
es

1. Standard for Software Component Testing. British Computer So
iety Spe
ialist

Interest Group in Software Testing (BCS SIGIST).

2. Probabilisti
 Reasoning in Intelligent Systems: Networks of Plausible Inferen
e.

Morgan Kaufmann, 1988.

3. IEEE Standard for Software Test Do
umentation IEEE Std 829-1998. 1998.

4. Standard glossary of terms used in Software Testing, ISTQB Glossary - version

2.1. `Glossary Working Party' International Software Testing Quali�
ations Board,

2010.

5. A layout independent gui test automation tool for appli
ations developed in

magi
/unipaas. In Pro
eedings of the 12th Symposium on Programming Languages

and Software Tools, 2011.

6. Kent Be
k. Test driven development: By example. Addison-Wesley Professional,

2003.

7. Shawn A. Bohner. Software
hange impa
t analysis. IEEE Computer So
iety Press,

1996.

8. AppPerfe
t Corp. Appperfe
t software test tools. http://www.appperfe
t.
om/.

9. Emelie Engström, Per Runeson, and Mats Skoglund. A systemati
 review on

regression test sele
tion te
hniques. Information and Software Te
hnology, 52(1):14

� 30, 2010.

10. froglogi
. Squish gui testing tool. http://www.froglogi
.
om/squish/

gui-testing/.

11. Mary Jean Harrold, James A Jones, Tongyu Li, Donglin Liang, Alessandro Orso,

Maikel Pennings, Saurabh Sinha, S Alexander Spoon, and Ashish Gujarathi. Re-

gression test sele
tion for java software. In ACM SIGPLAN Noti
es, volume 36,

pages 312�326. ACM, 2001.

12. Markus Helfen, Mi
hael Lauer, and Hans Martin Trauthwein. Testing SAP solu-

tions. Galileo Press, 2007.

13. MS Kilpinen. The emergen
e of
hange at the systems engineering and software

design interfa
e: an investigation of impa
t analysis. PhD thesis, 2008.

14. Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software testing.

Wiley, 2011.

15. Shruti Raghavan, Rosanne Rohana, David Leon, Andy Podgurski, and Vinay Au-

gustine. Dex: A Semanti
-Graph Di�eren
ing Tool for Studying Changes in Large

Code Bases. Software Maintenan
e, IEEE International Conferen
e on, 0:188�197,

2004.

88

16. Gregg Rothermel and Mary Jean Harrold. A safe, e�
ient regression test sele
-

tion te
hnique. ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND

METHODOLOGY, 6:173�210, 1997.

17. O. Shivers. Control �ow analysis in s
heme. SIGPLAN Not., 23(7):164�174, June

1988.

89

VOSD: A General-Purpose Virtual Observatory
over Semantic Databases

Gergő Gombos, Tamás Matuszka, Balázs Pinczel, Gábor Rácz, and Attila Kiss

Eötvös Loránd University, Budapest, Hungary
{ggombos,tomintt,vic,gabee33,kiss}@inf.elte.hu

Abstract. E-Science relies heavily on manipulating massive amounts
of data for research purposes. Researchers should be able to contribute
their own data and methods, thus making their results accessible and re-
producible by others worldwide. They need an environment which they
can use anytime and anywhere to perform data-intensive computations.
Virtual observatories serve this purpose. With the advance of the Se-
mantic Web, more and more data is available in RDF databases. It is
often desirable to have the ability to link local data sets to these public
data sets. We present a prototype system, which satisfies the require-
ments of a virtual observatory over semantic databases, such as user
roles, data import, query execution, visualization, exporting result, etc.
The system has special features which facilitate working with semantic
data: visual query editor, use of ontologies, knowledge inference, query-
ing remote endpoints, linking remote data with local data, extracting
data from web pages.

Keywords: Virtual Observatory, Semantic Web, e-Science, Data Shar-
ing, Linked Data

1 Introduction

E-Science is based on the interconnection of enormous amounts of data collected
from various scientific fields. These massive data sets can be used for conducting
researches, during which it is often desirable that researchers can share their
own data and methods, thus making the results of the research accessible and
reproducible by anyone. The idea of virtual observatories coming from Jim Gray
and Alex S. Szalay serves this purpose [1]. A system like this expands the pos-
sibilities of combining data coming from various different instruments. Virtual
observatories can also be used to teach and demonstrate the basic research prin-
ciples of various scientific fields (for example, astronomy or computer science).
The researchers must have access to these constantly growing amounts of data,
in order to be able to use them in various research projects. Another impor-
tant requirement is to be able to publish the results. The Internet provides an
excellent opportunity to satisfy the criteria mentioned above [1]. The primary
motivation for creating virtual observatories is to facilitate making new discov-
eries, and to provide a solution for carrying out data-intensive computations
remotely. To access remote data, web services can be used [2].

90

The basic principles of science have been extended with a fourth paradigm.
A thousand years ago, experimental results and observations defined science. In
the last few hundred years, it shifted towards a theoretical approach, focusing
on creating and generalizing models. During the last few decades, simulating
complex phenomena with computers were becoming more and more common.
Nowadays, researchers have to deal with large amounts of data, usually coming
from sensors, telescopes, particle accelerators, etc. The data is processed using
software solutions, and the extracted knowledge is stored in databases. Analyzing
or visualizing the results needs further software support [3, 4].

A possible way to manage the data available on the Internet is to use the
Semantic Web [5]. The Semantic Web aims for creating a“web of data”: a large
distributed knowledge base, which contains the information of the World Wide
Web in a format which is directly interpretable by computers. The goal of this
web of linked data is to allow better, more sensible methods for information
search, and knowledge inference. To achieve this, the Semantic Web provides
a data model and its query language. The data model called the Resource
Description Framework (RDF) [6] uses a simple conceptual description of the
information: we represent our knowledge as statements in the form of subject-
predicate-object (or entity-attribute-value). This way our data can be seen as a
directed graph, where a statement is an edge labeled with the predicate, point-
ing from the subjects node to the objects node. The query language called
SPARQL [7] formulates the queries as graph patterns, thus the query results
can be calculated by matching the pattern against the data graph. Furthermore,
there are numerous databases which contain theoretical and experimental re-
sults of various scientific experiments in the field of computer science, biology,
chemistry, etc. There is a quite complex collection of these kinds of data main-
tained by the Linked Data Community [8]. This collection contains datasets and
ontologies which are at least 1000 lines in length, and which contain links to
each other.

In this paper, we present a prototype system, which fulfills the standard
requirements of a virtual observatory, such as handling user roles, bulk load-
ing data , answering queries, visualization, and storing results. In addition, we
extended the system with special semantic technologies. We use the SPARQL
language to formulate queries, aided by a visual SPARQL editor. Ontologies can
be used to describe the hierarchy of complex conceptual systems, and to carry
out knowledge inference. The system implements a tool, which helps its users to
convert the data found on the web to the formats of the Semantic Web. We also
provide a SPARQL endpoint to enable remote querying of the knowledge base.
The query results can be exported to various common semantic data formats.
We demonstrated the flexibility of the system by implementing two different
database backends.

The structure of the paper is as follows. After the introductory Section 1, we
present the high-level architecture of our virtual observatory in Section 2. Then,
in Section 3, we describe the main functionality of the system. Section 4 writes
about the functions supporting the collaboration of researchers. Then, we show

91

some possible use cases of our system in Section 5, followed by the conclusion
and our future plans in Section 6.

2 Architecture of the Virtual Observatory over Semantic
Databases

The system is built using the Java EE platform. The user interface uses the
Java Server Faces (JSF) technology, which is hosted using an Oracle WebLogic
Application Server. Besides the JSF pages, the system is available via a REST
webservice, to browse the models. This makes it possible to develop various
applications even for mobile devices. Data storage can be realized with either
of the two database backend solutions provided by us (Oracle, PostgreSQL).
The Oracle database engine supports managing semantic models, and provides
a Jena Adapter for these functions. Using the built-in semantic support, we
can, for example, perform knowledge inference at the database level. We created
a second database backend, which uses only the standard functionality of the
relational databases. This can be used to connect to any standard relational
database not natively supporting semantic technologies. The connection among
the database backend and the other components is implemented using the JENA
Framework. We tested this backend using the open-source PostgreSQL database.
Figure 1 shows the main components of the system with the two different backend
databases.

Fig. 1. The architecture of the Virtual Observatory over Semantic Databases

3 Functionality

3.1 Data Loading

There are two ways to load data into the system. One works by uploading a file
containing the semantic data, the other requires a URL pointing to a resource
on the Internet, which contains the data. There are various RDF serialization
formats for RDF which can be used with the system, such as RDF/XML, N3,

92

Turtle, and N-Triples. The most wide-spread is the RDF/XML, which represents
the RDF graph as an XML document. This format is easier for computers to read,
since there are numerous tools available for processing and transforming XML.
The other formats store the data using a more human-readable serialization.
The simplest one is the N-Triples [9], which is simply the enumeration of the
RDF triples (the edges of the RDF graph) separated with a dot. The Turtle [10]
serialization allows more structures to simplify the expressions. For example, we
can use prefix abbreviations to eliminate long, repeating IRIs, thus reducing the
file size significantly. Furthermore, we have the option to group triples sharing
the same subject, without repeating the common subject for all triples. This
works similarly, if both the subject and the predicates are the same, and only
the objects vary. This, too, helps to reduce the file size. Literals in Turtle can have
language tags, or data type information added to them. Notation 3 [11] (or N3)
allows further simplifications to make the serialization of complex statements
easier.

3.2 Querying and Saving Results

Another main function of the system is querying the already loaded data. The
SPARQL [7] language is used to express queries over semantic data sets. The
language is similar to the well-known SQL language. The SELECT clause defines
a projection of the variables, the values for which we would like to see in the
result set. The WHERE clause defines the criteria the data must satisfy in order
to appear as a result. This is basically a graph pattern that has to match the
data graph. The simplest queries contain only triples in the graph pattern. The
FILTER clause lets us provide further filtering conditions for the nodes. For
example, if we have numeric nodes, we can use arithmetic operators on them to
restrict the values to a given range. If we have string nodes, we can filter for their
values as well. IRIs, and string nodes can be filtered using regular expressions,
too. By default, all edges in the graph pattern of the WHERE clause have to
match the data. However, we have the option to define optional matching criteria
with the OPTIONAL keyword. If parts of the graph pattern are optional, then
we can have rows in the result set which satisfy only the non-optional parts,
with null values for the variables appearing only in the optional parts. This is
useful when some information is not given for all of our individuals. For example,
if we have an address book with addresses for all contacts and phone numbers
for some of them, we can ask the phone numbers in the optional part. Without
the OPTIONAL keyword, we would only get the contacts with both an address
and a phone number. The advantage of the Semantic Web is that we can link
our data with knowledge from other sources. In queries, the SERVICE keyword
allows querying remote data sets. The keyword requires a URL to a SPARQL
endpoint, and a graph pattern that has to match the remote data. The most well-
known data set is the DBpedia [12], which contains the knowledge of Wikipedia
in semantic form. Data sets linked with DBpedia can be found in the LOD
cloud [8].

93

Another useful feature of the semantic web is knowledge inference, which lets
us extract new information based on what we already know. Computing inferred
data may take long time, thats why our system offers two options regarding
inference. One option is to run the query using only ground truth data (i.e. the
data already available to us as facts), or we can enable inference meaning slower
query execution. There are multiple ways to carry out inference. For example,
we can use the relationship information given in ontologies, to generate new
information. Another option is to use user-specified rules. A rule consists of a
head (a new triple holding the new information) and a body (a condition that
has to be satisfied in order for the rule to activate). The simplest example is
the grandparent relationship (if x is parent of y, and y is parent of z, then x is
grandparent of z). We can save the query results using the already mentioned
formats: RDF/XML, N3, TURTLE, and also CSV.

3.3 Visual SPARQL Editor

With the spreading of the Semantic Web technologies, using SPARQL becomes
more and more inevitable, since this declarative language is the standard tool
to express queries over RDF data sets. VisualQuery is a visual query editor pro-
gram, which allows us to build a SPARQL query using graphs and supplementary
forms.

Fig. 2. An example SPARQL query both in graphic and textual form which finds
additional information on DBpedia about locally stored famous people

Graphic representation has various advantages. Firstly, using this approach,
it is easier to see and understand the relationship of the individual elements,
thus, the meaning of the query can clearly be seen as demonstrated in Figure 2
where the graphic and textual representation of the same query are shown. Sec-
ondly, we can quickly and easily modify the components and parameters defining
the query. This way, we can improve or refine the query step-by-step. Thirdly,
because the visual representation is language-independent, the co-operative work

94

of researchers speaking different languages is supported. Another advantage of
the program is that it performs various checks during editing, which helps pre-
venting syntactical errors, for example:

– literal nodes can not have outgoing edges – they can not be subjects in a
triple,

– only variables or IRI nodes can be edges – blank nodes and literals can not,
– variables in the head of a CONSTRUCT-type query must appear at least

once in the WHERE clause.

What makes this solution different from similar programs – like iSparql [13]
or LuposDate [14] – is the distinction of visual elements by type, and the built-in
checks based on this distinction.

3.4 Visualizations

Visualizing semantic data helps us interpret them. We integrated into the sys-
tem other, third-party visualizer tools. One of them is Cytoscape Web [?], which
allows us to display the semantic graph of locally stored models using various
built-in layouts, such as tree or circle. The application uses JavaScript, so ren-
dering happens on the clients computer.

Another visualization tool integrated into the system is RelFinder [16], which
searches connections among IRIs. To find connections, it runs SPARQL queries
on an endpoint. The relations among the IRIs can be paths via common pred-
icates. We can specify the depth of the search. The program uses ActionScript
for the display that provides various tools to create animations.

3.5 Extracting Semantic Data from the Web

Nowadays, we can easily find all kinds of information using the web. There are
numerous sites, which specialize in collecting and organizing knowledge about
one specific topic. For example, we can find websites collecting information about
hardware components, reviews about movies, historical weather data, recipe col-
lection, etc. These websites usually operate using a database of their own, and the
web pages displayed to us are generated based on the data from that database.
However, the databases are usually not using semantic technologies, moreover,
they are often not public, so the only way for us to access their data is to visit
the web pages containing them. Fortunately, extracting the data from the web
pages does not always require complex text processing and text mining, because
the structure of the document can be used to extract the pieces of information
that we are interested in. The structure is almost always consistent on all pages
of a web site. For example, on a site collecting recipes, the structure can be the
following: the name of the recipe is always the title of the document, and it is
followed by some meta information (always in the same order), such as the name
of the uploader, the difficulty and the required time to cook the dish. After this,
we have an unordered list of the ingredients, and finally, there is an ordered list

95

of the steps of preparing the meal. If we know this structure, we can use it to
extract the mentioned information from all pages containing recipes on this site.

To help users in extracting data from sites like these, we created a tool that
allows them to define the structure using one example page from a web site, and
based on the structure, our virtual observatory is capable to extract the required
information from all pages that use the same document structure. The tool comes
in the form of a browser extension, which the user can download and install from
the web front end of our virtual observatory. After installation, if the user views
one example page of the website using his browser, he can select the parts of the
website that contain information he would like to extract. The browser extension
marks the selected parts during the process. If a structure is repeating within the
document, we have the opportunity to extract all occurrences of the repeating
structure. For example, if we have a hundred-row table, with each row containing
information about one item, we do not have to mark all rows, only the first one.
The repeating structures can be nested to arbitrary depths, i.e. we can have,
for example, ordered lists within a table within a table. After the user finished
marking the example document, the extension saves the structure information
to a file. To do the actual extraction, the user has to visit the web front end of
the virtual observatory, where he can upload the structure file, and the system
will then extract the information from the specified sub-pages of the site, and
load the extracted data into a standard semantic model.

4 Collaboration of Researchers

One of the most important purposes for virtual observatories is to collect infor-
mation originating from various different sources, and to support their integra-
tion. Our system allows users to upload their own data and share it with others.
We applied a multi-level permission system based on user groups. Every user
can create groups, and invite other users to them. This way, research groups can
be organized. Then, we have two possibilities to share the models containing our
data. We can make the model publicly available to every other user, or we can
give right to one or more groups to access our model. While the first possibil-
ity gives read-only access, in the latter case the group members can have write
rights, too. In this case, they can load their own data into the model.

It is also possible to publish queries. This can be useful in several cases: if
other researchers would like to use our data, we can help their work by providing
example queries, which illustrate the inner structure and relationships of the
data. We can formulate basic queries, which can be further refined or specialized
later.

5 Use Cases

5.1 OCR Application

The first application is useful in the field of tourism. The main function of
the program is to recognize text on street signs with OCR methods, based on

96

pictures taken with mobile phones. Its purpose is to provide extra information
about the famous people whose name can be found in the extracted texts. The
extra information comes from various data sources converted to semantic format
(Hungarian Electronic Library, various online encyclopedias [17]), joined with
other public data sets (DBpedia, GeoNames). A user group created for this
purpose allows the collaboration between the users. The group has access to the
data sets described above. One member of the group was given the task to collect
information about the famous people appearing in street names, and then upload
them to a model. He then shared the model inside the group. Another member
had the same task, but he had to use an online encyclopedia as the data source.
He added his data to the shared model. Meanwhile, a third member worked
on linking the data in the model to data available in DBPedia, using SPARQL
queries. He stored the results in a new, local model, to make it faster to access.
(His work was not influenced by the fact that in the meantime, new data has
been added to the model.) He also published the queries and the new model to
the group. The members of the group created a virtual model over the models
mentioned. (A virtual model is not materialized, but it contains the union of the
data found in other models, and it is supported by an index structure.) This step
was important, because it allowed us to access the data as a single model. Then,
using the REST API of our virtual observatory, we were able to run queries from
a mobile application.

5.2 Use in Education

We use the virtual observatory during teaching the basic principles of the Se-
mantic Web, within the Modern Databases course. The students of the course
are added to a new group, and we share previously loaded models and queries
with them. The models contain small data sets, so they could be viewed with
the visualization tools, and the students could easily understand their structure.
From week to week, they are introduced to the features of the SPARQL language,
by solving typical tasks together. The new features can easily be demonstrated
with the visual SPARQL editor, since the graphical representation speaks for it-
self. In some cases, the results of the exercises can be used in practical scenarios.
For example, the family tree of a royal family can be created, if each student
creates a model with the family tree of a selected king. During their work, they
get to know the basic semantic serialization formats (RDF/XML, N3, etc.) and
the results can be published to a common group.

6 Conclusion and Future Work

In the paper, we presented a prototype system, which fulfills the requirements
of a virtual observatory, and helps the collaboration of researchers by letting
them work using the same, shared data and queries. We used the data model of
the Semantic Web, thus, the data sets in the virtual observatory can easily be
linked to each other and to public data sets. We provided several features which

97

can facilitate the use of the system, such as advanced data and query sharing,
visual query building and editing, data visualization, and web data extraction.
The system can run on top of any standard relational database system, but if
the underlying database has some support for storing and handling semantic
data (like Oracle databases), it can make use of those functions as well. We also
presented real world use cases, where the existence of the system helped our
work on other projects and in education. During further work, we would like
to extend the system to be able to work using a Hadoop cluster as backend. In
this solution, data storage and query execution would be distributed, thus the
efficiency of the data-intensive computations would increase. Our other plans
include enhanced visualization, such as the ability to plot geographic locations
on a map, and to create charts and diagrams to help the better understanding
of the data.

Acknowledgments. This work was partially supported by the European Union
and the European Social Fund through project FuturICT.hu (grant no.: TAMOP-
4.2.2.C-11/1/KONV-2012-0013). We are grateful to Zsófia Mészáros and Zoltán
Vincellér for helpful discussion and comments.

References

1. Gray, J., Szalay., A.: The world-wide telescope. Communications of the ACM 45 11,
50–55 (2002)

2. Szalay, A. S., Budavári, T., Malik, T., Gray, J., Thakar, A. R.: Web services for the
virtual observatory. In: Astronomical Telescopes and Instrumentation, pp. 124–132.
International Society for Optics and Photonics (2002).

3. Brase, J., Blümel., I.: Information supply beyond text: non-textual information at
the German National Library of Science and Technology (TIB) – challenges and
planning. Interlending & Document Supply 38 2, 108–117 (2010)

4. Hey, AJG.: The fourth paradigm: data-intensive scientific discovery. In: Stewart
Tansley, S., Tolle, K. M. (eds.) Microsoft Research, Redmond (2009)

5. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284
5, 28–37 (2001)

6. Lassila, O., Swick, R. R.: Resource Description Framework (RDF) Schema Specifi-
cation, http://www.w3.org/TR/rdf-schema

7. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF, http://
www.w3.org/TR/rdf-sparql-query/

8. Bizer, C., Jentzsch, A., Cyganiak, R.: State of the LOD Cloud, http://wifo5-03.
informatik.uni-mannheim.de/lodcloud/state/

9. N-triples, http://www.w3.org/2001/sw/RDFCore/ntriples/

10. Turtle, http://www.w3.org/TR/2012/WD-turtle-20120710/

11. Notation3, http://www.w3.org/TeamSubmission/n3/

12. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hell-
mann, S.: DBpedia – A crystallization point for the Web of Data. Web Semantics:
Science, Services and Agents on the World Wide Web 7 3, 154–165 (2009)

13. iSparql, http://oat.openlinksw.com/isparql/index.html

98

14. Groppe, J., Groppe, S., Schleifer, A., Linnemann, V.: LuposDate: A semantic web
database system. In: Proceedings of the 18th ACM conference on Information and
knowledge management, pp. 2083–2084. ACM (2009)

15. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D.,
Ideker, T.: Cytoscape: a software environment for integrated models of biomolecular
interaction networks. Genome research, 13 11, pp. 2498–2504. (2003)

16. Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., Stegemann, T. (2009).
Relfinder: Revealing relationships in rdf knowledge bases. In: Semantic Multime-
dia, pp. 182–187. Springer (2009)

17. Hungarian Electronic Library, http://mek.oszk.hu/indexeng.phtml

99

Service Composition for End-Users

Otto Hylli, Samuel Lahtinen, Anna Ruokonen, and Kari Systä

Department of Pervasive Computing
Tampere University of Technology

P.O. Box 553, FIN-33101 Tampere, Finland
otto.hylli, samuel.lahtinen, anna.ruokonen, kari.systa@tut.fi

Abstract. RESTful services are becoming a popular technology for providing
and consuming cloud services. The idea of cloud computing is based on on-
demand services and their agile usage. This implies that also personal service
compositions and workflows should be supported. Some approaches for REST-
ful service compositions have been proposed. In practice, such compositions typ-
ically present mashup applications, which are composed in an ad-hoc manner. In
addition, such approaches and tools are mainly targeted for programmers rather
than end-users. In this paper, a user-driven approach for reusable RESTful service
compositions is presented. Such compositions can be executed once or they can
be configured to be executed repeatedly, for example, to get newest updates from
a service once a week.

1 Introduction

In service-oriented approaches, the focus is on the definition of service interfaces and
service behavior. Service-oriented architecture (SOA) aims at loosely coupled, reusable,
and composable services provided for a service consumer. SOA can be implemented by
Web services, which is a technology enabling application integration. Web services can
be used for composing high level composite services and business processes. Business
processes are often realized as a service orchestrations implemented, for example, as
WS-BPEL based processes [1]. WS-BPEL is targeted for composing operation-centric
Web services utilizing WSDL and SOAP [2, 3]. WS-BPEL is close to a programming
language defining the logic for a service orchestration. Thus, it is mostly used by IT
developers.

In cloud computing, resources are provided to the user as services via the Internet.
Cloud computing and SOA share similar interests on service reuse and service compo-
sition. Moreover, cloud computing emphasis on-demand services, which impose more
requirements on flexible service and workflow configurations.

Compared to business processes, typical on-demand processes are personal, sim-
pler, and their lifetime is shorter. Thus, on-demand processes are often characterized as
instant service compositions and service configurations. Such processes are typically
defined by the end-user instead of the developer of the cloud services. Due to instant
nature of the on-demand processes, their usage and specification should be as simple as
possible and require no installation of process development and management tools.

An end-user driven approach for WS-BPEL-based business process development
has been proposed in [4]. The approach is targeted for providing a method for easy

100

sketching of service orchestrations. In the proposed approach, a set of scenarios, given
as UML sequence diagrams, are synthesized into a process description. However, in the
context of cloud computing and on-demand processes, the use of UML modeling and
standalone tools is not a proper solution.

Software services in the cloud, namely Software-as-a-Service (SaaS) applications,
differ from fine-grained IT services, which are typically used to form business pro-
cesses in SOA systems. SaaS applications are often targeted for end-users. They are
self-contained and contain user-interfaces, business rules, and possible some metadata.
In addition, such services often provide REST API instead of SOAP interface. Repre-
sentational State Transfer (REST) is a resource-oriented architectural style developed
for distributed environments such as for Web and HTTP based applications [5]. REST-
ful services provide an unified interface (GET, PUT, POST, DELETE) for data manip-
ulation. Thus, composition of such services often includes combining resources and is
characterized as mashup-type of development. Some guidelines for mashup develop-
ment have been proposed (e.g. [6]). Composing RESTful services is still lacking tool
vendor independent practices and description languages. Thus, the development is often
done more in an ad-hoc manner.

A recent trend is cloud mashups, which combine resources from multiple services
into a single service or application [7]. The provider of these service compositions can
enhance the cloud’s capabilities by offering new functionalities, which make use of
existing cloud services, to clients.

In this paper, a semi-structured approach for developing personal service compo-
sitions is presented. The approach is targeted for end-user and allows composition of
RESTful cloud services. The approach includes tackling the following issues: (1) easy
sketching of service compositions using a simple visual language, (2) a mechanism
to export/save composite descriptions for future usage i.e. reusable composite descrip-
tions, and (3) an engine for executing the service compositions, once or repeatedly. The
implementation is currently under development. The proposed tool support include a
web browser based editor, which can be used to create simple on-demand service com-
positions.

The rest of the paper is organized as follows. In Section 2, we describe the overall
approach and related components. In Section 3, two use cases for end-user driven ser-
vice composition is presented. The proposed tool support is described in Section 4. In
Section 5, related work and topics are discussed. In Section 6, conclusions and plan for
future work are presented.

2 User-driven approach for service composition

In this paper, an end-user driven approach for defining personal service compositions
is presented. The main goal of the approach is on easy design of service composi-
tions, which requires minimal technical knowledge. The service composition is created
by using GUI widgets, which are generated based on an imported service description.
Widgets present individual resources and they can be dragged and dropped on the can-
vas. The user can draw dataflow pipes to connect the widgets. Incoming and outgoing

101

dataflows are mapped to REST methods (e.g. outgoing dataflow for GETting a resource
presentation).

The approach is supported by two components, designer Ilmarinen and engine Sampo.
Ilmarinen is a client side application running in a web browser. Sampo is a server side
application, which is an engine for running the service compositions. The composition
description is given in XML-based format, called Aino description. As a service de-
scription format, the approach is based WADL descriptions [8]. It defines the resources,
i.e., URIs, methods, and parameters. That is, while the Aino description specifies the
service logic, the WADL description describe the service interface.

Sampo also plays a role of a service registry. Once a service is registered in Sampo
engine, it can be used as a constituent service for future applications. One reason for
providing a centralized registry, instead of letting the user search from the web, is that
for RESTful services there is no agreement on one service description format. In case
a third-party service do not have a compatible WADL description, it can be created
afterwards and registered to Sampo. Thus, the approach allows using services, which
do not natively provide a WADL description, as a reusable constituents.

The main focus of the approach is on easy design of service compositions, which
requires minimal technical knowledge. The service composition is created by using GUI
widgets, which are generated based on an imported service description. Widgets present
individual resources and they can be dragged and dropped on the canvas. The user
can draw dataflow pipes to connect the widgets. Incoming and outgoing dataflows are
mapped to REST methods (e.g. outgoing dataflow for GETting a resource presentation).

The approach includes the following steps:

(1) query services from the service registry,
(2) select services to be used as a part of the compositions,
(3) composition described as a data flow between services, and
(4) send the composition description to the server engine to be executed.

The main steps are shown in Fig. 1. It also shows the relations of the main compo-
nents and descriptions, Aino and WADL, which are used for importing and exporting
data (i.e. service and composition descriptions).

3 Use cases

The following two use cases illustrate the possibilities offered by service compositions
for regular internet users. They show how after encountering a normally labor intensive
internet based task including multiple services, a user can pretty easily create a service
composition that takes care of the task.

3.1 Use case 1: photos from Twitter to Flickr selectively

An avid Twitter user has been sending many photos taken with his smart phone directly
to Twitter. The user wants a better way to organize and share his photos so he opens an
account in Flickr which enables him to save photos to different albums, associate key-
words to them and decide which photos are public. Uploading all his photos manually

102

Fig. 1. The main steps of the approach

to Flickr would be tedious for the user. He would have to go through his Twitter time
line, download each photo to his computer and then upload it to Flickr.

To automate the upload process the user wants to create a service composition. He
opens the service composition editor Ilmarinen and chooses that he wants to get photos.
Ilmarinen shows him a list of services from where he can get photos and he chooses
Twitter. He also indicates that all photos shouldn’t be fetched instead he will select the
ones he wants. Then the user tells Ilmarinen that he wants to upload the photos selected
in the previous step. From the services list shown by Ilmarinen he chooses Flickr as the
upload target. Additionally he specifies that he wants to choose for each photo are they
private or public. Lastly, he tells Ilmarinen that he wants to delete photos and chooses
Twitter. He specifies that from Twitter he wants to delete those photos he has marked as
private for Flickr.

When he executes the composition the execution engine Sampo first asks him to
authorize Sampo’s use of his Twitter and Flickr accounts. Authorization will be done
by using OAuth [9] which means that the user authenticates to both services which then
give access tokens to Sampo. Sampo will store these access tokens for later use if the
user wants it so that next time a service composition using these services is run the user
doesn’t need to authenticate to the services. He just has to log in to Sampo. When
the actual execution has started Sampo will first show the user all his photos from
Twitter and asks him to choose those he wants. After that Sampo shows the user his
previously chosen photos and asks which of them he wants to be private in Flickr. After
the execution has finished Sampo shows the user a execution results summary which
tells that the execution was a success and shows how many photos were processed in
each step.

103

3.2 Use case 2: affordable reading

An enthusiastic book reader uses the Goodreads service in aid of her hobby. Goodreads
is an online community for readers where users can search for books, rate and re-
view them. Users can also categorize books in their profile by adding them to differ-
ent shelves. One of these shelves is to-read where the user has been adding interesting
books, which she has found through Goodreads’ recommendation system. She wants to
buy some new reading from her to-read shelf but due to her current poor economic sit-
uation she wants it to be as cheap as possible. Searching for each book’s price from her
favorite online book retailer Amazon and then comparing the prices manually would
be time consuming so she decides to create a service composition to make the process
quicker.

The user opens the service composition editor Ilmarinen and chooses that she wants
information about books. Ilmarinen gives the user a list of services that deal with books.
The user chooses Goodreads and indicates that she wants the content of a particular
user’s, in this case hers, particular shelf. Ilmarinen asks the user to input the name of the
user and the name of the shelf which in this case are the user’s Goodreads user name and
to-read. Next the user tells Ilmarinen that she wants online shopping services. From the
service list she chooses amazon.com. She specifies that she wants product information
about the books from the previous step. Lastly she tells Ilmarinen that she wants the
results in ascending order by price. When this composition is run the result is a table
containing book information from Amazon including the price and a link to the Amazon
product page where the book can be bought.

4 Implementation

Fig. 2. High level architecture of the system

The prototype implementation consists of two main components: Designer Ilmari-
nen and Sampo Engine and Service registry. Sampo executes the services compositions,
stores the service descriptions and offers Ilmarinen access to the information. Figure 2

104

illustrates the high-level architecture of the system. The user uses browser-based Il-
marinen to create service compositions. A service composition is a service. Its inteface
is defined as a WADL document and its execution instructions are defined as an Aino
description. Both XML documents are stored in Sampo. The user interacts with Sampo
engine component is used to execute the compositions. The execution and possible user
interaction related to the execution is again done in a browser based UI.

4.1 Service description

All the constituent services, as well as the service composition, are described as a
WADL description. WADL description defines the web resources, provided methods
and their parameters, as well as data types. Data types can be defined as separate XML
schema files. An example of a simple service description is shown below. It has a par-
tial definition of Twitter’s get user timeline method which returns a specified number of
tweets from the given user.

<?xml version="1.0" encoding="UTF-8"?>
<application>

<grammars></grammars>
<resources base="https://api.twitter.com/1.1">

<resource path="statuses/user_timeline.json">
<method href="getTimeline"/>

</resource>
</resources>
<method name="GET" id="getTimeline">

<request>
<param name="screen_name" style="query" type="xsd:string" />
<param name="count" style="query" type="xsd:integer" />

</request>
<response>

<representation mediaType="application/json" />
</response>

</method>
</application>

4.2 Sampo Engine

Sampo engine is used in two ways, as a service registry and as an engine to execute
the service compositions. Services can be added in the service registry as WADL de-
scriptions. It provides the basic functionality for registration of the services, i.e. API for
adding, removing, and searching the services. When a new WADL is added to Sampo
the part of the categorization of the service and the resources can be done automati-
cally based on the WADL and the user can complete the information and extend the
suggested categorizations.

The given meta-information is used to offer Ilmarinen lists of the services. For in-
stance, the user can ask to get a list of services related to pictures. Thanks to the meta-
information Ilmarinen only needs to process WADLs of the services user adds to her
composition instead of processing every WADL.

The other part of Sampo provides an API for executing Aino service descriptions.
The service composition execution uses Aino and the corresponding WADL descrip-
tions for getting the required information on the services and their API. The engine

105

uses this information to invoke correct API calls to the services and combine the tasks
to create the complete composite service.

Sampo contains a user interface for handling the compositions. The user can param-
eterize the composition and define time intervals of execution. In case of a recurring task
the service page can be used to start and stop the compositions and change their time
intervals. For instance, one could define a service composition that is launched weekly.

Sampo implements simple basic services, for example, for displaying images and
news feeds. These are available as components in Ilmarinen and can be added to a
service composition in similar fashion as external services.

4.3 Designer Ilmarinen

Ilmarinen is a client side application, which provides a graphical interface for creating
the service compositions. The user is provided a simple visual environment for defin-
ing the service composition. The composition is done partially in a guided manner. A
screenshot of an early prototype version of the tool is shown in Figure 3. The user can
choose the services e.g. Twitter, BBC Program guide, Weather) she wants based on
the service category (e.g. Social media, file storage, picture, program guides). For the
services the user can define the interaction and the resources related to the interaction.

In the service composition key elements are the services and data flow between
them. After adding a service one can see the input and output possibilities offered by
it. These inputs and outputs are parameterized and services are connected to each other
using them. When the user has finished, Ilmarinen generates the Aino description. This
is exported to Sampo engine for execution. The composition is stored in Sampo and
can be accessed directly using a corresponding link. That allows the users to access and
execute the compositions directly without using Ilmarinen. This also enables sharing
service compositions among different users.

Fig. 3. Screenshot of Prototype of Ilmarinen

4.4 Composite description Aino

Aino description defines the resources involved in the composition and the composite
dataflow among resources. A dataflow from one service to another means by getting

106

resource presentation from one service with GET methods and using it as an input
to another service using PUT, POST, or GET methods. Composite dataflows include
three types of resources: resource out (for GETting a representation), resource in (for
PUTting or POSTing), and resource in/out (for PUTting or POSTing and GETting). For
data manipulation, control nodes, such as merge and select nodes, are used. In addition,
data structures used for the resource presentation can be defined by attaching an XML
schema to a dataflow or referring to a corresponding WADL file.

The composite dataflow can be modeled as an acyclic graph structure, which con-
sists of resources, control nodes, and dataflow elements between them. Control nodes
are used for manipulating resource representations. The main elements to compose the
composite dataflow graph are shown in Fig. 4. Each resource is expected to have at most
one incoming and outgoing dataflow element.

Fig. 4. Dataflow modeling

To enable importing and exporting of the Aino descriptions, composite dataflow
graphs are transformed in XML format. The XML description consists of two main
parts: resources and dataflow. The former describes all the resources involved in the
composition. The latter defines the composite dataflow among the resources.

A simple composite dataflow consists of a sequence of method invocations, which
are executed by the composite service on the constituent resources. These are presented
as GET, PUT, POST, and DELETE elements in the XML description. In addition, the
composite service can receive method calls. These are presented as onPUT, onGET,
onPOST, and onDELETE elements. Corresponding request and response message types
(including data types) are described in the services’ WADL documents. These activities
corresponding to REST operations are the same, which are used in BPEL for REST [10]
proposal.

An example of Aino description is given in the listing below. It presents an example
of uploading photos from Twitter tweets to Flickr. Resources part define two resources,
Twitter and Flickr, which participate in the composition. The dataflow consists of a
receive message and two message invocations. Execution starts when the client invokes
GET method on the composite resource (onGET element). Execution continues with
a sequence of two invocations. First the composite service invokes GET method on
Twitter and second it invokes POST method on Flickr.

107

<?xml version="1.0" encoding="UTF-8"?>
<description name="tweet2flickr" >
<doc>Upload photos send to twitter to flickr.</doc>

<services>
<service name = "twitter" id="id1"/>
<service name = "flickr" id="id2"/>

</services>

<resources>
<resource uri="https://api.twitter.com/1.1/statuses/

user_timeline.json"
resource_id ="r1" service_id = "id1" />
<resource uri="http://api.flickr.com/services/upload/"

resource_id ="r2" service_id = "id2" />
</resources>

<variables>
<variable name="screen_name" type="string" />
<variable name="photos" type="photolist" />

</variables>

<dataflow>
<onGET>

<request>screen_name</request>
<response></response>
<resource_id>r_comp</resource_id>
<sequence>

<GET>
<request>screen_name</request>
<response>photos</response>
<resource_id>r1</resource_id>

</GET>
<POST>

<request>photos</request>
<response></response>
<resource_id>r2</resource_id>

</POST>
</sequence>

</onGET>
</dataflow>
</description>

Variables are used for storing and manipulating message values. For example, the
given code listing defines two variables, which correspond to input and output message
types of the used GET and POST methods. screen name variable presents a user name
and it is passed as an input message for the GET method. A return message of the
operation call is stored in photos variable and it is passed as an input message to the
POST method.

screen name is initialized, when the user fills-in the required input data, when she
decides to run the composition (see Figure 5). A control interface is used for specify-
ing process instance specific information, such as initial value of process variables and
repetition information, which is not part of Aino description.

In addition to a sequence flow, Aino supports splitting, merging, and conditional
branching of data flows. Example structures for merge, split, and if-else patterns are
shown in the following listing.

<merge>
<operand>

activity
</operand>
<operand>

108

Fig. 5. A Control User Interface for the service Compositions

activity
<operand>

</merge>
<sequence>

some activity
</sequence>

<sequence>
some activity

</sequence>
<split>

<operand>
activity

</operand>
<operand>

activity
</operand>

</split>

<if>
<condition>some conditon expression</condition>
activity
<elseif>*
<condition>some condition expression</condition>
some activity

</elseif>
<else>?
some activity

</else>
</if>

109

5 Related work

The idea of cloud computing is based on on-demand services, which are provided as
SaaS applications. In the cloud, traditional business process management tools are al-
ready available as SaaS. However, they are targeted for design and management of
structured business processes. Requirements for on-demand processes differ from tra-
ditional BPM. The ideal situation is to provide easy and instant mechanism to support
execution of personal and dynamic processes, which utilize existing SaaS applications
available on the cloud.

5.1 Tools for mashup development

Ad-hoc processes are often expected to live only a short time. The lack of documenta-
tion and proper design might make them single-use only. Thus, they may not be reusable
and flexible, but they always need to be recomposed.

JOpera [11] is an Eclipse-based tool build for composing SOAP/WSDL and REST-
ful Web services. For software developers it provides many useful features such as
process modeling, debugging and execution. For composing RESTful services JOpera
uses BPEL for REST [10]. BPEL for REST is an extension to WS-BPEL to support
compositions of RESTful Web services. The approach does not rely on usage of WSDL
or other service descriptions. Resources are defined in the BPEL for REST description
as a resource construct, which defines the resource URI and supported operations.

In [12], Marino et al. present HTML5-based prototype tool support for mashup de-
velopment. They present a visual language for service composition. However, the paper
is missing details on the user interface and tool usage. Also, details on the composition
description are not given.

In [13], Aghee et al. discuss different types of mashups enabled by HTML5. A case
example includes a location sensitive mobile mashup. The mashup runs natively in a
mobile device and uses GPS sensor build-in the device. In addition, it uses external Web
APIs. Location data is sent to a server, which executes API calls to external services.
This enables sharing the application between several uses. Mobile mashups enable use
of real-time data gathered from the sensors in a mobile phone, e.g. real-time navigation.

Bottaro et al. present a simple visual language for composing location-based ser-
vices [14]. The user uses a repository of web widgets. Widgets are dragged and dropped
to build UI for the application. The application logic is defined by drawing connections
between data widgets.

In [15], Grönvall et al. present ongoing work on user-centric service composition.
GUI elements are prototypes of service invocations, which can be chained to com-
pose data flows among services. They present a lightweight tool support for composing
simple dynamic workflows, such as for combining SMS, email, and calendar services.
Instead of modeling complicated workflows, the emphasis is on the user experience.

In EzWeb project [16, 17], a service-oriented platform for end-user mashups de-
velopment have been built. The idea is to provide gadgets (e.g. Twitter, Flickr) the user
could add to her ”‘application page”‘ creating a set of different applications and web ser-
vices. The user can also define dataflow between the gadgets by connecting ”‘events”’
the gadgets could give, e.g., an image url could be connected to another image displayer

110

gadget that is able to show the picture. All these gadgets are implemented for EzWeb
environment. That is, implementation of their user interface, way of communicate with
servers, their events and event slots, are specific for the EzWeb environment. In our
approach, the aim is to provide means to compose existing services together and exe-
cute these compositions. Thus, our target is to support composition of any third party
services by introducing their service descriptions to our system.

5.2 Describing service compositions

Some approaches for modeling and describing RESTful service compositions have been
proposed. Guidelines for UML modeling of RESTful service compositions is presented
in [18] by Rauf et al. The static resource structure is modeled using class diagrams. The
behavioral specification of the composite service is given using state chart diagrams.

In [19,20], Zhao et al. discuss formal describing of RESTful services and resources
as well as RESTful composite services. Their main interests is on supporting automatic
service compositions. For service compositions they present a logic-based synthesis
approach utilizing linear-logic and pii-calculus.

In [21], Alarcon et al. state that many of the recent service composition approaches
rely on operation-based models and neglect hypermedia characteristics of REST. As a
solution for composing RESTful services, they present a hypermedia-driven approach
realized by using resource linking language (ReLL) for service description. The ap-
proach aims to support machine-clients by enabling automatic retrieving of resources
from a web site. For describing the composite resources PetriNets are used. As an ex-
ample of a composite resource, a social network application was presented.

6 Conclusions

Cloud computing is based on on-demand services, which should be available as needed.
Similarly, it should also enable on-demand service compositions. In this paper, end-user
driven approach for personal service composition have been presented. The proposed
tool support includes an editor running in a web browser and a server-side engine for
storing and executing service compositions. The editor is designed for the end-users and
it is used for sketching personal service compositions. It focuses on end-user concepts
and aims to hide complicated and unnecessary information, e.g. service descriptions,
which are handled by the engine. Instead of handling data types, the user is allowed to
use concepts such as a picture or a photo gallery. The presented use cases concentrate
on combining social media services into a composite service. Also, the user is allowed
to define repeatable executions for checking updates from the services.

To characterize the approach, it is designed for cloud environment providing a
browser-based tool for building service compositions. It is based on WADL descrip-
tions, which are also used for generating GUI widgets for the end-user. In addition, it
enables defining RESTful workflows as a composite services.

Our future work includes finalizing the implementation and conducting case studies
on applying the approach utilizing the developed tool support. Our future plans also
include experimenting the tool usage with novice users.

111

References

1. Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein, Frank
Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana Trickovic, and Sanjiva
Weerawarana. Business Process Execution Language for Web Services Version 1.1, May
2003. http://www.ibm.com/developerworks/.

2. W3C, http://www.w3.org/TR/wsdl. Web Services Description Language (WSDL) 1.1, 2001.
3. W3C, http://www.w3.org/. Simple Object Access Protocol (SOAP) 1.2, 2007. Last visited

December 2011.
4. Anna Ruokonen, Lasse Pajunen, and Tarja Systa. Scenario-driven approach for business

process modeling. Web Services, IEEE International Conference on, 0:123–130, 2009.
5. Roy Thomas Fielding. REST: Architectural Styles and the Design of Network-based Software

Architectures. Doctoral dissertation, University of California, Irvine, 2000.
6. Tommi Mikkonen and Arto Salminen. Towards a reference architecture for mashups. In Pro-

ceedings of the 2011th Confederated international conference on On the move to meaningful
internet systems, OTM’11, pages 647–656, Berlin, Heidelberg, 2011. Springer-Verlag.

7. Mukesh Singhal, Santosh Chandrasekhar, Tingjian Ge, Ravi Sandhu, Ram Krishnan, Gail-
Joon Ahn, and Elisa Bertino. Collaboration in multicloud computing environments: Frame-
work and security issues. Computer, 46(2):76–84, 2013.

8. W3C, http://www.w3.org/Submission/wadl/. Web Application Description Language
(WADL), 2009.

9. Internet Engineering Task Force (IETF), http://tools.ietf.org/html/rfc6749. The OAuth 2.0
Authorization Framework, 2012.

10. Cesare Pautasso. RESTful web service composition with BPEL for REST. Data Knowl.
Eng., 68(9):851–866, September 2009.

11. Cesare Pautasso. Composing RESTful services with JOpera. In International Conference on
Software Composition 2009, volume 5634, pages 142–159, Zurich, Switzerland, July 2009.
Springer.

12. Enrico Marino, Federico Spini, Fabrizio Minuti, Maurizio Rosina, Antonio Bottaro, and Al-
berto Paoluzzi. HTML5 visual composition of rest-like web services. In 4th IEEE Interna-
tional Conference on Software Engineering and Service Science (ICSESS 2013), 2013. To
appear.

13. Saeed Aghaee and Cesare Pautasso. Mashup development with HTML5. In Proceedings
of the 3rd and 4th International Workshop on Web APIs and Services Mashups, Mashups
’09/’10, pages 10:1–10:8, New York, NY, USA, 2010. ACM.

14. Antonio Bottaro, Enrico Marino, Franco Milicchio, Alberto Paoluzzi, Maurizio Rosina, and
Federico Spini. Visual programming of location-based services. In Proceedings of the 2011
international conference on Human interface and the management of information - Volume
Part I, HI’11, pages 3–12, Berlin, Heidelberg, 2011. Springer-Verlag.

15. Erik Grönvall, Mads Ingstrup, Morten Pløger, and Morten Rasmussen. Rest based ser-
vice composition: Exemplified in a care network scenario. In Gennaro Costagliola, An-
drew Jensen Ko, Allen Cypher, Jeffrey Nichols, Christopher Scaffidi, Caitlin Kelleher, and
Brad A. Myers, editors, VL/HCC, pages 251–252. IEEE, 2011.

16. D. Lizcano, J. Soriano, M. Reyes, and J.J. Hierro. EzWeb/FAST: Reporting on a successful
mashup-based solution for developing and deploying composite applications in the ”upcom-
ing ubiquitous SOA”. In Mobile Ubiquitous Computing, Systems, Services and Technologies,
2008. UBICOMM ’08. The Second International Conference on, pages 488–495, 2008.

17. David Lizcano, Javier Soriano, Marcos Reyes, and Juan J. Hierro. EzWeb/FAST: reporting
on a successful mashup-based solution for developing and deploying composite applications
in the upcoming web of services. In Proceedings of the 10th International Conference on

112

Information Integration and Web-based Applications & Services, iiWAS ’08, pages 15–24,
New York, NY, USA, 2008. ACM.

18. Irum Rauf, Anna Ruokonen, Tarja Systä, and Ivan Porres. Modeling a composite RESTful
web service with UML. In Proceedings of the Fourth European Conference on Software
Architecture: Companion Volume, ECSA ’10, pages 253–260, New York, NY, USA, 2010.
ACM.

19. Xia Zhao, Enjie Liu, G.J. Clapworthy, Na Ye, and Yueming Lu. RESTful web service com-
position: Extracting a process model from linear logic theorem proving. In Next Generation
Web Services Practices (NWeSP), 2011 7th International Conference on, pages 398–403,
Oct.

20. Haibo Zhao and P. Doshi. Towards automated RESTful web service composition. In Web
Services, 2009. ICWS 2009. IEEE International Conference on, pages 189–196, July.

21. Rosa Alarcon, Erik Wilde, and Jesus Bellido. Hypermedia-driven RESTful service compo-
sition. In Proceedings of the 2010 international conference on Service-oriented computing,
ICSOC’10, pages 111–120, Berlin, Heidelberg, 2011. Springer-Verlag.

113

Towards a Reference Architecture for
Server-Side Mashup Ecosystem

Heikki Peltola and Arto Salminen

Tampere University of Technology,
Korkeakoulunkatu 10, 33720,

Tampere, Finland
{heikki.peltola, arto.salminen}@tut.fi

Abstract. The Web has more and more services providing resources
– data, code, and processing – with possibility to reuse them in other
contexts instantly. Many of these services offer an interface that allows
other services to access the data or use the provided processing capabil-
ities. Mashups are web applications that act as content aggregates that
leverage the power of the Web to support instant, worldwide sharing of
content. However, quality and other attributes of the service interfaces
used by mashups are diverse. Accessing data from multiple services and
transforming the data to a desired format is laborious for the software
developer and slow on the client-side. To avoid combining the same data
several times, it would be wise to do the combining once and store the
result for later use. Server-side mashup offers credential management to
external services, preformatted data storage, and interface for retrieving
the data with minimal delay. This paper discusses requirements for a
server-side mashup and presents a reference architecture for server-side
mashup ecosystem. Additionally, an implementation for wellness services
based on the reference architecture is presented.

Keywords: Mashup, architecture, server-side.

1 Introduction

Despite its origins in sharing static documents, the Web has become a software
platform. Today, majority of new applications intended for desktop computers
are released as web-based software. This development has its disadvantages, but
numerous benefits as well. The web-based software is available all over the world
instantly after the online release. It can be used and updated without the need
to install anything. Applications can support user collaboration, i.e., allow users
to interact and share the same applications over the Web. In addition, numerous
web services allowing users to upload, download, store, and modify private and
public resources have emerged. These resources can include private resources,
such as personal images, texts, videos, e-mails, etc. as well as public data such
as stock quotes, weather data, and news feeds. Typically accessing the personal

114

content is restricted because of privacy reasons in contrast to public data that
can be used without such limitations.

An important realization is that applications built on top of the Web do not
have to live by the same constraints that have characterized the evolution of
conventional desktop software. The ability to dynamically combine content from
numerous web sites and local resources, and the ability to instantly publish
services worldwide has opened up entirely new possibilities for software devel-
opment. In general, such systems are referred to as mashups, which are content
aggregates that leverage the power of the Web to support instant, worldwide
sharing of content. By connecting to multiple source services a mashup becomes
a node in so called mashup ecosystem [1].

As expressed by Bosch, ”a software ecosystem consists of the set of software
solutions that enable, support and automate the activities and transactions by
the actors in the associated social or business ecosystem and the organizations
that provide these solutions” [2]. Since mashups by definition combine data from
multiple sources, the stakeholders that provide this data form an ecosystem, i.e.
a set of entities that act as a single unit instead of each participating business
acting separately [3]. In [2] mashups are categorized as ”End-User Programming
Software Ecosystems” and two example ecosystems, Yahoo! Pipes and Microsoft
PopFly, are mentioned.

Managing a mashup ecosystem is not trivial. Many of the services offer an
interface that allows other services to access the information. However, quality
and other attributes of these interfaces are varying. The information may come
in different formats, therefore comparing and combining the information is not
straightforward. While some of the content is public and can be accessed in a
liberal fashion, other resources are accessed through a restricted interface with
per-user credentials. Therefore, credential management becomes an issue as well.

Despite the popularity of creating mashups, the current approach towards
mashup architecting has been described as ”hacking, mashing, and gluing” [4].
It is difficult to find general-purpose tools or uniform development guidelines for
mashups. However, there are commonalities in goals of different mashup systems.
Important quality attributes, such as security, performance, availability, and
modifiability should not be overlooked. To solve these issues, we propose a plug-
in based mashup ecosystem architecture where credential management, as well
as formatting, converting, and analysing data are the primary design goals. The
architecture hides the complexity of accessing multiple services with diverse data
formats. It is used as a backend for other services, for instance other mashups
acting as clients from the point of view of this system.

Our research approach was Action Design Research method [5]. It empha-
sizes the organizational context and its impact on the studied artifact during
development and use. The research process contains inseparable and interwoven
activities of building the artifact, intervening in the organization, and evalu-
ating it concurrently. Our research consists of research cycles with studying a
phenomenon, applying acquired information and deriving architecture, as well
as implementation. These cycles are repeated to achieve the required results.

115

This paper presents a reference architecture for a server-side mashup ecosys-
tem. Requirements for the architecture are derived and design decisions are
discussed. Additionally, an implementation for wellness services based on the
reference architecture is presented. The structure of the paper is as follows, in
Section 2 we describe requirements for a server-side mashup architecture. Section
3 presents a reference architecture for server-side mashup. Our implementation
based on the reference architecture is described in Section 4. Section 5 discusses
the presented architecture and Section 6 presents related work. Finally, we draw
conclusions in Section 7.

2 Deriving Requirements for Server-Side Mashup
Architecture

While our proposed architecture does not enable end-user programming in the
current implementation, it forms a software ecosystem, which consists of in-
frastructure, data producers, processors, and consumers. Infrastructure includes
sensors and other hardware that is used to collect data. Producers are the data
source services that act as inputs to the system. The data is further processed
to increase its value and to derive emergent information, if possible. Consumers
are using the data and visualizing it to the users. For example in the wellness
domain there are numerous devices used to collect data including activity track-
ers, weight scales, and sleep analysers, to name a few. People are using these
devices to measure themselves. The created data is stored in the device man-
ufacturers’ web services. These web services offer the data through their APIs
and act as data producers. The provided data is analysed by the data processors
and consumed by the client programs that are offering the data for the users.

Mashups are combining information from multiple sources to offer a new
experience to the user. Combining the data can be done either on the client-side
or the server-side. Retrieving and combining data from multiple sources on the
client-side may add delays in the user interface. To avoid combining the same
data several times, it would be wise to do the combining once and store it for
later use. With server-side data aggregation, we are moving processing from the
client to the server and gain a faster service, with clients depending on responses
only from the mashup server. Server-side mashup can get new data from other
services as soon as it is available and store it for later use. The clients must have
a good connection only to the mashup server to offer a fluent user experience.
Furthermore, a deeper analysis with a large dataset cannot be done on the fly
on the client-side.

We aim at offering a reference architecture that allows users to get their
data, no matter what service their data is located at. The architecture must
be extensible and able to combine information from multiple sources. In the
following, we discuss requirements for a server-side mashup architecture and
things that should be taken into consideration.

Accessing data. Mashups are very dependant on the services that are pro-
viding the data. Some data sources are open to all, such as news or weather

116

information, while other sources require authorization and authentication. To
access users’ personal data from other services, the user must give authorization
for the mashup server. If OAuth authentication is used, the server receives an
access token, which is then used to make authorized requests to the services.
Mashup servers are never finished: sources of data disappear entirely, data for-
mats change, and new sources become available. The server-side architecture
must allow data sources to be modified with a reasonable amount of work.

Storing data. Gathering data from several services might be time consum-
ing, and it is heavily reliant on the availability of the services. If a service is
unavailable at a certain moment, it may take several seconds or longer to realise
it and recover. This would not look good to the user and it would mean the
data from that service would be unavailable. In addition, the required dataset
might be large, leading to heavy network traffic. With centralized up-to-date
data storing from multiple services, we avoid these problems. The data will al-
ways be available, providing faster responses to the users.

Unifying data. The data sources may vary for different users, depending
on what services the user is actively using or has used in the past. The same
type of data may come from multiple sources in different formats. If the data
is describing the same information in different formats, the data must be trans-
formed and offered in a uniform way. For the client that is using the mashup
server, it does not necessarily matter where the data originates from. Data uni-
fication is not only transforming data from one format to another. It can also
include data comparison and deriving emergent data. For example calculating
averages from a certain period of time, finding minimum or maximum values
from a large data-set, or figuring out trends based on how values have changed
recently. Furthermore, some data can be converted from one type to another
as services are not offering data in all possible types. Unification may add data
value for some sources simply by offering derived data.

Providing an API. The most important part of a mashup server is the API
it provides to clients. The whole server must be built so that API requests can
be answered within a reasonable time. If the API is not easy to use, is poorly
documented, or has other serious flaws like constantly changing interfaces, clients
will stop using the service and find another one. The API is used to authorize
the server to access users’ data from external services as well. The API should
provide access to raw data in the form it is available in the source services,
and also in a unified format. Providing the raw data in parallel with the unified
data enables maximized flexibility. When clients use the unified data, additional
data transformations are not required, which helps comparing and presenting
the data. However, if the original data format is desired, it is also accessible
through the mashup back-end.

3 Reference Architecture

Based on the requirements presented in the previous section, this section pro-
vides a reference architecture for a server-side mashup ecosystem. The ecosystem

117

Fig. 1. Server-side mashup reference architecture.

consists of data in different services, the mashup server and client programs. The
data in source services include private user data and public data. The mashup
server gathers and processes all of the data and offers it through an API to client
applications.

Fig. 1 presents our server-side mashup reference architecture. The client pro-
grams are making requests to the mashup server using the REST API. Autho-
rization to access users’ data from external services must be given and access
tokens are stored for later use. Service access component handles accessing the
raw data from the external services. The raw data is stored for later use without
any data manipulation on the mashup server. All raw data is immediately uni-
fied with the unifier component and stored in Unified data. In addition, further
data processing can be done by the analyser, for example merging data from
different sources. All user’s raw, unified, and analysed data are offered through
the REST API to client programs. Client programs can do further data analysis
and store their results in the Analysed data storage. Client programs can over-
write or remove only data they have entered themselves. However, in the current
approach, access to user’s data allows accessing all of the user’s analysed data,
including analysis made by other clients.

Databases. Database structure is divided into four distinct parts: 1) User
data, 2) RAW data, 3) Unified data, and 4) Analysed data. User data stores
user information and authentication parameters for clients using the REST API.
Authorization parameters used for accessing external services are stored here as
well. RAW data stores all requested data received from the external services.

118

It acts as a cache, allowing fast and reliable access to all of the unmodified
data. Unified data stores and offers the raw data transformed to a common
representation. Analysed data has even further processed data that can have
additional input from the users, such as questionnaires.

Database schema for the User data is static, since we know beforehand what
kind of information we are expecting, a relational database is well suited for
this. The raw data is by nature large amounts of data chunks, which is ideal
for NoSQL databases. A relational model is not needed, the focus is on storing
great quantities of data using key-value pairs in associative arrays. The data
can be stored for example in JSON format, just as it is retrieved from the
source services. The database for analyzed data may get new and unexpected
fields as the service progresses over time. This suggests that the use of NoSQL
database is appropriate for the analysed data as well. Additionally, MapReduce
framework [6] is implemented by most of the NoSQL databases and can be
used in analysing large volumes of data [7]. Using NoSQL database for the raw,
unified, and analysed data gives more freedom on how the data is stored. As
noted in [8], NoSQL databases trade consistency and security for performance
and scalability. This leads to adding more responsibility on the developers. Even
if the database does not have a predefined schema, it must not be used as a
bucket that you can throw your data to and expect it to stay organised.

New data. New data is constantly added and available in the data source
services. To keep the mashup server data up to date, new data must be fetched
and stored on the mashup server whenever it is available. Some services offer
Publish-Subscribe functionality (PubSubHubbub) [9], with the service sending
notifications whenever there is new data available. When the services do not offer
subscribing for notifications, we are forced to use polling. Background workers
can be used to handle the polling. To keep the databases coherent, new data
is unified immediately. This allows faster responses to the users and removes
unnecessary inconsistency with some data unified and some not.

Fig. 2 illustrates data flow from data source service to the user client. Service
access subscribes each user for new data notifications (steps 1-2). When new data
is available, data source service sends a notification to service access (step 3).
Service access requests the new data and stores it to the RAW data-database
(steps 4-6). The raw data is unified, analysed and stored (steps 7-10). User client
can request unified and analysed data (steps 11-14).

Expendability. Mashups gather information from numerous different sour-
ces. The source services may change or disappear, and we may also want to
add new services. The server-side implementation must be done so that it is
easy to fix issues that emerge related to changing APIs. Further, adding new
services and removing used services must be possible. Adding new services is
always laborious, due to the fact that all services are different. Services offer
different kinds of data, through different kinds of APIs. Access to services is
managed using a plug-in architecture. A plug-in is required for each service that
is linked to the system. Each plug-in is responsible for handling communication
to one service. A plug-in must describe the raw data, so that it can be offered

119

Fig. 2. Data flow from data source service.

through the REST API, and additionally specify how to unify the raw data into
a predefined format.

4 Architecture Implementation for Wellness Services

In this section, we present our implementation based on the presented reference
architecture. The domain of the implementation is wellness services, with users
keeping track of information about their well-being such as activity, weight,
blood pressure, and quality of sleep. The aim of the implementation is to provide
an API for client programs with centralized access to all of the users’ wellness
information. The API should provide access to raw data from a wide range of
wellness services, and also unified data that is not dependant on the origin of
the data. For example, it does not matter where user’s activity data is from,
the important thing is that it can be shown in a unified way with other relevant
information. Fig. 3 presents our server-side architecture for a wellness mashup.

The current implementation concentrates on services that offer an open API
and have licenses that allows us to modify and store the provided user data. The
services that we selected for the first phase of the implementation are Beddit
(http://beddit.com), Withings (http://withings.com), Fitbit (http://fitbit.com),
and a weather service (http://wunderground.com). Beddit offers sleep tracking
and analysis. Withings provides blood pressure monitors, body scales, and ac-
tivity trackers. Fitbit offers body scales and activity trackers. The body scales
measure weight and body fat, and also calculate the body mass index (BMI).

120

Fig. 3. Server-side mashup architecture for wellness services.

Activity trackers are carried in a pocket all the time and they are measuring
steps taken, distance travelled, and amount of stairs climbed. Fitbit and With-
ings are offering notifications whenever new data is available. The notifications
do not have the actual payload, they only report that new data is available.
Beddit does not offer such a service, so we have a background worker polling for
new data. As soon as new data is stored to the RAW data database, the data
goes automatically through the Unifier module and Unified data is created.

There are overlapping devices measuring the same phenomena, for example
sleep. The number of parameters are varying, but there are similar attributes
such as duration of sleep and time to bed. The Unifier component searches for
common parameters that are found in different data sources or can be derived
from the data that is offered. Naturally, there are parameters that can be found
only in a single data source. For example, Beddit gives luminosity and noise
measurements with the sleep data, whereas Fitbit does not measure these. Hence,
Unified data has common parameters that are comparable from different sources,
and parameters that can only be found in certain sources.

121

Fig. 4. Wellness dashboard.

In pursuit of analysing sleep quality we have implemented methods for calcu-
lating Pittsburgh Sleep Quality Index (PSQI) [10]. PSQI provides a standardized
measure of sleep quality, based on different areas related to sleep, such as sleep
latency, sleep disturbance, and daytime dysfunction over the last month. The
object of the analysis self rates the areas by filling a questionnaire form. Based
on completed questionnaire, we can calculate the PSQI-value.

We have also implemented a Dashboard client to visualize the user’s wellness
related information, presented in Fig. 4. It shows data gathered from multiple
sources and it can be personalised for different needs. The visualization may be
used to find out relations between activities on the day and sleep quality during
the night. It also motivates users by showing progress and trends on recent
meters, such as weight, blood pressure, activity, and quality of sleep.

5 Discussion

We conducted this work using action design research method. During the it-
eration process, we noticed that the mashup server implementation is heavily
affected by organizational structure. For instance, during the early iterations
an external unit was assigned to implement the analysis module of the system.

122

Therefore we designed this part of the system to be separated from the rest and
an API to communicate with the analysis module was introduced. However, the
analysis was later decided to be implemented as an integrated part, and having
a full-fledged API for this purpose was unnecessary. Consequently, the current
implementation now includes a method for clients to send analyzed data back
to our server, but in restricted fashion.

Forcing users to perform ”OAuth dance” at the time of first use setup or
when new services are connected to user accounts is not good practice in the
user experience point of view. Utilizing so called ”two-legged OAuth” approach
does not require user action, and it allows a service to access some data with
application specific credentials. Typically sensitive user data is not accessible
with this approach. Our view is that two-legged OAuth should be used if it en-
ables accessing the relevant data to promote maximized convenience for the user.
Another way to avoid bad user experience in service authentication is to pro-
mote OpenID (http://openid.net/) and other credential federation approaches.
Sometimes this might require partnering with data source service providers.

The most relevant way to compose a mashup is not always obvious for ap-
plication developers. One indication of this is the fact that mashup creation is
often regarded as end-user activity which is supported by dedicated, sometimes
domain specific tools. The wellness domain is not an exception. It is difficult to
”guess” the end-user’s personal desires in his or her physical well-being. There-
fore enabling end-users themselves or domain experts, such as personal coaches
or other professionals, to determine how the data is processed might be benefi-
cial.

6 Related Work

In general, mashup development has gained a lot of research interest recently.
Different patterns and trends in mashup development can be identified. For
example, Wong et al. have categorized mashups into five different groups: aggre-
gation, alternate UI & in-situ use, personalization, and focused view of data and
real time monitoring [11]. Another paper by Lee et al. presents seven mashup
patterns: data source, process, consumer, enterprise, client-side, server-side and
developer assembly mashups [12]. In addition, a number of challenges related
to mashup development have been pointed out. As stated by Zang et al. [13],
mashup developers encounter problems mainly in three areas: API functionality,
documentation and coding details. Issues related to API functionality in their
research were, for example, authentication and performance problems. Some
developers were concerned about the lack of proper documentation at all lev-
els, including API reference, tutorials and examples. The programming skills
needed for creating compelling mashups in JavaScript were also identified as
hard to learn. Finally, the relation of disciplined software engineering princi-
ples and mashup development or, even more generally, the development of web
applications remains vague [14].

123

Our previous research efforts include design of a specialized mobile multi-
media mashup ecosystem [15]. The architecture was heavily based on existing
backend server, and therefore the approach used is not ideal for a reference ar-
chitecture. However, the study in [15] clearly shows the benefits of having a
server-side backend, especially when there is a desire to analyse user’s past ac-
tions. In another paper, we have proposed a reference architecture for client-side
mashups[16].

Server-side mashup tool architecture based on layers has been studied by
López et al. [17]. Their architecture consists of four layers: source access (accesses
web resources), data mashup (creates structural presentation of the data), widget
(holds all widgets available in the system) and widget assembly (creates a user
interface) layer. In addition to the layers, the architecture includes common
services that provide general functionalities and can be used from any layer.
The result mashup created with this architecture is similar to a web portal with
the exception that the widgets are connected.

7 Conclusion

This paper discusses problems and pitfalls in creating a server-side mashup and
derived requirements for a reference architecture. A reference architecture was
presented, as well as an implementation based on the reference architecture.
The reference architecture is focusing on fast and reliable data access for client
programs. The data is offered in raw, unified, and analysed formats to serve a
broad range of clients with different requirements.

Building a system that gathers data from multiple sources may be time con-
suming, due to many details that must be taken into consideration when access-
ing the data. A service that is gathering all of the data from different sources
and offering it in a unified format allows developers using the mashup service to
focus on other important aspects, such as analysing data and presenting data to
the end-users.

Future work of the implementation is to widen the range of data source
services, for example Twitter messages and news. We hope to find new and
unexpected correlations with data from different sources, for example with news,
weather, activity, or sleep. In addition, more elaborate data analysis is planned.
The analysis can be based purely on the data from the external services, in
addition to information about user’s mood and subjective opinions that can
be acquired using simple voting systems or questionnaire forms, for example.
Furthermore, support for end-user programming with tool support is in the
scope of our future research. Finally, we plan to create more client programs
that can benefit from the server-side mashup.

References

1. Yu, S., Woodard, C.J.: Innovation in the programmable web: Characterizing
the mashup ecosystem. In: Service-Oriented Computing–ICSOC 2008 Workshops,
Springer (2009) 136–147

124

2. Bosch, J.: From software product lines to software ecosystems. In: Proceedings of
the 13th International Software Product Line Conference, Carnegie Mellon Uni-
versity (2009) 111–119

3. Messerschmitt, D.G., Szyperski, C.: Software ecosystem: understanding an indis-
pensable technology and industry. MIT Press Books 1 (2003)

4. Hartmann, B., Doorley, S., Klemmer, S.R.: Hacking, mashing, gluing: Understand-
ing opportunistic design. Pervasive Computing, IEEE 7(3) (2008) 46–54

5. Sein, M., Henfridsson, O., Purao, S., Rossi, M., Lindgren, R.: Action design re-
search. MIS Quarterly 35(1) (2011) 37–56

6. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Communications of the ACM 51(1) (2008) 107–113

7. Bonnet, L., Laurent, A., Sala, M., Laurent, B., Sicard, N.: Reduce, you say: What
NoSQL can do for data aggregation and BI in large repositories. In: Database
and Expert Systems Applications (DEXA), 2011 22nd International Workshop on,
IEEE (2011) 483–488

8. Okman, L., Gal-Oz, N., Gonen, Y., Gudes, E., Abramov, J.: Security issues in
NoSQL databases. In: Trust, Security and Privacy in Computing and Communi-
cations (TrustCom), 2011 IEEE 10th International Conference on, IEEE (2011)
541–547

9. Fitzpatrick, B., Slatkin, B., Atkins, M.: Pubsubhubbub core 0.3.
http://pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-core-0.3.html
(2010)

10. Buysse, D.J., Reynolds, C.F., Monk, T.H., Berman, S.R., Kupfer, D.J.: The Pitts-
burgh sleep quality index: a new instrument for psychiatric practice and research.
Psychiatry research 28(2) (1989) 193–213

11. Wong, J., Hong, J.: What do we mashup when we make mashups? In: Proceedings
of the 4th international workshop on End-user software engineering, ACM (2008)
35–39

12. Lee, C.J., Tang, S.M., Tsai, C.C., Chen, Y.C.: Toward a new paradigm: Mashup
patterns in web 2.0. WSEAS Transactions on Information Science and Applications
6(10) (2009) 1675–1686

13. Zang, N., Rosson, M.B., Nasser, V.: Mashups: who? what? why? In: CHI’08
extended abstracts on Human factors in computing systems, ACM (2008) 3171–
3176

14. Mikkonen, T., Taivalsaari, A.: The mashware challenge: bridging the gap between
web development and software engineering. In: Proceedings of the FSE/SDP work-
shop on Future of software engineering research, ACM (2010) 245–250

15. Hartikainen, M., Salminen, A., Kallio, J.: Towards mobile multimedia mashup
architecture. In: Software Engineering and Advanced Applications (SEAA), 2012
38th EUROMICRO Conference on, IEEE (2012) 439–445

16. Mikkonen, T., Salminen, A.: Towards a reference architecture for mashups. In: On
the Move to Meaningful Internet Systems: OTM 2011 Workshops, Springer (2011)
647–656

17. López, J., Pan, A., Bellas, F., Montoto, P.: Towards a reference architecture for
enterprise mashups. Actas de los Talleres de las Jornadas de Ingenieŕıa del Software
y Bases de Datos 2(2) (2008)

125

Code Oriented Approach to 3D Widgets

Anna-Liisa Mattila

Department of Pervasive Computing,
Tampere University of Technology,

Korkeakoulunkatu 1, FI-33720 Tampere, Finland
anna-liisa.mattila@tut.fi

Abstract. With newly introduced standards, it has become increasingly
feasible to develop interactive 3D applications even with web technolo-
gies only. Unfortunately many of the available 3D graphics libraries are
built on low-level facilities, which, while well-suited for demos, complicate
the design of true applications. The research of interactive 3D applica-
tions has mainly focused on developing interaction techniques, input-
and output devices and figuring out what would be right metaphors and
paradigms to develop usable and still highly interactive 3D user inter-
faces. Little consideration is put on how to actually ease the programming
of an interactive 3D application. In this paper, we explore the current
3D research and tools used for developing interactive 3D applications
addressing the missing abstraction of code oriented 3D widgets.

Keywords: Widgets, 3D, 3DUI, WebGL

1 Introduction

As 3D technologies have become more common, it has become increasingly fea-
sible to develop interactive applications even with web technologies only, with
no vendor-specific plugins that would require separate installation. However pro-
gramming 3D applications is still difficult task.

The research of interactive 3D applications has mainly focused on developing
interaction techniques, input and output devices and figuring out what would
be right metaphors and paradigms to develop usable and still highly interac-
tive 3D user interfaces. Little consideration is put on how to actually ease the
programming of an interactive 3D application. Programming of interactive 3D
applications is mainly done with low level facilities like 3D engines and modeling
tools. [1]

The 3D engines used are well suited for simplifying rendering operations
but they do not include functionality for user interaction. When there is no
built-in support for user interaction an application developer has to implement
not just event handlers but also the event system from the scratch for every
application. This takes plenty of work and might risk reusability, maintainability
and scalability of the application.

In 2D application development widget libraries and managed graphics tools
are used by daily basis, and when building a user interface the WIMP (windows,

126

icons, menus, pointers) paradigm is widely adapted. However there is no single
paradigm to follow in 3D UI development, even if in 3D development concept
of widgets exists [2]. Still, the concept of 3D widgets has not been adapted to
frameworks used for programming 3D graphics. [3] [1]

In [4] we have introduced a code oriented 3D widget library –WebWidget3D–
for WebGL enabled browsers. The library is made with JavaScript and it uses
WebGL for rendering. The aim of the library is to make programming interac-
tive 3D applications easier. In this paper we reflect our implementation against
previous research and address a missing abstraction level in 3D application de-
velopment.

The paper is structured as follows. In Section 2 the theoretical background
of the paper is addressed and following that in Section 3 the motivation of this
work is described. In Section 4 related work is addressed. In Section 5 missing
abstraction level of 3D application development is presented. In Section 6 the
proposed solution –WebWidget3D– is introduced and in Section 7 the evaluation
of the solution is done. Discussion and future work are addressed in Section 8
and final conclusions are drawn in Section 9.

2 Background

2.1 Abstractions of graphics programming

Interactive applications can be programmed in various ways. There are plenty of
libraries and programming tools for both 2D and 3D graphics programming and
user interface designing. In Figure 1 a rough simplified division of abstraction
levels are introduced. Most of the libraries and tools for graphics programming
fall into this division.

Fig. 1. Layers of graphics programming abstractions

Graphics API. Graphics API is low level programming interface that ab-
stracts the underlying graphics hardware. OpenGL, WebGL and Direct3D are

127

graphics APIs in this sense. When developing applications in this abstraction
level, application developer must have good knowledge on graphics pipeline and
graphics programming in general and she might need also some information
about the underlying graphics hardware.

Graphics libraries. Graphics libraries in this context covers up libraries that
provide basic functionality for drawing primitive shapes such as lines, triangles,
points, spheres and custom geometry. Libraries also cover basic functionality for
changing materials and applying basic transformations to the geometry drawn.
Graphics libraries are considered for simplifying rendering operations and hiding
technical details of used graphics API and hardware. Graphics libraries abstrac-
tions vary a lot between each other but in this simplification the nominating
factor is that none of these libraries provides tools for user interaction. Handling
events is entirely programmers’ responsibility from determining if an event was
addressed to any object and deciding what actions should take place. E.g. most
of 3D engines used for game development and 2D drawing libraries and APIs
belongs to this abstraction level.

Widgets. In [2] widget is defined as ”an encapsulation of geometry and be-
havior used to control or display information about application objects”. For
instance, a button is a common widget that is available in almost any widget
library. Button has a predefined representation (geometry) and it can be pressed
(behavior). In addition to widget sets, widget libraries can also provide tools for
building custom widgets. Widgets simplify the programming by combining user
interaction and geometry together. Widget libraries usually provide event han-
dling mechanisms or such for user interaction. Application developer needs only
to define the action that takes place when a certain event is addressed to a wid-
get. Compared to graphics libraries using widgets makes it easier to separate the
user interface code from application logic and thus results more structured ap-
plications. The abstraction level of widgets covers up all libraries and other tools
that fulfill the definition. Thus this category includes not only full scale widget
libraries but also tools that enable binding geometry and interaction together.

Managed graphics. With managed graphics, widgets can be placed in a host-
ing context, where individual widgets are managed by the context. This simpli-
fies numerous operations such as transformations and scaling, as widgets do not
require individual handling. Moreover, it can be helpful to define the basic prin-
ciples of layouting by e.g. determining the proportion of the window that is used
for text instead of defining the exact size of the text field in pixels. Due to the
increasing level of abstraction, the programmer has even less control over what
takes place upon rendering, but everything takes place in a managed fashion.

2.2 WebGL

There are many different ways to implement 3D graphics inside the browser
without plug-in components, which would require separate installation. However,
most of them are intended for 2D use and 3D use is a later extension. The
only technology that is truly intended for 3D use, and does not require plug-
in components, is WebGL, which is true reason we have decided to use it. In

128

the following, we give a brief overview to WebGL, the technology used in the
implementation of the WebWidget3D.

WebGL is a standard being developed by Mozilla, Khronos Group, and a
consortium of additional companies. The standard is based on OpenGL ES 2.0
[5], and it uses OpenGL shading language GLSL. WebGL runs in the HTML5’s
canvas element. [6]

For practical purposes, WebGL means that a comprehensive JavaScript API
is provided to open up OpenGL programming capabilities to JavaScript pro-
grammers, although it is meant for low-level rendering operations. To make
it easier and faster to use WebGL, several additional JavaScript frameworks
and APIs have been introduced, including Copperlicht1, C3DL2, GLGE3, and
three.js4, to name a few commonly used systems. All these frameworks have their
own JavaScript API through which the actual WebGL API is used. In general,
the goal of these libraries is to hide the majority of technical details and thus
make it simpler to write applications using the framework APIs. Furthermore,
these WebGL frameworks provide functions for performing basic 2D and 3D
rendering operations such as drawing a rotating cube on the canvas. The more
advanced libraries also include functions for performing animations, adding light-
ing and shadows, calculating the level of detail, collision detection, and so forth.
Such rich capabilities enable the creation of more compelling effects relatively
easily. However, all these libraries are intended for rendering level operations,
and support for more abstract needs of applications are not addressed.

3 Motivation

Widget libraries like WxWidgets and tools for managed graphics are commonly
used in 2D application development. However programming of interactive 3D
applications is still made with the facilities of rendering level 3D engines and
modeling software. 3D models are first made with the 3D modeling tool after that
the functionality is programmed using a 3D engine, a physics engine and other
application-specific tools. Even if the concept of 3D widgets was first introduced
in 1992 by Conner et al [2] the concept is not widely adapted in 3D graphics
libraries.

The 3D engines used are well suited for simplifying rendering operations but
do not include functionality for user interaction. Binding mouse event handlers
or corresponding interaction mechanism to objects using 2D widget libraries or
similar tools is pretty simple. Application developer defines the action that takes
place in certain event for certain object. However when developing 3D applica-
tions using just 3D engines facilities the situation is more complicated. Applica-
tion developer is responsible also for defining the logic that detects whether an
object was e.g. clicked and what actions should take place.

1 http://www.ambiera.com/copperlicht/
2 http://www.c3dl.org/
3 http://www.glge.org/
4 http://threejs.org/

129

Detecting whether an object was clicked in 3D environment application de-
veloper must typically do the following steps:

1. Determine if the mouse hit a 3D object.
– Transform the mouse position coordinates into the 3D world’s coordinate

system.
– Do ray casting from the mouse’s 3D world coordinates.
– Run collision detection between the ray and objects in 3D world.

2. If a 3D object was hit, deduce the type of the object that was hit.
– Deduce the action that take place for the object hit when it was clicked

with a mouse.

Applying the interaction logic and actions separately for every application
allows highly customized and application-specific user interfaces but the code of
the user interface is tightly bound to the application and therefore code reuse can
be difficult. Also designing a highly interactive 3D application can be complicated
when support of higher level of abstraction concepts are missing. Designing an
application where every object can be interacted with same manners (e.g. clicked
or dragged with mouse) is quite simple even if we do not have any support for
interaction. However when designing complicated applications, where different
objects can have different actions and where actions can be dependent from
other actions, the designing gets quickly very complex. In worst case, developing
interactive 3D applications with low abstraction level tools result to spaghetti
code that does not scale up and is hard to maintain. [2] [7] [8]

When designing a 3D widget library there are several things that have to
be noted. First of all, interactive 3D applications are not similar to most of
the 2D applications. 3D is most used for immersive games and virtual reality
applications which are graphically intense but also for data visualization. The
look and feel of a 3D application is usually dependent on the application. There
is no standardized 3D user interface paradigm like WIMP to follow and there
may never be [1]. When in 2D environments WIMP metaphor is proven to be
effective, it is not applicable in 3D environments. Applying WIMP metaphor to
3D environments as is would limit look and feel of applications and it might
restrict degrees of freedom that can be applied on 3D objects in 3D space [1] [3]
[7].

In 2D user interface design separation of user interface definition and ap-
plication logic is considered preferable [7] [2]. However in no WIMP interfaces
which 3D user interfaces mainly are it is stated that tight separation between
application logic code and user interface code is not necessarily desirable because
it might limit interaction techniques that can be used in the interface [3] [7] [2].
Therefore the development of 3D applications is significantly different from 2D
applications.

4 Related work

The research of interactive 3D applications has mainly focused on developing
interaction techniques, input and output devices and figuring out what would

130

be right metaphors and paradigms to develop usable and still highly interac-
tive 3D user interfaces. Little consideration is put on how to actually ease the
programming of an interactive 3D application. [1]

The basic concept of 3D widgets as first-class objects is presented in [2]. We
agree on the introduced approach at the principal level. However the research
is focused on solving problems in 3D interaction and constructing 3D widgets
whereas our work’s aim is to study how programming of 3D applications could be
made easier. The 3D widget system UGA, built as a research artifact, introduces
a new scripting language for 3D widgets construction and provides toolkit for
constructing widgets [9].

In [7] a concept-oriented design (COD) approach to 3D user interface devel-
opment and Chasm tool as an implementation of the approach are introduced.
Chasm is an executable user interface description language (UIDL) for 3D user
interface development. The presented approach reduces the complexity of 3D
user interface development. Chasm has been shown to be useful for creating
complex full scale 3D system user interfaces. However it does not targets to
simplify the programming of 3D applications.

Declarative technologies are commonly used for creating virtual environ-
ments. Virtual Reality Modeling Language, VRML, is a file format for repre-
senting interactive 3D graphics in web. Concept of VRML was introduced in
1994 in [10]. In VRML the 3D world is defined in declarative manner and ac-
tions, such as user interaction and animations, are scripted. Most of 3D modeling
software can export models in VRML format. X3D [11] is a XMl based successor
of VRML. To view VRML and X3D scenes, additional software, i.e. BS Contact,
is needed.

X3DOM [12] is a webGL based implementation of X3D which can run in
web browser without plug-in components. The goal of the X3DOM is to embed
3D content into DOM and thus enable the use of 3D content in web applica-
tions in same manner as 2D content. XML3D [13] is another implementation of
declarative 3D graphics based on WebGL. XML3D also integrates 3D content
into DOM but in difference to X3DOM, XML3D is not based on X3D. X3DOM
and XML3D are in development state at the moment.

CONTIGRA is X3D based widget library, which offers high level of separation
between 3D widget declaration and application logic. CONTRIGRA also has
high support on component reuse and it provides tools for widget distribution.
[14] [15] [8]

BEHAVIOR3D, introduced in [16], is a X3D framework for designing 3D
graphics behavior. It is used for implementing and designing behavior to 3D
objects. BEHAVIOR3D is designed to be used with CONTIGRA. While in X3D
and in CONTIGRA behavior of 3D objects are implemented using scripts, with
BEHAVIOR3D behavior can be implemented by declarative way using XML.

A benefit for VRML and X3D is that those are widely used, established,
technologies for creating virtual environments. X3DOM and XML3D are also
promising new technologies in development of 3D web applications. CONTIGRA
and BEHAVIOR3D introduce a strong declarative toolset for 3D widget creation

131

and distribution. However all these tools and technologies stand for declarative
approach to 3D development while our interest is on code oriented approach.

While declarative technologies are used for creating virtual environments, as
well code oriented approaches, e.g. 3D engines and other graphics libraries, are
widely used. 3D engines are mainly focused on abstracting rendering operations
and support for user interaction is lacking. We have reviewed a number of 3D
engines including Unity5, OGRE6, three.js7, Copperlicht8, C3DL9, GLGE10 and
SpiderGL11. Unlike X3D or X3DOM, none of these 3D engines have support
for binding user interaction directly to 3D objects which makes programming
interactive 3D applications more difficult. Our interest in particular is to develop
the code oriented approach further by extending 3D engines facilities to support
concept of 3D widgets.

5 Missing Abstraction

In [14] it is stated that X3D and VRML are declarative counterpart for 3D
engines which are code oriented. This means that in [14] the abstraction level of
X3D and 3D engines is stated to be same. The definition of widget, introduced
earlier in Section 2.1 is: ”Widget is an encapsulation of geometry and behavior
used to control or display information about application objects” [2]. Hence X3D
and VRML have support for binding user interaction to 3D objects and 3D
engines do not have that support, abstraction level of these tools are not same.
3D engines operates in Graphics libraries abstraction level introduced previously
in Figure 1 while X3D and VRML operates actually in Widgets abstraction level
albeit those are not exactly thought to be widget libraries.

One level of abstraction is missing. There is no support for code oriented
way to do 3D widgets. When figuring out which tools to use for implementing
interactive 3D applications, the application developer can choose between code
oriented and declarative approaches. If she chooses code oriented approach, there
is no support for interaction. We claim that this is one of the reasons why
programming interactive 3D applications is still difficult.

Declarative XML based tool always has to have a program that executes it
[17]. If programming tools do not support the same abstraction level concepts
that the intended declarative tool does, development of the underlying software
is more difficult and can cause problems if the software needs to be ported to
other technology.

In [8] difficulties in making the widget toolkit portable for other 3D tech-
nologies were reported. We state that these difficulties were due bypassing code

5 http://unity3d.com/
6 http://www.ogre3d.org/
7 http://threejs.org/
8 http://www.ambiera.com/copperlicht/
9 http://www.c3dl.org/

10 http://www.glge.org/
11 http://spidergl.org/

132

oriented 3D widget abstraction totally and undermining the differences between
different 3D technologies. Use of XML in 3D UI tools are argued for being in-
dependent from the underlying technologies and it’s argued that therefore the
3D UI tool is easy to port to different 3D technologies. Still 3D technologies un-
derneath the XML might not be compatible at all. Hence XML do not actually
give any real advantage compared to other programming languages on portabil-
ity issues. Programming a whole 3D engine and widget concept from scratch to
port the high level UI system for a different 3D technology is a lot of work. If the
higher abstraction levels were built on top of the existing lower abstraction level
facilities without bypassing abstraction levels, the gap between 3D technologies
could be reduced and portability made easier.

In Figure 2 simplification of current relations between declarative and code
oriented approaches based on our observations is introduced. In Figure 3 our
suggestion of relations is introduced.

Fig. 2. Relations of declarative
and code oriented approaches.

Fig. 3. Suggested relations be-
tween different approaches.

From the Figure 2 it can be deducted that at the moment code oriented
approach and declarative approach is tightly separated. The only common nom-
inator is the low level graphics API. However the declarative approach does not
have to be separated from code oriented approach. It can be built upon already
existing code oriented abstractions as is shown in Figure 3.

6 WebWidget3D

6.1 User interaction

The WebWidget3D library [4] aims at making developing of interactive 3D ap-
plications to web easier. The library supports input devices that generate DOM

133

events. At this point these input devices are commonly mouse, keyboard and
touch screen.

In traditional web applications, DOM event handlers are usually bound to
HTML elements, such as buttons and text boxes, for instance. In a WebGL based
3D world, however, binding events to a certain 3D widget is more complicated.
The whole 3D world is rendered into a single canvas element. Therefore, when
using the traditional approach, DOM events can be bind to the canvas but not
directly to 3D objects inside the canvas, as one would most commonly prefer.
Instead, handling events in a WebGL based 3D world is more complicated than
in ordinary web applications.

To handle events in WebGL 3D world the first part is to bind the wanted
handlers to the canvas element. When a mouse event is triggered we need to
know the point where the mouse hits to determine if the mouse event hits a
3D object or not. Consequently, we need to perform the steps of mouse click
detection described before in Section 3. Interaction can be done also with other
than pointing devices, e.g. with keyboard. For keyboard event handling, main
event handlers an additional logic for deducing the right actions is also needed.

The WebWidget3D provides an event system which enables the application
developer to attach event handlers directly to the 3D objects trough an API that
is similar to the API for binding DOM event handlers to HTML elements. The
application developer can also define her own events, trigger events and pass
events to designated widgets using the event system.

In WebWidget3D there are three main types of events which are supported:

1. Pointing device events

2. Keyboard events

3. Custom events / messages

Pointing device event objects must contain coordinate data in window co-
ordinate system. The WebWidget3D event system handles the ray casting and
passing the event to right widgets. Keyboard events are passed to all widgets
that are focused and have the listener for the event. Custom events are events
that are not pointing device events or keyboard events. Also other DOM events
than pointing device events and keyboard events are custom events. Custom
events are passed to all widgets that have the listener for the event. Custom
events can be used e.g. for passing messages between widgets. In WebWidget3D
all types of events can also be bind to the application. The application’s event
handler is called always when the event occurs. The amount of event handlers
for one event for one object is not limited.

To simplify application developers work WebWidget3D introduces also some
predefined controls that can be applied to widgets. These predefined controls
are a set of event handlers that perform e.g. object drag functionality. At the
moment WebWidget3D has only two predefined controls which are roll- and
drag controls. With roll control a widget can be rotated around its x- and y-axis
by mouse. With drag control widget can be dragged around the 3D world with
mouse. The drag is done always coaxial to the camera so that the object moves

134

as in 2D space. This is most intuitive drag control when the input device is
regular mouse. More controls are under consideration but not yet implemented.

The controls are designed for regular 2D mouse and keyboard which produces
some complexity for combining controls. Drag and roll are done with same mouse
gestures and if there is no information from where system could deduce which
action the user would prefer, both actions take place simultaneously. For com-
bining controls application developer can define parameters for example to roll
only if shift key is pressed or disabling unwanted controls in certain situations.

6.2 Concept of 3D widgets

The WebWidget3D library applies the concept of 3D widgets by providing widget
building blocks that can be instantiated, specialized, refined and composite to
create a desired 3D widget. The widget building blocks have different roles and
responsibilities in the design. Common for all building blocks is the capability
of receiving events and the predefined controls can be applied to them. None
of the building blocks include a concrete graphical representation. Graphical
representation of a widget can be designed with modeling tools to ensure desired
look that is suitable for the application.

The building blocks offered are: Basic, Text, Group and CameraGroup. Ba-
sic is the base for all widgets. Basic can receive events and a 3D model can be
attached to it. It has no special features and it is the simplest building block
in the set. Text includes simple string handling functionality so that it can be
used to store dynamic text, e.g. users input from keyboard. Group can host child
components of any type. Group provides also some utilities to manage its child
components i.e. focusing and hiding all children. Also rotations, translations and
changes in visibility are always propagated to Group’s children. With Camera-
Group widgets can be attached to camera so that the widgets orientation and
distance to the camera doesn’t change when the camera is moved.

These widget building blocks and the event system form the core of the Web-
Widget3D. The core of the library is designed so that it can be used with any
JavaScript 3D engine. There is a specialized adapter component that is used
between the 3D engine and the WebWidget3D core. The proof-of-concept im-
plementation done uses three.js 3D engine for rendering. WebWidget3D does not
hide the API of 3D engine from application developer so application developer
can use all the functionality and visual effects 3D engine has to offer.

6.3 Predefined Widgets

To prove that WebWidget3D can be used for creating concrete reusable 3D wid-
gets, a set of ready-to-use widgets were made. These widgets are built using
the widget building blocks described previously and facilities of three.js 3D en-
gine. The widgets follow closely WIMP paradigm and are designed mainly for
Lively3D 3D desktop environment, which is introduced in [4].

135

Grid Window and Grid Icon are used to form a grid widget. The grid size
is dynamically derived from the amount of its children and grid icons are auto-
matically placed to first free slot on the grid when created. Grid Window can
be rotated by its axis using roll controls. Also drag controls and custom controls
can be applied to Grid Window.

Titled Window is similar to common WIMP windows. Its representation is a
quadrangle and it has a title bar at the top of the window and a close button at
the upper right corner. The content of the window can be anything that can be
rendered into texture. Titled Window has drag controls built-in as GridWindow
has roll controls.

Dialog is a widget that can be used to form dialogs or forms. Menu widget
has multiple choice buttons and a description text.

All of the widgets introduced have been used in Lively3D 3D desktop en-
vironment. In Figure 4 a screenshot from Lively3D environment is presented.
Most of the widgets described above are present in the figure.

Grid widget is used successfully also in picture explorer application where
the preview images are rendered to the icons and clicking the icon will open the
full sized image. Titled window is also used in some example applications to host
video content.

Fig. 4. Screenshot from Lively3D

Predefined widgets are handy when building applications like Lively3D or
when implementing small demonstrations. However, when designing graphically
highly intensive and immersive applications, using predefined widgets might not
be desired. The application designer can design her own set of widgets that she

136

uses in that particular application. Widgets designed for one purpose might not
be suitable for other applications even if the code reuse is possible.

Separating widget definition from application logic makes the application
code structured and easier to maintain [14]. The user interaction part can be
programmed either as a part of the application logic or as a part of the widget
definition. The application developer can choose the level of separation between
the user interface and the application logic. If the application logic and widget
definition were forced to be separated it might limit the possibilities of interaction
mechanisms used [7].

7 Evaluation of WebWidget3D

In our previous work we focused on introducing the architecture and implemen-
tation of WebWidget3D. On this paper our aim is to evaluate the work towards
the previous research pointed out in Section 4.

In Table 1 wanted features for 3D widget library are introduced. Three.js,
X3D and Widget3D are compared against these features. In the table x means
that feature is fulfilled and ? means that feature is not tested. Blank means that
technology does not fulfill requirements.

Table 1. Desired features of 3D widget library

Feature three.js X3D WebWidget3D CONTIGRA

Combines the 3D objects’ geometry and
behavior together [2] [14]

x x x

Does not limit the look and feel of the ap-
plication [1] [7]

x x

Supports code reuse [14] [2] x x

Does not limit the degrees of freedom that
can be used in input devices and applied
to widgets [1] [7] [3]

x x ? x

Offers predefined widgets [14] x x

Independent from used 3D technology [8] x ?

WebWidget3D succeeds to fulfill four features from six listed in Table 1.
The library combines the 3D objects’ geometry and behavior together forming
3D widgets. Also CONTIGRA and X3D fulfills this feature. Three.js however
operates in lower abstraction level and hence does not support the concept of
3D widgets.

WebWidget3D doesn’t hide the 3D engines API so application developer can
use all the features provided by the 3D engine. The application developer can de-
sign her own widget set and controls using the library. Thus webWidget3D does

137

not limit the look and feel of application. WebWidget3D enables code reuse but
application logic and user interface code can also be combined if it is necessary.

In X3D available visual effects are dependent from the implementation of
X3D used. This is why using X3D might limit capabilities of underlying 3D
technology and also the look of the application. CONTIGRA separates the user
interface definition from application logic tightly and thus supports code reuse
but might limit the look and feel of the application [7] [3]. CONTIGRA is also
based on X3D.

WebWidget3D does not necessary limit the degrees of freedom that can be
used in input devices but at the moment library is used and tested only with
standard 2D input devices which are mouse and keyboard. The library can be
used with other kind of input devices as data glove or 3D mouse if the device
can fire DOM events and the input of the device can be read from the DOM
event object in the format which WebWidget3D’s event system can understand.

Using WebWidget3D with other than web technologies is not possible without
lots of work because the built-in event system is based on DOM. Nevertheless
the concept of 3D widget library that can use already existing 3D engine for
rendering is applicable in other environments too. At the moment WebWidget3D
does not fulfill the requirement of being independent from 3D technology used.

Also three.js is designed on top of WebGL and web technologies so it is not
portable to other 3D technologies as is. However, corresponding 3D engines exists
on other platforms too. X3D is portable to other 3D technologies as X3DOM,
webGL based implementation of X3D shows. However porting X3D can also
demand lots of work. CONTIGRA is designed so that it can be ported to other
technologies than X3D. According to [8] this feature was never tested because it
required more work than planned.

WebWidget3D’s goal is to make programming of interactive 3D applications
easier. It is not a 3D widget design tool or 3D UI creator. At this state Web-
Widget3D is just a research artifact that needs to be refined. However even in
its current state the WebWidget3D can be used for programming interactive 3D
applications. In [4] we made measurements with WebWidget3D that clearly ad-
vocates the widget approach over the use of only 3D engines facilities. Concept
of 3D widgets is powerful even if it wouldn’t result high code and widget reuse
between applications.

8 Discussion and Future Work

In [1] it is stated that in 3D user interface research the discussion is kept on a high
abstraction level on purpose because of instability of underlying 3D technology.
This might be one of the reasons why code oriented approach to 3D widgets is
not studied. On 2D application development the programming tools and also
UI tools are highly developed and of course it would be fantastic to have 3D
application development in the same level. When approaching the issue from
the higher abstraction levels we might think that the lower levels actually exists
and forget to consider gaps between used technologies.

138

Also 3D engines have developed a lot in a couple of years. Before program-
ming 3D applications was even harder than it is now. Application developers
who are used to develop applications with low abstraction level facilities might
not see why the widget abstraction is needed.

For a future work we are building more adapters to WebWidget3D to val-
idate its use with different 3D engines. Also implementing similar architecture
to desktop environments is planned. Portability issues of 3D tools are studied
further. Code camp where students test programming 3D applications with Web-
Widget3D is under consideration. Also further research on which tools are most
commonly used in 3D development will be done.

9 Conclusions

In this paper we have addressed a missing abstraction of 3D programming and
made literature based evaluation of WebWidget3D.

It is evident that for developing complex interactive 3D applications better
programming tools are needed. The widget level of abstraction programming
tools are still lacking and we state that this is one of the reasons why program-
ming of interactive 3D applications is still difficult.

The research about 3D environments and tools has long been considered on
the higher abstraction level issues undermining the importance of decent pro-
gramming tools for 3D applications. This has led the 3D application develop-
ment into a state where application developer must choose between declarative
3D tools and 3D graphics libraries, which have no support for interaction. This
is a generic area where improvement is expected to happen.

References

1. Bowman, D., Kruijff, A., Jr., J.L.: 3D User Interfaces: Theory and Practice. Ad-
dison Wesley (2005)

2. Conner, B.D., Snibbe, S.S., Herndon, K.P., Robbins, D.C., Zeleznik, R.C.,
Van Dam, A.: Three-dimensional widgets. In: Proceedings of the 1992 sympo-
sium on Interactive 3D graphics, ACM (1992) 183–188

3. Green, M., Jacob, R.: SIGGRAPH’90 Workshop report: software architectures and
metaphors for non-WIMP user interfaces. ACM SIGGRAPH Computer Graphics
25 (1991) 229–235

4. Mattila, A.L., Mikkonen, T.: Designing a 3d widget library for webgl enabled
browsers. In: In proceedings of the 28th Symposium On Applied Computing.
Volume 1., ACM (March 2013) 757–760

5. : OpenGL ES Common Profile Specification. Technical report, Khronos Group
(2010) http://www.khronos.org/registry/gles/specs/2.0/es full spec 2.0.25.pdf/.

6. : WebGL Specification. Technical report, Khronos Group (2011)
http://www.khronos.org/registry/webgl/specs/1.0/.

7. Wingrave, C.A., Laviola Jr, J.J., Bowman, D.A.: A natural, tiered and executable
uidl for 3d user interfaces based on concept-oriented design. ACM Transactions
on Computer-Human Interaction (TOCHI) 16(4) (2009) 21

139

8. Dachselt, R., Hinz, M., Meißner, K.: Contigra: an xml-based architecture for
component-oriented 3d applications. In: Proceedings of the seventh international
conference on 3D Web technology, ACM (2002) 155–163

9. Zeleznik, R.C., Herndon, K.P., Robbins, D.C., Huang, N., Meyer, T., Parker, N.,
Hughes, J.F.: An interactive 3d toolkit for constructing 3d widgets. In: Proceedings
of the 20th annual conference on Computer graphics and interactive techniques,
ACM (1993) 81–84

10. Raggett, D., et al.: Extending www to support platform independent virtual reality.
In: Proc. Internet Society/European Networking. (1994) 242

11. Brutzman, D., Daly, L.: X3D: extensible 3D graphics for Web authors. Morgan
Kaufmann (2010)

12. Behr, J., Jung, Y., Drevensek, T., Aderhold, A.: Dynamic and interactive as-
pects of x3dom. In: Proceedings of the 16th International Conference on 3D Web
Technology, ACM (2011) 81–87

13. Sons, K., Klein, F., Rubinstein, D., Byelozyorov, S., Slusallek, P.: Xml3d: interac-
tive 3d graphics for the web. In: Proceedings of the 15th International Conference
on Web 3D Technology, ACM (2010) 175–184

14. Dachselt, R.: Contigra towards a document-based approach to 3d components. In:
Workshop’Structured Design of Virtual Environments and 3D-Components’ at the
ACM Web3D 2001 Symposium, Citeseer (2001)

15. Dachselt, R.: Contigra: A high-level xml-based approach to interactive 3d compo-
nents. In: SIGGRAPH 2001 Conference Abstracts and Applications. Volume 163.
(2001)

16. Dachselt, R., Rukzio, E.: Behavior3d: an xml-based framework for 3d graphics
behavior. In: Proceedings of the eighth international conference on 3D Web tech-
nology, ACM (2003) 101–ff

17. : Extensible Markup Language (XML) 1.1 (Second Edition). Technical report,
W3C (2006) http://www.w3.org/TR/2006/REC-xml11-20060816/.

140

The Browser as a Host Environment
for Visually Rich Applications

Jari-Pekka Voutilainen and Tommi Mikkonen

Department of Pervasive Computing, Tampere University of Technology
P.O. Box 553, FI-33101 Tampere, Finland

{jari-pekka.voutilainen,tommi.mikkonen}@tut.fi

Abstract. The World Wide Web has rapidly evolved from a simple
document browsing and distribution environment into a rich software
platform where desktop-style applications are treated as first class citi-
zens. Despite the technical difficulties and limitations, it is not unusual
for complex applications to use the web as their only platform, with
no traditional installable application for the desktop environment – the
system is simply accessed via a web page that is downloaded inside the
browser. With the recent standardization efforts, such as HTML5 in par-
ticular, applications are increasingly being supported by the facilities of
the browser. In this paper, we demonstrate the new facilities of the web
as an visualization tool, going beyond what is expected of browser based
applications. In particular, we demonstrate that with mashup technolo-
gies, which enable combining already existing content from various sites
into an integrated experience, the new graphics facilities unleashes un-
foreseen potential for visualizations.

Keywords: Web applications, visualization, scene graph, window man-
agement

1 Introduction

Over the past years, the World Wide Web has evolved from a simple docu-
ment browsing and distribution environment into a rich software platform where
desktop-style applications are increasingly often treated as first class citizens.
However, the document-centric origins of the Web are still visible in many areas,
though, and traditionally it has been difficult to compose truly interactive web
applications without using plug-in components or browser extensions such as
Adobe Flash or Microsoft Silverlight, to name two examples. Despite the tech-
nical difficulties and limitations, it is not unusual for complex applications to
use the web as their only platform, with no traditional installable application
for the desktop environment – the system is simply accessed via a web page that
is downloaded inside the browser, whose runtime resources are then used by the
application. We believe that the transition of applications from the desktop com-
puter to the web has only started, and the variety, number, and importance of
web applications will be constantly rising during the next several years to come.

141

In comparison to desktop applications, the benefits of web applications are
many. Web applications are easy to adopt, because they need neither installation
nor updating - one simply enters the URL into the browser and the latest ver-
sion is always run. Furthermore, web applications are easy and cheap to publish
and maintain; there is no need for intermediates like shops or distributors. Fur-
thermore, in comparison to conventional desktop applications, web applications
have a whole new set of features available, like online collaboration, user created
content, shared data, and distributed workspace. Finally, with the whole con-
tent of the web acting as the data repository, the new application development
opportunities, unleashed by the newly introduced facilities of the web technolo-
gies that make the browser increasingly capable platform for running interactive
applications, are increasing the potential of the web as an application platform.

In this paper, we demonstrate the new facilities of the web as an information
visualization tool, going beyond what is expected of browser based applications.
In particular, we demonstrate that together with mashup technologies, which
enable combining already existing content from various sites into an integrated,
usually more compelling experience, the new graphics facilities results in unfore-
seen potential for visualization of conceptual data.

The rest of the paper is structured as follows. In Section 2, we discuss the
evolution of the web and the main phases that can be identified in the process,
and briefly address two important web standards - HTML5 and WebGL - and
their role in the development of new types of web applications, building on
already available resources. In Section 3, we introduce our technical contribution,
a host environment that is capable of intregating multiple applications within
single 3D-scene and visualize the environment in three different ways. In Section
4, we discuss the lessons learned from the design and experimentation of the
composed system. Finally, in Section 5 we draw some conclusions and directions
for future work.

2 Background

The World Wide Web has undergone a number of evolutionary phases. Initially,
web pages were little more than simple textual documents with limited user
interaction capabilities. Soon, graphics support and form-based data entry were
added. Gradually, with the introduction of DHTML, it became possible to create
increasingly interactive web pages with built-in support for advanced graphics
and animation. Today, the browser is increasingly used as a platform for real
applications, with services such as Google Docs paving the way towards more
complex systems. One way to categorize the evaluation of the web is presented
in the following, based on [4].

2.1 Evolution of the Web

In the first phase, web pages were truly pages, that is, page-structured documents
primarily including text with some interspersed static images, without animation

142

or any interactive content. Navigation between pages was based on hyperlinks,
and a new web page was fully loaded from the web server each time the user
clicked on a link. Some pages were presented as forms, with simple textual fields
and the possibility to use basic widgets such as buttons, radio buttons or pull-
down menus.

In the second phase, web pages became increasingly interactive, with ani-
mated graphics and plug-in components that allowed richer content to be dis-
played. This phase coincided with the commercial takeoff of the Web, when
companies realized that they could create commercially valuable web sites by
displaying advertisements or by selling merchandise or services over the Web.
Navigation was no longer based solely on links, and communication between the
browser and the server became increasingly advanced. The JavaScript script-
ing language, introduced in Netscape Navigator version 2.0B in December 1995,
made it possible to build animated, interactive content more easily. The use of
plug-in components such as Flash, Quicktime, RealPlayer and Shockwave spread
rapidly, allowing advanced animations, movie clips and audio tracks to be in-
serted in web pages. In this phase, the Web started moving in directions that
were unforeseen by its designers, with web sites behaving more like multimedia
presentations rather than conventional pages. However, these systems are com-
monly based with proprietary presentations, and linking information from dif-
ferent origins was still difficult. Consequently, creating a mashup system, where
data from a set of available services was used as basis for an animation, for
example, remained superfluously complex.

Today, we are in the middle of another major evolutionary step towards
desktop-style web applications, also known as Rich Internet Applications or
simply as web applications. The technologies intended for the creation of such
applications are also often referred to collectively as ”Web 2.0” technologies.
Fundamentally, Web 2.0 technologies combine two important characteristics or
features: collaboration and interaction. By collaboration, we refer to the ”social”
aspects that allow a vast number of people to collaborate and share the same
data, applications and services over the Web. However, an equally important,
but publicly less noted aspect of Web 2.0 technologies is interaction. Web 2.0
technologies make it possible to build web sites that behave much like desktop
applications, for example, by allowing web pages to be updated one user interface
element at a time, rather than requiring the entire page to be updated each time
something changes. Web 2.0 systems often eschew link-based navigation and
utilize direct manipulation techniques familiar from desktop-style applications.

We expect that as more and more data becomes available online, the capa-
bilities of the browser will be increasingly often harnessed to filter and further
process the data into a form that can be more easily consumed. In this context,
two recent initiatives form an important perspective. These are the open web,
perhaps best manifested in Mozilla Manifesto1, which centers around the idea
that the web that is a global public resource that must remain open, accessible,

1 http://www.mozilla.org/about/manifesto.html

143

interoperable and secure, and open data, which according to Wikipedia2, builds
on the idea that certain data should be freely available to everyone to use and
republish as they wish, without restrictions from copyrights, patents, or other
mechanisms of control.

To support the above initiatives, the need to use plugins is being seriously
challenged by two recently introduced technologies, HTML5 and WebGL, as
already pointed out in [5]. These new technologies provide support for creating
desktop-like applications that run inside the browser (HTML5) and enable direct
access to graphics facilities from web pages (WebGL). This, together with already
well-known techniques for mashupping, are paving the way towards the next
generation of web applications, with increasing capabilities for modeling and
visualizing data and conceptual information.

2.2 HTML5

The forthcoming HTML5 standard3 complements the capabilities of the existing
HTML standard with numerous new features. Although HTML5 is a general-
purpose web standard, many of the new features are aimed squarely at making
the Web a better place for desktop-style web applications. There are numerous
additions when compared to the earlier versions of the HTML specification. To
begin with, the new standard will extend the set of available markup tags with
important new elements. These new elements make it possible, e.g., to embed
audio and video directly into web pages. This will eliminate the need to use plug-
in components such as Flash for such types of media. The HTML5 standard
will also introduce various new interfaces and APIs that will be available for
JavaScript applications. Some of the new features are listed in the following,
based on [1].

– Browser history management. In order to manage browsing history in web
applications, the traditional mechanism is clearly inadequate. HTML5 intro-
duces an API that can be used for manipulating the history.

– Canvas element and API. A procedural (as opposed to declarative) 2D graph-
ics API for defining shapes and bitmaps that are rendered directly in the
web browser.

– ContentEditable attribute. The attribute makes it possible to create editable
web documents.

– Drag-and-drop. Drag and drop capabilities that are commonly needed in
numerous applications.

– Geolocation. The Geolocation API defines a set of operations and data el-
ements for accessing geographical location (such as GPS positioning) infor-
mation.

– Indexed hierarchical key-value store (formerly WebSimpleDB).
– MIME type and protocol handler registration.

2 http://en.wikipedia.org/wiki/Open data
3 http://www.w3.org/TR/html5/

144

– Microdata. The goal of microdata is to provide a straightforward way to
embed semantic information into HTML documents.

– Offline storage database. The offline storage database will enable applications
to access their data even when an online connection is not available4.

– Timed media playback.

In addition, HTML5 is an enabler for a number of other specifications that
further enrich the browser as the platform. Of particular interest in our work is
the WebGL specification, which will play a major role by introducing powerful,
hardware accelerated graphics in web applications.

2.3 WebGL

WebGL5 is a cross-platform web standard for hardware accelerated 3D graphics
API developed by Mozilla, Khronos Group, and a consortium of additional com-
panies including Apple, Google and Opera. The main feature that WebGL brings
to the Web is the ability to display 3D graphics natively in the web browser with-
out any plug-in components. WebGL is based on OpenGL ES 2.06, and it uses the
OpenGL shading language GLSL. WebGL runs in the HTML5’s canvas element,
and WebGL data is generally accessible through the web browser’s Document
Object Model (DOM) interface. A comprehensive JavaScript API is provided to
open up OpenGL programming capabilities to JavaScript programmers.

The possibility to display 3D graphics natively in a web browser is one of
the most exciting things happening on the Web for quite a while. Displaying
3D graphics content on the Web has been possible even in the past with APIs
such as Flash, O3D, VRML and X3D, but only with certain browsers or if the
necessary browser plug-in components has been installed explicitly. However,
with WebGL the 3D capabilities are integrated directly in the web browser,
meaning that 3D content can run smoothly in any standard-compliant browser
without application installation or additional components.

The present WebGL specification was released on March 1, 2013 and WebGL
support has already been implemented and included in the current versions of
Apple Safari, Mozilla Firefox and Google Chrome, with Microsoft Internet Ex-
plorer being the only major browser not offering any support. The work continues
towards the next version of the specification and this draft is widely supported
in forthcoming versions of these browsers.

In combination with HTML5 and other web standards, the web browser will
have support for web sockets, video streaming, audio, CSS, SVG, web workers,
file handling, fonts and many other features. With all these capabilities it is
relatively simple to port existing OpenGL applications into the web browser
environment. For example, game engine Unreal Engine 3 has been ported with
Emscripten7 to the browser8 using WebGL and the new features supported by

4 http://www.w3.org/TR/offline-webapps/
5 http://www.khronos.org/webgl/
6 http://www.khronos.org/opengles
7 https://github.com/kripken/emscripten/wiki
8 http://www.unrealengine.com/html5/

145

HTML5. We take this as early evidence that WebGL is powerful enough to
challenge the dominance of binary gaming software.

As a technical detail, it is important to notice that the WebGL API is imple-
mented at a lower level compared to the equivalent OpenGL APIs. This increases
the software developers’ burden as they have to implement some commonly used
OpenGL functionality themselves. To make it easier and faster to use WebGL,
several additional JavaScript frameworks and APIs have been introduced, in-
cluding Three.js9, Copperlicht10, GLGE11, SceneJS12, and SpiderGL13. Such
frameworks introduce their own JavaScript API through which the lower-level
WebGL API is used. The goal of these libraries is to hide the majority of tech-
nical details and thus make it simpler to write applications using the framework
APIs. Furthermore, these WebGL frameworks provide functions for perform-
ing basic 2D and 3D rendering operations such as drawing a rotating cube on
the canvas. The more advanced libraries also have functions for performing an-
imations, adding lighting and shadows, calculating the level of detail, collision
detection, object selection, and so forth.

3 Lively3D: Host environment for web applications

In this section, we introduce a proof-of-concept implementation designed to
demonstrate the new facilities of the browser as a platform. The goal of the
experiment was to create a 3D environment in which applications of different
kind – including data processing, visualization, and interactive applications in
particular – can be embedded as separate elements within a single environment.
Furthermore, the design is based on using facilities that are commonly used in
the web already, implying that to a large extent it is possible to reuse already
existing content in the system.

3.1 Overview

Web app, by simple definition14, is an application utilizing web and [web] browser
technologies to accomplish one or more tasks over a network, typically through
[web] browser. Canvas application is a subset of web app, which uses a single
canvas html-element as graphical interface.

Lively3D15 is a framework, where embedded canvas applications are dis-
played in a three dimensional windowing environment. Individual applications
embedded in the system can thus be composed using the Canvas API, offered

9 http://threejs.org/
10 http://www.ambiera.com/copperlicht/
11 http://www.glge.org/
12 http://scenejs.org/
13 http://spidergl.org/
14 http://web.appstorm.net/general/opinion/what-is-a-web-app-heres-our-definition/
15 http://lively3d.cs.tut.fi/

146

by HTML5. In general, this enables the creation of graphically rich small appli-
cations that are capable of interacting with the user in a desktop like fashion.

The Lively3D framework itself is based on GLGE16, a WebGL library by Paul
Brunt, which abstracts numerous implementation details of WebGL from the
developer. Embedding the applications to the framework was designed in such
a way that the developer of a canvas application needs to implement minimal
interfaces towards the Lively3D system in order to integrate the application
within the environment. Existing canvas applications are easily converted to
Lively3D app by wrapping the existing code to the Lively3D interfaces.

In addition to the applications, the 3D environment that displays the applica-
tions can be redefined using Lively3D interfaces. The applications and different
3D environments are deployed in a shared Dropbox folder, so that multiple de-
velopers can collaborate in implementing applications and environments without
constantly updating the files on the server hosting Lively3D.

Lively3D is implemented as Single-Page Application (SPA) where the whole
application is loaded with a single page load. This provides the user interface and
the basic mechanics of 3D enviroments. The design of Lively3D was considerably
affected by the browser security model, which limits the possibilities of resource
usage. The security model denies access both to the local file system and external
resources in different domain with its Same-origin policy17. The policy is upheld
in Lively3D with server-side proxies, so that the browser sees all the content
in same domain. The main components of the system are illustrated in Figure
1. All components are designed with easy-to-use interfaces and require minimal
knowledge of inner working of the framework.

Applications and 3D scenes are developed in JavaScript using Lively3D API,
deployed to Dropbox using the official Dropbox client, and downloaded into
Lively3D through PHP or Node.js proxies, depending on the situation. The
Lively3D API provides resource loaders, which enable deployment of application
and 3D-scene specific resources to the Dropbox so that complete applications
and 3D scenes can be downloaded through the server hosting Lively3D, thus in
essence circumventing browser security restrictions.

Fig. 1. Structure of the Lively3D framework

When a new 3D scene is designed and implemented, the developer has to
define the essential functions that are called by the Lively3D environment, sim-

16 http://www.glge.org/
17 http://www.w3.org/Security/wiki/Same Origin Policy

147

ilarly to many other graphical user interface frameworks. The functions enable
redefining mouse interaction, the creation of a 3D object in the GLGE sys-
tem that represents the application, and automatic updates of the scene be-
tween frames. Additionally, the initial state of the scene is defined in GLGE’s
XML format, which can be generated with 3D modeling software, like Blender
(http://www.blender.org/) for example.

3.2 Lively3D apps

A Lively3D app consists of canvas application and its data structures in Lively3D
host environment. Usable existing web apps are limited to canvas applications,
because Lively3D is implemented in WebGL and the WebGL specification per-
mits the use of canvas, image and video html-elements as the only source for
textures within the 3D-environment. Most of the data structures are provided
by Lively3D, but some conventions must be followed when converting existing
canvas application to Lively3D app.

Since web apps are usually developed with expectancy that the app will be
the only app in web page, the app structure can be pretty much anything the
developer desires. But since Lively3D is implemented in Single Page Applica-
tion paradigm, Lively3D apps are separated from each other with simulated
namespaces as much as the browser model permits. To achieve this, the can-
vas application must have clearly separated initialization code. Additionally all
the browser elements the app uses, must be created dynamically with a single
canvas-element functioning as the only graphical element of the application. To
mitigate these restrictions Lively3D offers API for canvas applications, which is
presented in figure 2. In the following, we briefly list the most important features
of the API.

Fig. 2. Lively3D API for applications.

To convert existing application to Lively3D app, the application must imple-
ment mandatory function of the figure. To embed the converted app to environ-
ment, the initialization code of the app must start the embedding process with
calling the AddApplication-function. The process is presented in Figure 3.

As illustrated in the figures, each application must implement a few manda-
tory functions and call Lively3D functions in certain order to advance the integra-

148

Fig. 3. Sequence for embedding new Lively3D app.

tion with the environment. During the integration, the canvas app is created and
hidden with CSS-styling. Lively3D creates 3D objects representing the app and
texturizes them with the canvas element. Additionally to the mandatory func-
tions, apps can provide optional functions which react to events like opening and
closing the application within the enviroment. These function have default func-
tionalty if they are unimplemented, but if they are provided the developer can
define what happens to the application status during these events. Additionally,
inner state of the application can be serialized and de-serialized to developer’s
desired format.

Since the canvas element is defined as the only graphical element allowed for
Lively3D Apps, the API also provides user interface functions to display mes-
sages and HTML in Lively3D provided dialogs. This provides consistent user
interface, since Lively3D itself is rendered in a full browser window and possibil-
ities of displaying text or other web interface elements within the environment
are limited due to the WebGL specification. Figure 4 illustrates the existing can-
vas application in the left and the conversion to Lively3D app in the right with
another app in the same environment.

3.3 Redefining the 3D environment

As is common in various 3D applications, including in particular the genre of
computer games, the visualization in our system is based on so-called scene

149

Fig. 4. Conversion of existing application.

graph, a generic tree-like data structure containing a collection of nodes. Nodes
in the scene graph may have many children but most often they only need
a single parent. In this structure, any operation performed to the parent is
further propagated to its children. This flexible data structure enables numerous
different visualizations, where the parent-children role can be benefited from.

The 3D environments in Lively3D are implemented dynamically, so that user
can load new environments and change between them at will. As default only
one environment is initialized in Lively3D and after adding more environments,
the process of switching between environments is presented in Figure 5. Closing
the applications and rebinding the events is done, so that the environment is in
known initial state. Changing of the 3D-objects is required since GLGE allows
3D-object to be present only in one scene at a time.

Fig. 5. Sequence of switching environment.

150

In our experiment, we have created three different ways to visualize a scene
graph where the children are applications and the root node is the 3D environ-
ment hosting the children. Example host environments include a conventional
desktop, a planetary system where applications rotate a sun like in a solar sys-
tem, and a true 3D virtual world, where applications move in a 3D terrain. These
are introduced in the following in more detail, together with a set of screen shots
to demonstrate their visual appearance.

Desktop. The conventional desktop consists of three dimensional room,
cubes that represent closed applications, and planes that act as individual ap-
plications, with the ability to execute JavaScript code, render to the screen, and
so forth. A screenshot of the desktop environment, with three opened and two
closed applications, is presented in Figure 6. The scene mimics all traditional
desktop features, including dragging applications within the desktop and appli-
cation interaction with opening, closing, maximizing and minimizing them with
mouse controls.

Fig. 6. Visualizing the system as a conventional desktop.

Solar system. The solar system scene modifies the presentation of applica-
tions. In this scene, applications are presented as spheres that revolve around
the central sun. Each revolving sphere generates a white trace in accordance to
its path, and the trace is removed when the trace reaches maximum length. Each
sphere uses the texture of the application canvas it is representing, and therefore
each sphere has a different look within the scene. An example scene with 4 ap-
plications is demonstrated in Figure 7. Application windows retain their default
functionality with dragging around, maximizing, minimizing, and so on. When
an application that has been moved around is closed, the application returns to
its position revolving around the central sun, in comparison to the conventional
desktop scene where the application simply retains its current position.

151

Fig. 7. Visualizing the system as a solar system.

Virtual world. The 3D virtual world scene goes even further from the con-
ventional desktop. The only thing retained from the desktop concept are the ap-
plication windows, and the only remaining controls for the windows are opening
and closing the application, which then of course can introduce more controls
within the application. The world itself consists of three dimensional terrain,
where the user can wander around using the keyboard and the mouse. In this
setting, applications are presented as spheres that roam the terrain in random
directions, with their textures simplified to single image for performance rea-
sons - experiences where application textures were used quickly showed that the
resources of the test computer would no longer be adequate for such cases. Us-
ing this visualization, the 3D terrain and seven sample application spheres are
illustrated in Figure 8.

All of the above visualizations are based on the same JavaScript code, with
the only difference being the rendering strategy associated with the scene graph.
Consequently, in all of these systems applications are runnable, and can in fact
run even when they are inactive and being managed by the different host envi-
ronments, except when explicitly disabled for performance reasons.

4 Lessons learned

While our prototype demonstrates that integrating individual applications wit-
hin single web-page is possible and achievable without complex structures from
the application developer, there still are some problems with the implementa-
tion. One of the main goals for the prototype was enabling the use of existing
content. In particular, we would have liked to include complete web sites in
the system as applications, creating a truly virtual world of web-based applica-
tions. However, due to the WebGL specification limitations, the use of existing
content as textures is limited to image, video, and canvas elements, whereas in

152

Fig. 8. Visualizing the system as a 3D virtual world.

order to render existing web pages within 3D environment, the WebGL specifi-
cation should to support IFrames as a source for textures. Currently, this option
is associated with security issues - using the WebGL API gives loaded appli-
cations a direct access to the host devices hardware - which must be resolved
before extending the rendering capabilities. Until then, applications are limited
to the functionality of canvas element to produce graphics. In principle, it would
be possible to perform the necessary rendering inside canvas applications, but
this option led to performance problems even in simplest cases. Additionally,
the current implementation relies on individual canvas-textures for each appli-
cation. This causes performance issues since large texture size is required for
any meaningful application and swapping large textures in the graphics card
slows down the rendering. Furthermore applications share the same JavaScript
namespace which causes problems with variable overwriting. Even though each
application has a simulated private namespace, variables might bleed through
to the global namespace if the variable is missing var keyword. Applications
can access global variables and overwrite them, including Lively3D namespace,
other used JavaScript libraries and even browsers’ default JavaScript functional-
ity. This especially causes accidental problems with generic JavaScript libraries,
since they are usually bound in $ variable, which is overwritten when new li-
brary is loaded and basic functionality of the environment brakes down as result.
These problems could be fixed with proper process model where each application
has its own private namespace and rendering context. With these improvements
performance issues would be limited to individual application and application
interference with each other and Lively3D would be prevented. There has been
some advances in browser implementations such as faster rendering even in mo-
bile phones and experimental browser web elements which would enable indi-
vidual processes for applications, but the use cases for these are currently very
limited.

153

One of the goals of Lively3D was minimal overhead code while embedding
existing applications. We consider that this requirement was achieved quite well,
although comprehensive analysis between converted applications is useless since
amount of overhead code depends on coding conventions. In Lively3D most of
the application initialization must be done dynamically in JavaScript code, as
opposed to convential browser where HTML-tags can handle some of the resource
downloading. The minimal overhead code amounts to about 50 lines of extra
code, which is quite well for the goal.

In the course of the design, we were alarmed by the fact that the circumven-
tion of security restrictions became one of the key design drivers in the experi-
ment. In this field, the problems arise from the combination of the current ”one
size fits all” browser security model and the general document-oriented nature
of the web browser. Decisions about security are determined primarily by the
site (origin) from which the web document is loaded, not by the specific needs of
the document or application. Such problems could be alleviated by introducing
a more fine-grained security model, e.g., a model similar to the comprehensive
security model of the Java SE platform [2] or the more lightweight, permission-
based, certificate-based security model introduced by the MIDP 2.0 Specification
for the Java Platform, Micro Edition (Java ME) [3]. As already pointed out in
[4], the biggest challenges in this area are related to standardization, as it is
difficult to define a security solution that would be satisfactory to everybody
while retaining backwards compatibility. Also, any security model that depends
on application signing and/or security certificates involves complicated business
issues, e.g., related to who has the authority to issue security certificates, which
further contribute complications. Therefore, it is likely that any resolutions in
this area will still take years. Meanwhile, a large number of security groups and
communities, including the Open Web Application Security Project (OWASP),
the Web Application Security Consortium (WASC), and the W3C Web Security
Context Working Group, are working on the problem.

Finally, there are numerous new methodological issues associated with the
transition. The transition from conventional applications to web applications will
result in a shift away from static programming languages such as C, C++ or C#
towards dynamic programming languages. Since mainstream software developers
are often unaware of the fundamental development style differences between
static and dynamic programming languages, they need to be educated about the
evolutionary, exploratory programming style associated with dynamic languages.
Furthermore, techniques associated with dealing with big data - datasets that
are too large to work with using on-hand database management tools - data
mining, and mashup development will be increasingly important.

5 Conclusions

Considering the humble beginnings of the web browser as a simple document
viewing and distribution environment, and the fact that programmatic capabil-
ities on the Web were largely an afterthought rather than a carefully designed

154

feature, the transformation of the Web into an extremely popular software de-
ployment platform is amazing. This transformation is one of the most profound
changes in the modern history of computing and software engineering. In this
paper, we are demonstrating the effect of new ways to visualize content in a fash-
ion where the browser’s new extensions are based on new web protocols rather
than plugins, which has been the traditional way to create richer media inside
the browser. Since no plugins that commonly introduce restrictions associated
with their proprietary origins, the new technologies are manifesting the open web
and open data. This, together with open data that is be available to everyone
to freely use and republish as they wish without mechanisms of control, in turn
liberates the developers to create increasingly compelling applications, building
on the facilities that already exist in the web as well as their own innovative
ideas.

References

1. Anttonen, M., Salminen, A., Mikkonen, and Taivalsaari, A. Transforming the web
into a real application platform: New technologies, emerging trends, and miss-
ing pieces. In Proceedings of the 26th ACM Symposium on Applied Computing
(SAC’2011, TaiChung, Taiwan, March 21-25, 2011), ACM Press, Proceedings Vol
1, pp.800-807.

2. Gong, L., Ellison, G., Dageforde, M., Inside Java 2 Platform Security: Architecture,
API Design, and Implementation, 2nd Edition. Addison-Wesley (Java Series), 2003.

3. Riggs, R., Taivalsaari, A., Van Peursem, J., Huopaniemi, J., Patel, M., Uotila, A.,
Programming Wireless Devices with the Java 2 Platform, Micro Edition (2nd Edi-
tion). Addison-Wesley (Java Series), 2003.

4. Taivalsaari, A., Mikkonen, T., Ingalls, D., and Palacz, K. Web browser as an applica-
tion platform. 293-302, Proceedings of the 34th EuroMicro Conference on Software
Engineering and Advanced Applications, IEEE Computer Society, 2008.

5. Taivalsaari, A., Mikkonen, T., Anttonen, M., Salminen, A. The death of binary
software: End user software moves to the web. In Proceedings of the 9th Interna-
tional Conference on Creating, Connecting and Collaborating through Computing
(C5’2011, Kyoto, Japan, January 18-20, 2011), IEEE Computer Society, pp.17-23.

155

Random number generator

for C++ template metaprograms?

Zalán Sz¶gyi, Tamás Cséri, and Zoltán Porkoláb

Department of Programming Languages and Compilers, Eötvös Loránd University
Pázmány Péter sétány 1/C H-1117 Budapest, Hungary

{lupin, cseri, gsd}@caesar.elte.hu

Abstract. Template metaprogramming is a widely used programming
paradigm to develop libraries in C++. With the help of cleverly de�ned
templates the programmer can execute algorithms at compilation time.
C++ template metaprograms are proven to be Turing-complete, thus
wide scale of algorithms can be executed in compilation time. Applying
randomized algorithms and data structures is, however, troublesome due
to the deterministic nature of template metaprograms. In this paper we
describe a C++ template metaprogram library that generates pseudoran-
dom numbers at compile time. Random number engines are responsible
to generate pseudorandom integer sequences with a uniform distribution.
Random number distributions transform the generated pseudorandom
numbers into di�erent statistical distributions. Our goal was to provide
similar functionality to the run-time random generator module of the
Standard Template Library, thus programmers familiar with STL can
easily adopt our library.

1 Introduction

Template metaprogramming is a modern, still developing programming paradigm
in C++. It utilizes the instantiation technique of the C++ templates and makes
the C++ compiler execute algorithms in compilation time. Template metapro-
grams were proven to be a Turing-complete sublanguage of C++ [4], which
means that a wide set of algorithms can be executed at compile time within the
limits of the C++ compiler resources.

We write template metaprograms for various reasons, like expression tem-

plates [23] replacing runtime computations with compile-time activities to en-
hance runtime performance, static interface checking, which increases the ability
of the compile-time to check the requirements against template parameters, i.e.
they form constraints on template parameters [11,19], active libraries [24], acting
dynamically during compile-time, making decisions based on programming con-
texts and making optimizations. The Ararat system [5], boost::xpressive[13], and
boost::proto[14] libraries provide metaprogramming solutions to embed DSLs into
C++. Another approach to embed DSLs is to reimplement the Haskell's parser
generators library with C++ template metaprograms [17].

? The project was supported by Ericsson Hungary.

156

Boost metaprogram library (MPL) [6] provides basic containers, algorithms
and iterators to help in basic programmer tasks, similarly to their runtime cor-
respondents in the Standard Template Library (STL). Fundamental types, like
string are also exists in MPL, and can be extended with more complex function-
ality [22]. Since C++ template metaprograms follow the functional paradigma,
non-STL-like approaches exists in metaprogram development too: functional pro-
gramming idioms, like nested lambda and let expressions are also introduced in
paper [20].

Not only libraries, but C++11, the new standard of the C++ programming
language also supports template metaprogramming. There are new keywords and
language structures such as constant expressions, decltype, variadic templates

which makes writing metaprograms easier.

It is common in all the methods, techniques and libraries we discussed that
C++ template metaprograms are inheritably deterministic. Algorithms, data
types are fully speci�ed by the source code and do not depend on any kind of
external input. This means that the same metaprogram will always be executed
the same way and will produce the same results (generated code, data types,
compiler warnings, etc.) every time.

Therefore, it is very di�cult to implement randomized algorithms and data
structures with C++ template metaprograms, due to the deterministic behavior
described above. Nevertheless, undeterministic algorithms and data structures
are important in a certain class of tasks as they are often simpler, and more
e�cient than their deterministic correspondents.

Finding a minimal cut on an undirected graph is a fundamental algorithm
in network theory for partitioning elements in a database, or identifying clusters
of related documents. The deterministic algorithm is very complex and di�cult
[9], a much smaller and easier algorithm can be written using random choice [8].
A skip list [18] is an alternative to search trees. The rotation methods in search
trees are algorithmically complex. Based on random numbers, skip list provides
simpler way to reorganize the data structure, which is essential in template
metaprograms due to their complex syntax and burdensome debug possibilities.
Algorithms that selects pivot elements to partition their input sequence such as
the quick sort algorithm and the similar kth minimal element selection algorithm
provides better worst case scenarios if we select the pivot element randomly.

In this paper we describe our C++ template metaprogram library that gen-
erates pseudorandom numbers at compile time. Random number engines are
responsible to generate pseudorandom integer sequences with a uniform distri-
bution. Random number distributions transform the generated pseudorandom
numbers into di�erent statistical distributions. Engines and distributions can be
used together to generate random values. The engines are created using user
de�ned seeds, allowing to generate repeatable random number sequences.

Our goal was to design our library similar to the runtime random library
provided by the STL. Thus a programmer familiar with the STL can easily
adopt our library to their metaprograms.

157

Our paper organizes as follows: In Section 2 we discuss those C++ tem-
plate metaprogramming constructs which form the implementation base of our
library. Section 3 introduces our compile time random number generator library
with implementational details. In Section 4 we show how our library can be
applied for real life problems and we evaluate the results. Section 5 mentions a
project related to code obfuscation using some randomization in C++ template
metaprograms. Future works are discussed in Section 6. Our paper concludes in
Section 7.

2 Template metaprogramming

The template facilities of C++ allow writing algorithms and data structures
parametrized by types. This abstraction is useful for designing general algorithms
like �nding an element in a list. The operations on lists of integers, characters or
even user de�ned classes are essentially the same. The only di�erence between
them is the stored type. With templates we can parametrize these list operations
by abstract type, thus, we need to write the abstract algorithm only once. The
compiler will generate the integer, double, character or user de�ned class version
of the list by replacing the abstract type with a concrete one. This method is
called instantiation.

The template mechanism of C++ enables the de�nition of partial and full
specializations. Let us suppose that we would like to create a more space e�cient
type-speci�c implementation of the list template for bool type. We may de�ne
the following specialization:

template<typename T>

struct list

{

void insert(const T& e);

/* ... */

};

template<>

struct list<bool>

{

//type-specific implementation

void insert(bool e);

/* ... */

};

Programs that are evaluated at compilation time are called metaprograms.
C++ supports metaprogramming via preprocessor macros and templates. Pre-
processor macros run before the C++ compilation and therefore they are un-
aware of the C++ language semantics. However, template metaprograms are
evaluated during the C++ compilation phase, therefore the type safety of the
language is enforced.

158

Template specialization is essential practice for template metaprogramming
[1]. In template metaprograms templates usually refer to themselves with di�er-
ent type arguments. Such chains of recursive instantiations can be terminated by
a template specialization. See the following example of calculating the factorial
value of 5:

template<int N>

struct factorial

{

enum { value = N * factorial<N-1>::value };

};

template<>

struct factorial<0>

{

enum { value = 1 };

};

int main()

{

int result = factorial<5>::value;

}

To initialize the variable result, the expression factorial<5>::value has to
be evaluated. As the template argument is not zero, the compiler instantiates the
general version of the factorial template with 5. The de�nition of value is N *

factorial<N-1>::value, hence the compiler has to instantiate the factorial

again with 4. This chain continues until the concrete value becomes 0. Then, the
compiler choses the special version of factorial where the value is 1. Thus,
the instantiation chain is stopped and the factorial of 5 is calculated and used
as initial value of the result variable in main. This metaprogram �runs" while
the compiler compiles the code.

Template metaprograms therefore consist of a collection of templates, their
instantiations and specializations, and perform operations at compilation time.
Basic control structures like iterations and conditions are represented in a func-
tional way [21]. As we can see in the previous example, iterations in metapro-
grams are applied by recursion. Besides, the condition is implemented by a tem-
plate structure and its specialization.

template<bool cond_, typename then_, typename else_>

struct if_

{

typedef then_ type;

};

template<typename then_, typename else_>

159

struct if_<false, then_, else_>

{

typedef else_ type;

};

The if_ structure has three template arguments: a boolean and two abstract
types. If the cond_ is false, then the partly-specialized version of if_ will be
instantiated, thus the type will be bound by the else_. Otherwise the general
version of if_ will be instantiated and type will be bound by then_.

Complex data structures are also available for metaprograms. Recursive tem-
plates store information in various forms, most frequently as tree structures, or
sequences. Tree structures are the most common forms of implementation of ex-
pression templates [23]. The canonical examples for sequential data structures
are Typelist [2] and the elements of the boost::mpl library [6].

We de�ne a type list with the following recursive template:

class NullType {};

struct EmptyType {}; // could be instantiated

template <typename H, typename T>

struct Typelist

{

typedef H head;

typedef T tail;

};

typedef Typelist< char, Typelist<signed char,

Typelist<unsigned char, NullType> > > Charlist;

In the example we store the three character types in our Typelist. We can use
helper macro de�nitions to make the syntax more readable.

#define TYPELIST_1(x) Typelist< x, NullType>

#define TYPELIST_2(x, y) Typelist< x, TYPELIST_1(y)>

#define TYPELIST_3(x, y, z) Typelist< x, TYPELIST_2(y,z)>

// ...

typedef TYPELIST_3(char, signed char, unsigned char) Charlist;

Essential helper functions � like Length, which computes the size of a list at
compilation time � have been de�ned in Alexandrescu's Loki library[2] in pure
functional programming style. Similar data structures and algorithms can be
found in the boost::mpl metaprogramming library. The Boost Metaprogram-
ming Library [6] is a general-purpose, high-level C++ template metaprogram-
ming framework of algorithms, sequences and metafunctions. The architecture
is similar to the Standard Template Library (STL) of C++ with containers, al-
gorithms and iterators but boost::mpl o�ers this functionality in compilation
time.

160

3 Compile-time random number generation

Our random number generator library for template metaprograms is designed to
be similar to the runtime random number library provided by Standard Template
Library (STL) of the new standard of C++. Our library provides:

� random number engines, that generate pseudorandom integer sequences with
uniform distribution.

� random number distributions, that transform the output of the random num-
ber engines into di�erent statistical distributions.

Engines and distributions can be used together to generate random values. The
engines are created using user de�ned seeds, allowing to generate repeatable
random number sequences.

3.1 Basic metafunctions

Before we detail our engines and distributions, we present some basic metafunc-
tions which are commonly used in our implementation. The Randommetafunction
initializes a random engine or distribution, and returns with the �rst random
number in a sequence. See the code below:

template<typename Engine>

struct Random

{

typedef typename init<Engine>::type type;

static const decltype(type::value) value = type::value;

};

The initialization is done by the init metafunction, which is partially spe-
cialized for all engines and distributions. The �rst random number is stored in
static �eld value.

The Next metafunction computes the next random number in a sequence.
See its code below:

template<typename R>

struct Next

{

typedef typename eval<R>::type type;

static const decltype(type::value) value = type::value;

};

The next element is computed by the eval metafunction, which is, similarly
to init, partially specialized for all engines and distributions. The return value
of this metafunction is stored in static �eld value.

161

3.2 Random number engines

Similarly to STL, we implemented three random number engines:

� linear congruential engine [15], which requires very small space to store its
state, and moderately fast.

� subtract with carry engine [3], which produces a better random sequence,
very fast, but requires more state storage.

� Mersenne twister engine [10], which is slower and has even more state stor-
age requirements but with the right parameters provides the longest non-
repeating sequence of random numbers.

The implementation of these engines contain three major entities. The �rst
one is a metatype, that contains the state of the engine. This metatype is the
argument of the partially specialized init and eval metafunctions, which do
some initialization steps and evaluate the next random number, respectively.
For the linear congruential engine, these entities de�ned as below:

template<typename UIntType,

UIntType seed = defaultseed,

UIntType a = 16807,

UIntType c = 0,

UIntType m = 2147483647>

struct linear_congruential_engine

{

static const UIntType value = seed;

static const UIntType maxvalue = m-1;

};

The �rst template argument speci�es the type of the random numbers. The
type can be any unsigned integer type. The second argument is the random
seed. This is an optional parameter. If the programmer does not specify it,
an automatically generated random seed is applied for each compilation. See
Subsection 3.4 for more details. The other arguments are parameters of the
linear congruential equation.

The init and eval metafunctions can be seen below:

template<typename UIntType,

UIntType seed,

UIntType a,

UIntType c,

UIntType m>

struct init<linear_congruential_engine<UIntType, seed, a, c, m>>

{

typedef typename eval<linear_congruential_engine<

UIntType,seed,a,c,m>>::type type;

static const UIntType value = type::value;

};

162

template<typename UIntType, UIntType seed,

UIntType a, UIntType c, UIntType m>

struct eval<linear_congruential_engine<UIntType, seed, a, c, m>>

{

static const UIntType value = (a * seed + c) % m;

typedef linear_congruential_engine<

UIntType,

(a * seed + c) % m,

a,

c,

m

> type;

};

The metafunction eval computes the next random number, stores it in the
static �eld value and modi�es the state of the linear congruential engine. Meta-
function init just invokes eval to compute the �rst random number.

3.3 Random number distributions

A random number distribution transforms the uniformly distributed output of a
random number engine into a speci�c statistical distribution. Although the STL
de�nes discrete and continuous distributions, we implement only the discrete
ones in our library, because of the lack of support of �oating point numbers in
the template facility of C++. However, we plan to extend the template system
with rational and �oating point number types that we can use to implement
continuous distributions. Our library implements the following discrete prob-
ability distributions: uniform integer distribution, Bernoulli-distribution, bino-
mial distribution, negative binomial distribution, geometric distribution, Poisson-
distribution, discrete distribution [7]. Several distributions require a real number
as argument. As the template system in C++ does not accept �oating point
numbers, our library deals with these parameters as rational numbers: receives
the numerator and the denominator as integers. The compiler can approximate
the quotient inside the metafunctions. See the implementation of Bernoulli dis-
tribution below:

template<typename Engine, int N, int D, bool val = false>

struct Bernoulli

{

static const bool value = val;

};

template<typename Engine, int N, int D, bool b>

struct eval<Bernoulli<Engine, N, D, b>>

{

163

typedef typename Next<Engine>::type tmptype;

static const bool value =

(static_cast<double>(tmptype::value) / tmptype::maxvalue)

<

(static_cast<double>(N) / D);

typedef Bernoulli<tmptype, N, D, value> type;

};

The template parameter Engine refers to any kind of random number en-
gine. The integers N and D represent the parameter of Bernoulli distributions,
and val stores the computed result. The partially specialized eval metafunction
transforms the result of the engine to a boolean value according to the param-
eter and sets the new state of the Bernoulli class. The other distributions are
implemented in similar way.

3.4 Random seed

Pseudorandom number generators require an initial state, called random seed.
The random seed determines the generated random sequence. The random num-
ber engines in our library optionally accept seed. Specifying the seed results in
reproducible sequences of random numbers. However, if the seed is omitted, the
library will generate a random seed based on the current time of the system. The
time is received using the __TIME__macro, which is preprocessed to a constexpr
character array. Our library will compute a seed using the elements of this array.
See the code below:

constexpr char inits[] = __TIME__;

const int defaultseed = (inits[0]-'0')*100000+(inits[1]-'0')*10000 +

(inits[3]-'0')*1000+(inits[4]-'0')*100+

(inits[6]-'0')*10+inits[7]-'0';

The C++ standard de�nes that the preprocessor of C++ should translate the
__TIME__ macro to a character string literal in �hh:mm:ss� form. We transform
it into a six-digit integer, excluding the colons.

3.5 Example

In this subsection we show a basic usage of our library. We print ten boolean
values having Bernoulli distribution with parameter 0.1. We use the linear con-

gruential engine to generate the random sequence.

164

template<int cnt, typename R>

struct print_randoms

{

static void print()

{

typedef typename Next<R>::type RND;

std::cout << RND::value << " ";

print_randoms<cnt-1, RND >::print();

}

};

template<typename R>

struct print_randoms<0, R>

{

static void print()

{

std::cout << Next<R>::value << " " << std::endl;

}

};

int main()

{

print_randoms<10,

typename Random<

Bernoulli<

linear_congruential_engine<

uint_fast32_t>,

1,

10

>

>::type

>::print();

}

4 Evaluation

The Boost MPL uses deterministic algorithms in its implementation. For exam-
ple the boost::mpl::sort metafunction always selects the �rst element of the
current range as its pivot element. This strategy leads to worst-case scenario
when the data is already sorted. It has also a performance overhead if parts of
the input data are sorted. However, if we select the pivot element randomly, the
worst-case scenario will occur on least common patterns.

We combined the sort algorithm with our library: we chose the pivot ele-
ment randomly. We evaluated both methods with random and ordered data.
Experiments show that we achieved great speedup on the ordered input sam-

165

ple, whereas the performance loss on the random sample is minor. (Figure 1)
Compiling the templates requires not only CPU power, but the instantiations
must be stored the memory as well. Because the random algorithm requires less
instantiation steps, we also need less memory for the compilation. (Figure 2)

One fundamental strategy lacking from the current implementation of our
library is splitting the random number generator. Metaprograms are written in
functional programming style and therefore it is not possible to use a global
random generator variable. This shortcoming can be overcome if the random
sequencer supports splitting.

Note that the lack of splitting is not a problem in the quicksort algorithm as
the two parts of the sequence become independent after separating the sequence
based on the pivot element and therefore the same random numbers provide as
much randomness as di�erent ones. Therefore, this technique here is rather an
optimization as it requires less template instantiation steps.

5 Related work

Neves et. al. developed a code obfuscator library for C++ programming language
[12]. The strength of this library is that the obfusctation steps are template
metaprograms, thus the programmer does not need to deal with obfuscation,
this process is done automatically by the C++ compiler during code compilation.
They used randomness to avoid the usage of the same transformation repeatedly.
The implemented a very simple linear congruential method to generate template
random number. Our library can be easily adopted into their solution providing
a more sophisticated random number generation.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 10 20 30 40 50

C
o
m

p
ila

ti
o
n
 t
im

e
 (

re
la

ti
v
e
)

Number of metavector elements

Non-sorted
Non-sorted metarandom

Sorted
Sorted metarandom

Fig. 1. Compilation times of the quicksort of the boost::mpl::vector_c using the
original boost::mpl::sort and the modi�ed sort, where the pivot element is selected
randomly, on sorted and non-sorted (random) data for various vector sizes. Measured
with g++ 4.7.3 on Ubuntu x86.

166

 200

 300

 400

 500

 600

 700

 800

 900

 10 20 30 40 50

C
o
m

p
ila

ti
o
n
 m

e
m

o
ry

 u
s
a
g
e
 (

in
 m

e
g
a
b
y
te

s
)

Number of metavector elements

Non-sorted
Non-sorted metarandom

Sorted
Sorted metarandom

Fig. 2. Memory usages of the quicksort of the boost::mpl::vector_c using the orig-
inal boost::mpl::sort and the modi�ed sort, where the pivot element is selected
randomly, on sorted and non-sorted (random) data for various vector sizes. Measured
with g++ 4.7.3 on Ubuntu x86.

Meredith L. Patterson mentions a �simple compile-time pseudo-random num-
ber generator� he implemented [16], but no further details are available.

6 Future works

Our goal was to provide the metaprogamming counterpart of the random number
generator library of the STL. We ported the random number generator engines
and all the random number distributions that generate integral values. However,
we need to extend the library with distributions that generate �oating point
values e.g. normal distribution. As the language supports only integers in tem-
plate arguments, we have to �nd a way to circumvent this limitation. Neither
the standard library, nor third party libraries o�er a ready solution, therefore
we need to implement a �oating point metatype �rst. Based on this metatype
we can implement the remaining statistical distributions provided by the STL.

Our library is designed to be extensible. Further random number engines and
distributions can be added. The engines provide a clean and simple interface so
new engines and distributions can be created orthogonally.

7 Conclusion

Template metaprogramming plays essential role in library design in C++. Sev-
eral language features and third party libraries supports that paradigm. How-
ever, due to the deterministic nature of template metapograms it was di�cult to
implement algorithms and data structures in undeterministic way. Since some-
times randomized algorithms and data structures are often less complex and

167

more e�cient than their deterministic correspondents, it is important to gener-
ate (pseudo-)random numbers in a maintainable and e�ective way for template
metaprograms.

We implemented random number engines that generate pseudorandom inte-
ger sequences with a uniform distribution and random number distributions that
transform the generated pseudo-numbers into di�erent statistical distributions.
The library has a similar, but compile-time interface like the run-time random
number generator of the STL to reduce the learning curve.

In this paper we presented our library and discussed its applicability with
an example using boost::mpl. Besides, our library is designed to be extensible,
thus one can easily add further engines and distributions to our library.

References

1. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming: Concepts, Tools,
and Techniques from Boost and Beyond (C++ in Depth Series). Addison-Wesley
Professional (2004)

2. Alexandrescu, A.: Modern C++ design: generic programming and design patterns
applied. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2001)

3. Brent, R.P.: Uniform random number generators for supercomputers. In: Proc.
Fifth Australian Supercomputer Conference. pp. 95�104 (1992)

4. Czarnecki, K., Eisenecker, U.W.: Generative programming: methods, tools, and
applications. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA
(2000)

5. Gil, J.Y., Lenz, K.: Simple and safe sql queries with C++ templates. Sci. Comput.
Program. 75, 573�595 (July 2010), http://dx.doi.org/10.1016/j.scico.2010.
01.004

6. Gurtovoy, A., Abrahams, D.: Boost.mpl (2004), http://

www.boost.org/doc/libs/1_53_0/libs/mpl/doc/index.html,
http://www.boost.org/doc/libs/1_53_0/libs/mpl/doc/index.html

7. Johnson, N.L., Kemp, A.W., Kotz, S.: Univariate discrete distributions, vol. 444.
Wiley-Interscience (2005)

8. Kleinberg, J., Tardos, É.: Algorithm Design. Alternative Etext For-
mats, Pearson/Addison-Wesley (2006), http://books.google.hu/books?id=

OiGhQgAACAAJ

9. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Dover Books on
Mathematics Series, DOVER PUBN Incorporated (1976), http://books.google.
hu/books?id=m4MvtFenVjEC

10. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul. 8(1), 3�30 (Jan 1998), http://doi.acm.org/10.1145/272991.272995

11. McNamara, B., Smaragdakis, Y.: Static interfaces in C++. In: C++ Template
Programming Workshop (Oct 2000)

12. Neves, S., Araujo, F.: Binary code obfuscation through C++ template metapro-
gramming. In: Lopes, A., Pereira, J.O. (eds.) INForum 2012. pp. 28�40. Uni-
versidade Nova de Lisboa, Portugal (September 2012), http://eden.dei.uc.pt/
~sneves/pubs/2012-snfa2.pdf

168

13. Niebler, E.: Boost.xpressive (2007), http://www.

boost.org/doc/libs/1_53_0/doc/html/xpressive.html,
http://www.boost.org/doc/libs/1_53_0/doc/html/xpressive.html

14. Niebler, E.: The boost proto library (2011), http:

//www.boost.org/doc/libs/1_53_0/doc/html/proto.html,
http://www.boost.org/doc/libs/1_53_0/doc/html/proto.html

15. Park, S.K., Miller, K.W.: Random number generators: good ones are hard to �nd.
Commun. ACM 31(10), 1192�1201 (Oct 1988), http://doi.acm.org/10.1145/

63039.63042

16. Patterson, Meredith, L.: Patterson's remark in
stackover�ow, http://stackoverflow.com/questions/

1224306/template-metaprogramming-i-still-dont-get-it,
http://stackover�ow.com/questions/1224306/template-metaprogramming-i-
still-dont-get-it

17. Porkoláb, Z., Sinkovics, Á.: Domain-speci�c language integration with compile-
time parser generator library. In: Visser, E., Järvi, J. (eds.) GPCE. pp. 137�146.
ACM (2010)

18. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Commun. ACM
33(6), 668�676 (Jun 1990), http://doi.acm.org/10.1145/78973.78977

19. Siek, J.G., Lumsdaine, A.: Concept checking: Binding parametric polymorphism
in C++. In: Proceedings of the First Workshop on C++ Template Programming.
Erfurt, Germany (Oct 2000), citeseer.nj.nec.com/siek00concept.html

20. Sinkovics, Á.: Nested lamda expressions with let expressions in C++ template
metaprorgams. In: Porkoláb, Z., Pataki, N. (eds.) WGT'11. WGT Proceedings,
vol. III, pp. 63�76. Zolix (2011)

21. Ádám Sipos, Porkoláb, Z., Zsók, V.: Meta<fun> - towards a functional-style in-
terface for C++ template metaprograms. Studia Universitatis Babes-Bolyai Infor-
matica LIII(2008/2), 55�66 (2008)

22. Sz¶gyi, Z., Sinkovics, Á., Pataki, N., Porkoláb, Z.: C++ metastring library and its
applications. In: Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE.
Lecture Notes in Computer Science, vol. 6491, pp. 461�480. Springer (2009)

23. Veldhuizen, T.: Expression templates. C++ Report 7, 26�31 (1995)
24. Veldhuizen, T.L., Gannon, D.: Active libraries: Rethinking the roles of compilers

and libraries. In: In Proceedings of the SIAM Workshop on Object Oriented Meth-
ods for Inter-operable Scienti�c and Engineering Computing OO'98. SIAM Press
(1998)

169

The Asymptotic Behaviour of the Proportion of

Hard Instances of the Halting Problem

Antti Valmari

Tampere University of Technology, Department of Mathematics
PO Box 553, FI-33101 Tampere, FINLAND

Abstract. Although the halting problem is undecidable, imperfect
testers that fail on some instances are possible. Such instances are called
hard for the tester. One variant of imperfect testers replies “I don’t know”
on hard instances, another variant fails to halt, and yet another replies
incorrectly “yes” or “no”. Also the halting problem has three variants.
The failure rate of a tester for some size is the proportion of hard in-
stances among all instances of that size. This publication investigates
the behaviour of the failure rate as the size grows without limit. Earlier
results are surveyed and new results are proven. Some of them use C++
on Linux as the computational model. It turns out that the behaviour is
sensitive to the details of the programming language or computational
model, but in many cases it is possible to prove that the proportion of
hard instances does not vanish.

ACM Computing Classification System 1998: F.1.1 Models of Computation–
Computability theory

Mathematics Subject Classification 2010: 68Q17 Computational difficulty of

problems

1 Introduction

Turing proved in 1936 that undecidability exists by showing that the halting
problem is undecidable [10]. Rice extended the set of known undecidable prob-
lems to cover all questions of the form “does the (partial) function computed by
the given program have property X”, where X is any property that at least one
computable partial function has and at least one does not have [7]. For instance,
X could be “returns 1 for all syntactically correct C++ programs and 0 for all
remaining inputs.” In other words, it may be impossible to find out whether a
given weird-looking program is a correct C++ syntax checker. These results are
basic material in such textbooks as [3].

On the other hand, imperfect halting testers are possible. For any instance
of the halting problem, a three-way tester eventually answers “yes”, “no”, or “I
don’t know”. If it answers “yes” or “no”, then it must be correct. We say that
the “I don’t know” instances are hard instances for the tester. Also other kinds
of imperfect testers have been introduced, as will be discussed in Section 2.1.
Each tester has its own set of hard instances. No instance is hard for all testers.

170

A useless three-way tester answers “I don’t know” for every program and
input. A much more careful tester simulates the program at most 99

n

steps,
where n is the joint size of the program and its input. If the program stops by
then, then the tester answers “yes”. If the program repeats a configuration (that
is, a complete description of the values of variables, the program counter, etc.)
by then, then the tester answers “no”. Otherwise it answers “I don’t know”.

The proofs by Turing and Rice may leave the hope that only rare artificial
contrived programs yield hard instances. One could dream of a three-way tester
that answers very seldom “I don’t know”. This publication analyses this issue,
by surveying and proving results that tell how the proportion of hard instances
behaves when the size of the instance grows without limit.

Section 2 presents the variants of the halting problem and imperfect testers
surveyed, together with some basic results and notation. Earlier research is dis-
cussed in Section 3. The section contains some proofs to bring results into the
framework of this publication. Section 4 presents some new results in the case
that information can be packed densely inside the program without assuming
that the program has access to it. A natural example of such information is dead
code. In Section 5, results are derived for C++ programs with inputs from files.
Section 6 briefly concludes this publication.

To meet the page limit, three proofs have been left out. A longer version
of this publication with the missing proofs and some other additional material
can be found in the Cornell University arXiv Computing Research Repository
open-access e-print service http://arxiv.org/corr/home.

2 Concepts and Notation

2.1 Variants of the Halting Problem

The literature on hard instances of the halting problem considers at least three
variants of the halting problem:

(A) does the given program halt on the empty input [2],
(B) does the given program halt when given itself as its input [6, 8], and
(C) does the given program halt on the given input [1, 4, 9].

Each variant is undecidable. Variant C has a different notion of instances from
others: program–input pairs instead of just programs.

The literature also varies on what the tester does when it fails. Three-way
testers, that is, the “I don’t know” answer is used implicitly by [6], as it discusses
the union of two decidable sets, one being a subset of the halting and the other of
the non-halting instances. In generic-case decidability [8], instead of the “I don’t
know” answer, the tester itself fails to halt. Yet another idea is to always give
a “yes” or “no” answer, but let the answer be incorrect for some instances [4,
9]. Such a tester is called approximating. One-sided results, where the answer is
either “yes” or “I don’t know”, were presented in [1, 2]. For a tester of any of
the three variants, we say that an instance is easy if the tester correctly answers
“yes” or “no” on it, otherwise the instance is hard.

171

These yield altogether nine different sets of testers, which we will denote with
three-way(X), generic(X), and approx(X), where X is A, B, or C. Some simple
facts facilitate carrying some results from one variant of testers to another.

Proposition 1. For any three-way tester there is a generic-case tester that has
precisely the same easy “yes”-instances, easy “no”-instances, hard halting in-
stances, and hard non-halting instances. There also is an approximating tester
that has precisely the same easy “yes”-instances, at least the same easy “no”-
instances, precisely the same hard halting instances, and no hard non-halting
instances.

Proof. A three-way tester can be trivially converted to the promised tester by
replacing the “I don’t know” answer with an eternal loop or the reply “no”. ⊓⊔

Proposition 2. For any generic-case tester there is a generic-case tester that
has at least the same “yes”-instances, precisely the same “no”-instances, no hard
halting instances, and precisely the same hard non-halting instances.

Proof. In parallel with the original tester, the instance is simulated. (In Turing
machine terminology, parallel simulation is called “dovetailing”.) If the original
tester replies something, the simulation is aborted. If the simulation halts, the
original tester is aborted and the reply “yes” is returned. ⊓⊔

Proposition 3. For any i ∈ N and tester T , there is a tester Ti that answers
correctly “yes” or “no” for all instances of size at most i, and similarly to T for
bigger instances.

Proof. Because there are only finitely many instances of size at most i, there
is a finite bit string that lists the correct answers for them. If n ≤ i, Ti picks
the answer from it and otherwise calls T . (We do not necessarily know what bit
string is the right one, but that does not rule out its existence.) ⊓⊔

2.2 Notation

We use Σ to denote the set of characters that are used for writing programs and
their inputs. It is finite and has at least two elements. There are |Σ|n character
strings of size n. If α ∈ Σ∗ and β ∈ Σ∗, then α ⊑ β denotes that α is a prefix
of β, and α ⊏ β denotes proper prefix. A set A of finite character strings is
self-delimiting if and only if membership in A is decidable and α 6⊏ β whenever
α ∈ A and β ∈ A. The shortlex ordering of any set of finite character strings is
obtained by sorting the strings in the set primarily according to their sizes and
strings of the same size in the lexicographic order.

Not necessarily all elements of Σ∗ are programs. The set of programs is
denoted with Π , and the set of all (not necessarily proper) prefixes of programs
with Γ . So Π ⊆ Γ . For tester variants A and B, we use p(n) to denote the
number of programs of size n. Then p(n) = |Σn ∩ Π |. For tester variant C,
p(n) denotes the number of program–input pairs of joint size n. The numbers of

172

halting and non-halting (a.k.a. diverging) instances of size n are denoted with
h(n) and d(n), respectively. We have p(n) = h(n) + d(n).

If T is a tester, then hT (n), hT (n), dT (n), and dT (n) denote the number of its
easy halting, hard halting, easy non-halting, and hard non-halting instances of
size n, respectively. Obviously hT (n)+hT (n) = h(n) and dT (n)+ dT (n) = d(n).
The smaller hT (n) and dT (n) are, the better the tester is.

When referring to all instances of size at most n, we use capital letters. So,
for example, P (n) =

∑n
i=0 p(i) and DT (n) =

∑n
i=0 dT (i).

3 Related Work

3.1 Early Results by Lynch

Nancy Lynch [6] used Gödel numberings for discussing programs. In essence, it
means that each program has at least one index number (which is a natural
number) from which the program can be constructed, and each natural number
is the index of some program.

Although the index of an individual program may be smaller than the index
of some shorter program, the overall trend is that indices grow as the size of
the programs grows, because otherwise we run out of small numbers. On the
other hand, if the mapping between the programs and indices is 1–1, then the
growth cannot be faster than exponential. This is because p(n) ≤ |Σ|n. With
real-life programming languages, the growth is exponential, but (as we will see
in Section 5.2) the base of the exponent may be smaller than |Σ|.

To avoid confusion, we refrain from using the notation HT , etc., when dis-
cussing results in [6], because they use indices instead of sizes of programs, and
their relationship is not entirely straightforward. Fortunately, some results of [6]
can be immediately applied to programming languages by using the shortlex
Gödel numbering. The shortlex Gödel number of a program is its index in the
shortlex ordering of all programs.

The first group of results of [6] reveals that a wide variety of situations may
be obtained by spreading the indices of all programs sparsely enough and then
filling the gaps in a suitable way. For instance, with one Gödel numbering, for
each three-way tester, the proportion of hard instances among the first i indices
approaches 1 as i grows. With another Gödel numbering, there is a three-way
tester such that the proportion approaches 0 as i grows. There even is a Gödel
numbering such that as i grows, the proportion oscillates in the following sense:
for some three-way tester, it comes arbitrarily close to 0 infinitely often and for
each three-way tester, it comes arbitrarily close to 1 infinitely often.

In its simplest form, spreading the indices is analogous to defining a new
language SpaciousC++ whose syntax is identical to that of C++ but the se-
mantics is different. If the first ⌊n/2⌋ characters of a SpaciousC++ program of
size n are space characters, then the program is executed like a C++ program,
otherwise it halts immediately. This does not restrict the expressiveness of the
language, because any C++ program can be converted to a similarly behav-
ing SpaciousC++ program by adding sufficiently many space characters to its

173

front. However, it makes the proportion of easily recognizable trivially halting
instances overwhelm. A program that replies “yes” if there are fewer than ⌊n/2⌋
space characters at the front and “I don’t know” otherwise, is a three-way tester.
Its proportion of hard instances vanishes as the size of the program grows.

As a consequence of this and Proposition 3, one may choose any failure rate
above zero and there is a three-way halting tester for SpaciousC++ programs
with at most that failure rate. Of course, this result does not tell anything about
how hard it is to test the halting of interesting programs. This is the first example
in this publication of what we call an anomaly stealing the result. That is, a proof
of a theorem goes through for a reason that has little to do with the phenomenon
we are interested in.

Indeed, the first results of [6] depend on using unnatural Gödel numberings.
They do not tell what happens with untampered programming languages. Even
so, they rule out the possibility of a simple and powerful general theorem that
applies to all models of computation. They also make it necessary to be careful
with the assumptions that are made about the programming language.

To get sharper results, optimal Gödel numberings were discussed in [6]. They
do not allow distributing programs arbitrarily. A Gödel numbering is optimal if
and only if for any Gödel numbering, there is a computable function that maps
it to the former such that the index never grows more than by a constant factor.1

The most interesting sharper results are opposite to what was obtained without
the optimality assumption. We now apply them to programming languages.

We say that a programming language is end-of-file data segment, if and only
if each program consists of two parts in the following way. The first part is the
actual program written in a self-delimiting language, so its end can be detected.
The second part, called the data segment, is an arbitrary character string that
extends to the end of the file. The language has a construct via which the actual
program can read the contents of the data segment. The data segment is thus
a data literal in the program, packed with maximum density. It is not the same
thing as the input to the program.

Corollary 4. For each end-of-file data segment language,

∃c > 0 : ∃T ∈ three-way(B) : ∀n ∈ N :
HT (n) +DT (n)

P (n)
≥ c and

∃c > 0 : ∀T ∈ three-way(B) : ∃nT ∈ N : ∀n ≥ nT :
HT (n) +DT (n)

P (n)
≥ c .

Proof. Let a and d be the sizes of the actual program and data segment. Given
any Gödel numbering, let the actual program read the data segment, interpret

its content as a number i in the range from |Σ|d−1
|Σ|−1 +1 to |Σ|d+1−1

|Σ|−1 , and simulate

the corresponding program. The shortlex index of this program is at most i′ =

1 The definition in [6] seems to say that the function must be a bijection. We believe
that this is a misprint, because each proof in [6] that uses optimal Gödel numberings
obviously violates it.

174

∑a+d
j=0 |Σ|j ≤ |Σ|a+d+1. We have d ≤ log|Σ| i + 1, so i′ ≤ |Σ|a+2i. The shortlex

numbering of the language is thus an optimal Gödel numbering. From this,
Proposition 6 in [6] gives the claims. ⊓⊔

A remarkable feature of the latter result compared to many others in this pub-
lication is that c is chosen before T . That is, there is a positive constant that
only depends on the programming language (and not on the choice of the tester)
such that all testers have at least that proportion of hard instances, for any big
enough n. On the other hand, the proof depends on the programming language
allowing to pack raw data very densely. Real-life programming languages do not
satisfy this assumption. For instance, C++ string literals "..." cannot pack
data densely enough, because the representation of " inside the literal (e.g., \"
or \042) requires more than one character.

The result cannot be generalized to hT , dT , and p, because the following
anomaly steals it. We can first add 1 or 01 to the beginning of each program
π and then declare that if the size of 1π or 01π is odd, then it halts immedi-
ately, otherwise it behaves like π. This trick does not invalidate optimality but
introduces infinitely many sizes for which the proportion of hard instances is 0.

3.2 Results on Domain-Frequent Programming Languages

In [4], the halting problem was analyzed in the context of programming languages
that are frequent in the following sense:

Definition 5. A programming language is (a) frequent (b) domain-frequent, if
and only if for every program π, there are nπ ∈ N and cπ > 0 such that for every
n ≥ nπ, at least cπp(n) programs of size n (a) compute the same partial function
as π (b) halt on precisely the same inputs as π.

Instead of “frequent”, the word “dense” was used in [4], but we renamed the
concept because we felt “dense” a bit misleading. The definition says that pro-
grams that compute the same partial function are common. However, the more
common they are, the less room there is for programs that compute other partial
functions, implying that the smallest programs for each distinct partial function
must be distributed more sparsely. “Dense” was used for domain-frequent in [9].

Any frequent programming language is obviously domain-frequent but not
necessarily vice versa. On the other hand, even if a theorem in this field men-
tions frequency as an assumption, the odds are that its proof goes through with
domain-frequency. Whether a real-life programming language such as C++ is
(domain-)frequent, is surprisingly difficult to find out. We will discuss this ques-
tion briefly in Section 4.

As an example of a frequent programming language, BF was mentioned in [4].
Its full name starts with “brain” and then contains a word that is widely con-
sidered inappropriate language, so we follow the convention of [4] and call it
BF. Information on it can be found on Wikipedia under its real name. It is an
exceptionally simple programming language suitable for recreational and illus-
trational but not for real-life programming purposes. In essence, BF programs

175

describe Turing machines with a read-only input tape, write-only output tape,
and one work tape. The alphabet of each tape is the set of 8-bit bytes. However,
BF programs only use eight characters.

As a side issue, a non-trivial proof was given in [4] that only a vanishing
proportion of character strings over the eight characters are BF programs. That
is, limn→∞ p(n)/8n exists and is 0. It trivially follows that if failure to compile
is considered as non-halting, then the proportion of hard instances vanishes as
n grows.

The only possible compile-time error in BF is that the square brackets [and
] do not match. Most, if not all, real-life programming languages have paren-
theses or brackets that must match. So it seems likely that compile-time errors
dominate also in the case of most, if not all, real-life programming languages.
Unfortunately, this is difficult to check rigorously, because the syntax and other
compile-time rules of real-life programming languages are complicated. Using
another, simpler line of argument, we will prove the result for both C++ and
BF in Section 5.1.

In any event, if the proportion of hard instances among all character strings
vanishes because the proportion of programs vanishes, that is yet another exam-
ple of an anomaly stealing the result. It is uninteresting in itself, but it rules out
the possibility of interesting results about the proportion of hard instances of
size n among all character strings of size n. Therefore, from now on, excluding
Section 5.1, we focus on the proportion of hard instances among all programs or
program–input pairs.

In the case of program–input pairs, the results may be sensitive to how the
program and its input are combined into a single string that is used as the
input of the tester. To avoid anomalous results, it was assumed in [4, 9] that this
“pairing function” has a certain property called “pair-fair”. The commonly used
function x+(x+ y)(x+ y+1)/2 is pair-fair. To use this pairing function, strings
are mapped to numbers and back via their indices in the shortlex ordering of all
finite character strings.

A proof was sketched in [9] that, with domain-frequency and pair-fairness,

∀T ∈ approx(C) : ∃cT > 0 : ∃nT ∈ N : ∀n ≥ nT :
hT (n) + dT (n)

p(n)
≥ cT .

That is, the proportion of wrong answers does not vanish. However, this leaves
open the possibility that for any failure rate c > 0, there is a tester that fares
better than that for all big enough n. This possibility was ruled out in [4], as-
suming frequency and pair-fairness. (It is probably not important that frequency
instead of domain-frequency was assumed.) That is, there is a positive constant
such that for any tester, the proportion of wrong answers exceeds the constant
for infinitely many sizes of instances.

∃c > 0 : ∀T ∈ approx(C) : ∀n0 ∈ N : ∃n ≥ n0 :
hT (n) + dT (n)

p(n)
≥ c (1)

176

The third main result in [4], adapted and generalized to the present setting, is the
following. We present its proof in the arXiv CoRR version of this publication,
to obtain the generalization and to add a detail that the proof in [4] lacks,
that is, how Ti,j is made to halt for “wrong sizes”. Generic-case testers are not
mentioned, because Proposition 2 gave a related result for them.

Theorem 6. For each programming model and variant A, B, C of the halting
problem,

∀c > 0 : ∃T ∈ approx(X) : ∀n0 ∈ N : ∃n ≥ n0 :
hT (n)

p(n)
≤ c ∧ dT (n)

p(n)
= 0 and

∀c > 0 : ∃T ∈ three-way(X) : ∀n0 ∈ N : ∃n ≥ n0 :
hT (n)

p(n)
≤ c .

For a small enough c and the approximating tester T in Theorem 6, (1) implies
that the failure rate of T oscillates.

3.3 Results on Turing Machines

For Turing machines with one-way infinite tape and randomly chosen transition
function, the probability of falling off the left end of the tape before halting or
repeating a local state approaches 1 as the number of local states grows [2]. (A
local state is a state of the finite automaton component of the Turing machine,
and not the configuration consisting of a local state, the contents of the tape,
and the location of the head on the tape.) The tester simulates the machine until
it falls off the left end, halts, or repeats a local state. If falling off the left end
is considered as halting, then the proportion of hard instances vanishes as the
size of the machine grows. This can be thought of as yet another example of an
anomaly stealing the result.

Formally, ∃T ∈ three-way(X) : limn→∞(hT (n) + dT (n))/p(n) = 0, that is,

∃T ∈ three-way(X) : ∀c > 0 : ∃nc ∈ N : ∀n ≥ nc :
hT (n) + dT (n)

p(n)
≤ c .

Here X may be A, B, or C. Although A was considered in [2], the proof also
applies to B and C. Comparing the result to Theorem 7 in Section 4 reveals that
the representation of programs as transition functions of Turing machines is not
domain-frequent.

On the other hand, independently of the tape model, the proportion does
not vanish exponentially fast [8]. There, too, the proportion is computed on the
transition functions, and not on some textual representations of the programs.
The proof relies on the fact that any Turing machine has many obviously sim-
ilarly behaving copies of bigger and bigger sizes. They are obtained by adding
new states and transitions while keeping the original states and transitions in-
tact. So the new states are unreachable. These copies are not common enough
to satisfy Definition 5, but they are common enough to rule out exponentially

177

fast vanishing. Generic-case decidability was used in [8], but the result applies
also to three-way testers by Proposition 1.

The results in [1] are based on using weighted running times. For every pos-
itive integer k, the proportion of halting programs that do not halt within time
k+c is less than 2−k, simply because the proportion of times greater than k+c is
less than 2−k. The publication presents such a weighting that c is a computable
constant.

Assume that programs are represented as self-delimiting bit strings on the
input tape of a universal Turing machine. The smallest three-way tester on the
empty input that answers “yes” or “no” up to size n and “I don’t know” for
bigger programs, is of size n±O(1) [11].

4 More on Domain-Frequent Programming Languages

The assumption that the programming language is domain-frequent (Defini-
tion 5) makes it possible to use a small variation of the standard proof of the
non-existence of halting testers, to prove that each halting tester of variant B has
a non-vanishing set of hard instances. For three-way and generic-case testers, one
can also say something about whether the hard instances are halting or not. De-
spite its simplicity, as far as we know, the following result has not been presented
in the literature. However, see the comment on [9] in Section 3.2.

Theorem 7. If the programming language is domain-frequent, then

∀T ∈ three-way(B) : ∃cT > 0 : ∃nT ∈ N : ∀n ≥ nT :
hT (n)

p(n)
≥ cT ∧ dT (n)

p(n)
≥ cT ,

∀T ∈ generic(B) : ∃cT > 0 : ∃nT ∈ N : ∀n ≥ nT :
dT (n)

p(n)
≥ cT , and

∀T ∈ approx(B) : ∃cT > 0 : ∃nT ∈ N : ∀n ≥ nT :
hT (n) + dT (n)

p(n)
≥ cT .

(The proof is in the arXiv CoRR version of this publication.)
The second claim of Theorem 7 lacks a hT (n) part. Indeed, Proposition 2

says that with generic-case testers, hT (n) can be made 0. With approximating
testers, hT (n) can be made 0 at the cost of dT (n) becoming d(n), by always
replying “yes”. Similarly, dT (n) can be made 0 by always replying “no”.

The next theorem applies to testers of variant A and presents some results
similar to Theorem 7. To our knowledge, it is the first theorem of its kind that
applies to the halting problem on the empty input. It makes a somewhat stronger
assumption than Theorem 7. We say that a programming language is computably
domain-frequent if and only if there is a decidable equivalence relation “≈”
between programs such that for each programs π and π′, if π ≈ π′, then π and
π′ halt on precisely the same inputs, and there are cπ > 0 and nπ ∈ N such
that for every n ≥ nπ, at least cπp(n) programs of size n are equivalent to π. If
π ≈ π′, we say that π′ is a cousin of π. It can be easily seen from [4] that BF is
computably domain-frequent.

178

Theorem 8. If the programming language is computably domain-frequent, then

∀T ∈ three-way(A) : ∃cT > 0 : ∃nT ∈ N : ∀n ≥ nT :
dT (n)

p(n)
≥ cT .

The result also holds for generic-case testers but not for approximating testers.

Proof. Given any three-way tester T , consider a program PT that behaves as
follows. First it constructs its own code and stores it in a string variable. Hard-
wiring the code of a program inside the program is somewhat tricky, but it is well
known that it can be done. With Gödel numberings, the same can be obtained
with Kleene’s second recursion theorem.

Then PT starts constructing its cousins of all sizes and tests each of them
with T . By the assumption, there are cT > 0 and nT ∈ N such that for every
n ≥ nT , PT has at least cT p(n) cousins of size n. If T ever replies “yes”, then PT

jumps into an eternal loop and thus does not continue testing its cousins. If T
ever replies “no”, then PT halts immediately. If T replies “I don’t know”, then
PT tries the next cousin.

If T ever replies “yes”, then PT fails to halt on the empty input. The tested
cousin halts on the same inputs as PT , implying that also it fails to halt on the
empty input. So the answer “yes” would be incorrect. Similarly, if T ever replies
“no”, that would be incorrect. So T must reply “I don’t know” for all its cousins.
They are thus hard instances for T . Because there are infinitely many of them,
PT does not halt, so they are non-halting.

To prove the result for generic-case testers, it suffices to run the tests of
the cousins in parallel, that is, go around a loop where each test that has been
started is executed one step and the next test is started. If any test ever replies
“yes” or “no”, PT aborts all tests that it has started and then does the opposite
of the reply.

A program that always replies “no” is an approximating tester with dT (n) =
0 for every n ∈ N. ⊓⊔

The results in this section and Section 3.2 motivate the question: are real-life pro-
gramming languages domain-frequent? For instance, is C++ domain-frequent?
Unfortunately, we have not been able to answer it. We try now to illustrate why
it is difficult.

Given any C++ program, it is easy to construct many longer programs that
behave in precisely the same way, by adding space characters, line feeds (denoted
with), comments, or dead code such as if(0!=0){. . . }. It is, however, hard to
verify that many enough programs are obtained in this way.

For instance, any program of size n can be converted to (|Σ|−3)k identically
behaving programs of size n+k+12 by adding {char*s="σ";} to the beginning
of some function, where σ ∈ (Σ \ {", \, })k. More programs are obtained by
including escape codes such as \" to σ. However, it seems that this is a vanishing
instead of at least a positive constant proportion when k → ∞. In the absence
of escape codes, it certainly is a vanishing proportion. This is because one can
add {char*s="σ",*t="ρ";} instead, where |σ| + |ρ| = k − 6. Without escape

179

codes, this yields (k − 5)(|Σ| − 3)k−6 programs. The crucial issue here is that
information can be encoded into the size of σ, while keeping σρ intact. Counting
the programs in the presence of escape codes is too difficult, but it seems likely
that the phenomenon remains the same.

We conclude this section by showing that if dead information can be added
extensively enough, a tester with an arbitrarily small positive failure rate exists.
An end-of-file dead segment language is defined otherwise like end-of-file data
segment language, but the actual program cannot read the data segment. This
is the situation with any self-delimiting real-life programming language, whose
compiler stops reading its input when it has read a complete program.

Theorem 9. For each end-of-file dead segment language when X is A or B,

∀c > 0 : ∃T ∈ three-way(X) : ∀n ∈ N :
hT (n) + dT (n)

p(n)
≤ c .

The result also holds with approximating and generic testers.

Proof. Let r(n) denote the number of programs whose data segment is not empty.
For each n ∈ N, r(n + 1) = |Σ|p(n) ≥ |Σ|r(n). So r(n)|Σ|−n grows as n grows.
On the other hand, it cannot grow beyond 1, because r(n) ≤ p(n) ≤ |Σ|n. So it
has a limit. We call it ℓ. Because programs exist, ℓ > 0. For every c > 0 we have
ℓc > 0, so there is nc ∈ N such that r(nc)|Σ|−nc ≥ ℓ − ℓc. On the other hand,
p(n) = r(n+ 1)/|Σ| ≤ ℓ|Σ|n.

These imply p(nc − 1)|Σ|n−nc+1/p(n) = r(nc)|Σ|n−nc/p(n) ≥ 1 − c. Let na

be the size of the actual program. Consider a three-way tester that looks the
answer from a look-up table if na < nc and replies “I don’t know” if na ≥ nc

(cf. Proposition 3). It has (hT (n) + dT (n))/p(n) ≥ 1− c, implying the claim.
Proposition 1 generalizes the result to approximating and generic testers. ⊓⊔

5 Results on C++ without Comments and with Input

5.1 The Effect of Compile-Time Errors

We first show that among all character strings of size n, those that are not
C++ programs — that is, those that yield a compile-time error — dominate
overwhelmingly, as n grows. In other words, a random character string is not a
C++ program except with vanishing probability. The result may seem obvious
until one realizes that a C++ program may contain comments and string literals
which may contain almost anything. Therefore, it is worth the effort to prove
the result rigorously, in particular because the effort is small. We prove it in a
form that also applies to BF.

C++ is not self-delimiting. After a complete C++ program, there may be,
for instance, definitions of new functions that are not used by the program. This
is because a C++ program can be compiled in several units, and the compiler
does not check whether the extra functions are needed by another compilation
unit. Even so, if π is a C++ program, then π0 is definitely not. If π is a BF
program, then π] is not.

180

Proposition 10. If for every π ∈ Π there is c ∈ Σ such that πc /∈ Π, then

lim
n→∞

p(n)

|Σ|n = 0 .

Proof. Let q(n) = |Σn ∩ Γ |. Obviously 0 ≤ p(n) ≤ q(n) ≤ |Σ|n.
Assume first that for every ε > 0, there is nε ∈ N such that p(n)/q(n) < ε for

every n ≥ nε. Because p(n)/|Σ|n ≤ p(n)/q(n), we get p(n)/|Σ|n → 0 as n → ∞.
In the opposite case there is ε > 0 such that p(n)/q(n) ≥ ε for infinitely

many values of n. Let they be n1 < n2 < By the assumption, q(ni + 1) ≤
|Σ|q(ni) − p(ni) ≤ (|Σ| − ε)q(ni). For the remaining values of n, obviously
q(n + 1) ≤ |Σ|q(n). These imply that when n > ni, p(n)/|Σ|n ≤ q(n)/|Σ|n ≤
q(ni)/|Σ|ni ≤ (1 − ε/|Σ|)i → 0 when i → ∞, which happens when n → ∞. ⊓⊔

Consider a tester T that replies “no” if the compilation fails and “I don’t know”
otherwise. If compile-time error is considered as non-halting, then Proposition 10
implies that hT (n) → 0, hT (n) → 0, dT (n) → 1, and dT (n) → 0 when n → ∞.
As we pointed out in Section 3.2, this is yet another instance of an anomaly
stealing the result.

5.2 The C++ Language Model

The model of computation we study in this section is program–input pairs, where
the programs are written in the widely used programming language C++, and
the inputs obey the rules stated by the Linux operating system. Furthermore,
Σ is the set of all 8-bit bytes. To make firm claims about details, it is necessary
to fix some language and operating system. The validity of the details below
has been checked with C++ and Linux. Most likely many other programming
languages and operating systems could have been used instead.

There are two deviations from the real everyday programming situation.
First, of course, it must be assumed that unbounded memory is available. Oth-
erwise everything would be decidable. (However, at any instant of time, only a
finite number of bits are in use.) Second, it is assumed that the programs do not
contain comments. This assumption needs a discussion.

Comments are information that is inside the program but ignored by the
compiler. They have no effect to the behaviour of the compiled program. With
them, programmers can write notes inside the program that help understand
the program code, etc. We show next that most long C++ programs consist of
a shorter C++ program and one or more comments.

Lemma 11. At most (|Σ| − 1)n comment-less C++ programs are of size n.

Proof. Everywhere inside a C++ program excluding comments, it is either the
case that @ or the case that cannot occur next. That is, for every character
string α, either α@ or α is not a prefix of any comment-less C++ program. ⊓⊔

Lemma 12. If n ≥ 16, then there are at least ((|Σ| − 1)4 + 1)(n−19)/4 C++
programs of size n.

181

Proof. Let A = Σ \ {*}, and let m = ⌊n/4 − 4⌋ = ⌈(n− 19)/4⌉. Consider the
character strings of the form int main(){/*αβ*/} , where α consists of at
most three space characters and β is any string of the form β1β2 · · ·βm, where
βi ∈ A4 ∪{*//*} for 1 ≤ i ≤ m. Each such string is a syntactically correct C++
program. Their number is ((|Σ| − 1)4 + 1)m ≥ ((|Σ| − 1)4 + 1)(n−19)/4. ⊓⊔
Corollary 13. The proportion of comment-less C++ programs among all C++
programs of size n approaches 0, when n → ∞.

Proof. Let s = |Σ| − 1. By Lemmas 11 and 12, the proportion is at most
sn/(s4 + 1)(n−19)/4 = s19(s4/(s4 + 1))(n−19)/4 → 0, when n → ∞. ⊓⊔
As a consequence, although comments are irrelevant for the behaviour of pro-
grams, they have a significant effect on the distribution of long C++ programs.
To avoid the risk that they cause yet another anomaly stealing the result, we
restrict ourselves to C++ programs without comments. This assumption does
not restrict the expressive power of the programming language, but reduces the
number of superficially different instances of the same program.

The input may be any finite string of bytes. This is how it is in Linux.
Although not all such inputs can be given directly via the keyboard, they can
be given by directing the so-called standard input to come from a file. There is
a separate test construct in C++ for detecting the end of the input, so the end
of the input need not be distinguished by the contents of the input. There are
256n different inputs of size n.

The sizes of a program and input are the number of bytes in the program
and the number of bytes in the input file. This is what Linux reports. The size
of an instance is their sum. Analogously to Section 4, the size of a program is
additional information to the concatenation of the program and the input. This is
ignored by our notion of size. However, the notion is precisely what programmers
mean with the word. Furthermore, the convention is similar to the convention
in ordinary (as opposed to self-delimiting) Kolmogorov complexity theory [5].

Lemma 14. With the programming model in Section 5.2, p(n) < |Σ|n+1.

Proof. By Lemma 11, the number of different pairs of size n is at most

n∑

i=0

(|Σ| − 1)i|Σ|n−i = |Σ|n
n∑

i=0

(|Σ| − 1

|Σ|
)i

< |Σ|n
∞∑

i=0

(|Σ| − 1

|Σ|
)i

= |Σ|n+1 .

⊓⊔

5.3 The Proportions of Hard Instances

The next theorem says that with halting testers of variant C and comment-less
C++, the proportions of hard halting and hard non-halting instances do not
vanish.

Theorem 15. With the programming model in Section 5.2,

∀T ∈ three-way(C) : ∃cT > 0 : ∃nT ∈ N : ∀n ≥ nT :
hT (n)

p(n)
≥ cT ∧ dT (n)

p(n)
≥ cT .

182

Proof. We prove first the hT (n)/p(n) ≥ cT part and then the dT (n)/p(n) ≥ cT
part. The results are combined by picking the bigger nT and the smaller cT .

There is a program PT that behaves as follows. First, it gets its own size
np from a constant in its program code. The constant uses some characters and
thus affects the size of PT . However, the size of a natural number constant m is
Θ(logm) and grows in steps of zero or one as m grows. Therefore, by starting
with m = 1 and incrementing it by steps of one, it eventually catches the size of
the program, although also the latter may grow.

Then PT reads the input, counting the number of the characters that it gets
with ni and interpreting the string of characters as a natural number x in base
|Σ|. We have 0 ≤ x < |Σ|ni , and any natural number in this range is possible.
Let n = np + ni.

Next PT constructs every program–input pair of size n and tests it with T .
In this way PT gets the number hT (n) of easy halting pairs of size n.

Then PT constructs again every pair of size n. This time it simulates each
of them in parallel until hT (n) + x of them have halted. Then it aborts the rest
and halts. It halts if and only if hT (n) + x ≤ h(n). (It may be helpful to think
of x as a guess of the number of hard halting pairs.)

Among the pairs of size n is PT itself with the string that represents x as
the input. We denote it with (PT , x). The time consumption of any simulated
execution is at least the same as the time consumption of the corresponding gen-
uine execution. So the execution of (PT , x) cannot contain properly a simulated
execution of (PT , x). Therefore, either (PT , x) does not halt, or the simulated
execution of (PT , x) is still continuing when (PT , x) halts. In the former case,
h(n) < hT (n) + x. In the latter case (PT , x) is a halting pair but not counted in
hT (n) + x, so h(n) > hT (n) + x. In both cases, x 6= h(n)− hT (n).

As a consequence, no natural number less than |Σ|ni is hT (n). So hT (n) ≥
|Σ|ni = |Σ|n−np . By Lemma 14, p(n) < |Σ|n+1. So for any n ≥ np, we have
hT (n)/p(n) > |Σ|−np−1.

The proof of the dT (n)/p(n) ≥ cT part is otherwise similar, except that PT

continues simulation until p(n)− dT (n)− x pairs have halted. (Now x is a guess
of dT (n), yielding a guess of h(n) by subtraction.) The program PT gets p(n) by
counting the pairs of size n whose program part is compilable. It turns out that
p(n)− dT (n)− x 6= h(n), so x cannot be dT (n), yielding dT (n) ≥ |Σ|ni . ⊓⊔

Next we adapt the second main result in [4] to our present setting, with a some-
what simplified proof (see the arXiv CoRR version of this publication) and ob-
taining the result separately for hard halting and hard non-halting instances.

Theorem 16. With the programming model of Section 5.2,

∃c > 0 : ∀T ∈ three-way(C) : ∀n0 ∈ N : ∃n ≥ n0 :
hT (n)

p(n)
≥ c ∧ dT (n)

p(n)
≥ c and

∃c > 0 : ∀T ∈ generic(C) : ∀n0 ∈ N : ∃n ≥ n0 :
dT (n)

p(n)
≥ c .

183

6 Conclusions

This study did not cover all combinations of a programming model, variant
of the halting problem, and variant of the tester. So there is a lot of room
for future work. The results highlight what was already known since [6]: the
programming model has a significant role. With some programming models,
a phenomenon of secondary interest dominates the distribution of programs,
making hard instances rare. Such phenomena include compile-time errors and
falling off the left end of the tape of a Turing machine.

Many results were derived using the assumption that information can be
packed very densely in the program or the input file. Often it was not even nec-
essary to assume that the program could use the information. Intuition suggests
that if the program can access it, testing halting is harder than in the opposite
case. A comparison of Corollary 4 to Theorem 9 seems to support this intuition.

Acknowledgements

I thank professor Keijo Ruohonen for helpful discussions, and the anonymous
reviewers for their comments.

References

1. Calude, C.S., Stay, M.A.: Most Programs Stop Quickly or Never Halt. Advances
in Applied Mathematics 40, 295–308 (2008)

2. Hamkins, J.D., Miasnikov, A.: The Halting Problem is Decidable on a Set of
Asymptotic Probability One. Notre Dame Journal of Formal Logic 47(4), 515–524
(2006)

3. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (1979)

4. Köhler, S., Schindelhauer, C., Ziegler, M.: On Approximating Real-World Halting
Problems. In: Lískiewicz, M., Reischuk, R. (eds.): Proc. 15th Fundamentals of
Computation Theory, Lecture Notes in Computer Science 3623, 454–466 (2005)

5. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions. Springer-Verlag (2008)

6. Lynch, N.: Approximations to the Halting Problem. Journal of Computer and
System Sciences 9, 143–150 (1974)

7. Rice, H.G.: Classes of Recursively Enumerable Sets and Their Decision Problems.
Trans. AMS 89, 25–59 (1953)

8. Rybalov, A.: On the Strongly Generic Undecidability of the Halting Problem.
Theoretical Computer Science 377, 268–270 (2007)

9. Schindelhauer, C., Jakoby, A.: The Non-recursive Power of Erroneous Computa-
tion. In: Pandu Rangan, C., Raman, V., Ramanujam, R. (eds.): Proc. 19th Foun-
dations of Software Technology and Theoretical Computer Science, Lecture Notes
in Computer Science 1738, 394–406 (1999)

10. Turing, A.M.: On Computable Numbers with an Application to the Entschei-
dungsproblem. Proc. London Math. Soc. 2: 42, 230–265 (1936)

11. Valmari, A.: Sizes of Up-to-n Halting Testers. In: Halava, V., Karhumäki, J.,
Matiyasevich, Y. (eds.): Proceedings of the Second Russian Finnish Symposium on
Discrete Mathematics, TUCS Lecture Notes 17, Turku, Finland, 176–183 (2012)

184

Implementation of Natural Language Semantic

Wildcards using Prolog
*

Zsolt Zsigmondi, Attila Kiss

Department of Information Systems,

Eötvös Loránd University,

Pázmány Péter sétány 1/C, Budapest, Hungary, H-1117

zsolt.zsigmondi@hotmail.com, kiss@inf.elte.hu

Abstract. This paper introduces the concept of semantic wildcards which is the

idea of generalizing full-text search in a notion that enables user to search with-

in additional layers of syntactic or semantic information retrieved from natural

language texts. We distinguish two approaches to use semantic wildcards in

search expressions: pre-defined wildcards which offers a straightforward and

accurate query-syntax, frequently used in corpus search engines by computa-

tional linguists, and the concept of natural language wildcards which enables

the user to specify the wildcards as a part of a natural language query. We will

show that there are two ways to define the matching behavior in the field of

natural language wildcards and we will see that the Prolog programming lan-

guage offers a clean and declarative solution for implementing a search engine

when using dependency-based matching.

1 Introduction

There is an increasing demand for information retrieval from natural language texts

[12]. In this paper we present an alternative with which we can improve the flexibility

of keyword search so that it does not change the fundamental principle of operation of

these engines. This idea is called semantic wildcard search. In information retrieval

systems, we provide software that satisfies the user's information needs based on the

(information) sources. These systems are classified according to several criteria: now

we are dealing with systems where the user's information needs take the form of que-

ries on information resources containing natural language texts. On the query form we

distinguish answering systems or keyword search systems. Keyword search engines

are usually implemented in a way which means that we are searching in a mostly

schema-less database, generally in a keyword search-optimized index instead of high-

ly structured (e.g., relational) databases.

* This work was partially supported by the European Union and the European Social Fund

through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013).

185

2 Concepts and motivations

From user's perspective, the operating principles of a keyword search are easy to

understand, intuitive to use - but the lack of appropriate search terms often imply an

unsatisfactory result set.

The problem of incomplete search terms can be treated with so-called wildcard char-

acters. Wildcard characters appear in various forms in different search engines: syntax

and semantics vary depending on the specifications of the search engine, on the math-

ematical basis of the search engine and on the model representation. For example, in

regular expressions, the dot (.) character represents any single character. Such regular

expressions based on wildcards are used by several corpus search engines, such as the

WebCorp [1] or KwiCFinder [2]. With their help one can search for different forms of

a word (the search term play* substitutes all forms of the verb play). The concept of

wildcards does not necessarily have to exist on the level of abstraction of characters.

The semantic vectors package [3], based on the Apache Lucene, for example, allows

the construction of permutation indices and wildcard searches in them. The support of

wildcard search functions in the semantic vectors package is unfortunately limited

because it is currently only possible to use only a single wildcard in a search expres-

sion.

The concept of semantic wildcard generalizes the notion of wildcard [11]. The seman-

tic vectors package is a good example of using of wildcards and adequate representa-

tion we may be able to reveal the hidden semantic relationships between certain texts.

After that comes a logical generalization direction: expanding the number of possible

wildcards so that different wildcards can convey various types of semantic infor-

mation. The discussion of the search task can be specified in several ways, you can

reach from a less general definition to a flexible user search terms. But before turning

to this, we summarize the key concepts.

The basic unit of information retrieval is the document. Documents consist of natural

language fields. The goal of the search engine is to determine the list of relevant doc-

uments on the basis of the user's query. The relevance expresses the extent that the

document meets the information needs of the users. Quantitative measure of a docu-

ment is its relevance level - this can be binary (relevant / irrelevant), or expressed in a

continuous scale. For example, in the interval , 0 represents the total irrelevancy

and 1 is the entirely relevant level. Relevance is an elusive concept, as it is difficult to

determine exactly what kind of documents satisfy an information need.

The users (or experts) are responsible for the determination of levels of relevance.

The search system estimates the relevance level of each document during the opera-

tion. This process is called scoring, during which the search engine assigns score val-

ues to the retrieved documents.

2.1 Pattern search with pre-defined wildcards

The idea of semantic wildcards allows the user to specify wildcards having meaning-

ful semantic information in the search expression. Formally, this means the following.

186

If T is the set of possible words in a natural language (e.g., English), then a natural

language sentence of n+1 words is

 where .

A query is

 , where

where W is the set of the possible semantic wildcards. The set W determines only the

possible syntax of the search expressions (the grammar is unambiguous, provided that

W ∩ T = ∅), but not the semantics.

The elements of the set W specify when a semantic wildcard matches by a part of a

natural language sentence, and how this might affect the document's score. The

definition of matching we have great freedom depending on which type of semantic

content we want to be recognized for the analysis of natural language texts. As an

example, consider a case where only automatic named entity recognition (NER) is

performed. Now is a rational

choice, where each element in the set matches the words in the original sentence,

which are recognized as that type of entity by the language processing module of the

indexer of the search engine. This simple example also shows that one may want to

define relations between the elements of W: in our example entity is the most general

semantic wildcard - the matching of the others implies the matching of entity as well.

In corpus search systems it is more reasonable to recognize syntax units, word

structures instead of NER. In this case W contains the wildcards which obey the word

structures. For example, in the GloWbE [4] corpus we can apply Part Of Speech

(POS) tags as wildcards, which are defined by the Penn Treebank II. The drawback of

these approaches is that the set W is pre-defined, and the number of the available

semantic wildcards is often too big. For example, the Penn Treebank II label format

[5] defines 21 different types of phrases. Another disadvantage is that the users (in the

absence of linguistic skills) are often unable to determine the exact structure type of

the query, which leads to the use of incorrectly formulated search terms, reducing

precision and recall of the system.

2.2 Natural language semantic wildcards

As described above, the usage of wildcards from a pre-defined set can be

cumbersome, so we further generalize the notion of semantic wildcards. The main

idea of the generalization is that natural language expressions can be used as patterns.

The query is now

 , where , but

The * denotes the language which contains a single word *. In the case of natural

language semantic wildcards the matching can be defined in two ways. On the one

187

hand we can stay the above approach, that is, using NLP techniques we can analyze

the syntactic structure of the query term. For example, consider the query the cat in

the hat. The following information can be obtained from the text by analyzing the

query.

Thus, the above query can be reduced to the search with pre-defined wildcards cat in

NP or cat in DT NN. For example, the strings cat in the hat or cat in the rain will

match the search term, but the string cat in the freezing rain fits only the more general

cat in NP, so the score for this match could be reduced. Another approach is to

represent the semantic information with dependency-graphs where the nodes are the

words, and the edges are the semantic dependencies between them. In this case, a test

for matching means checking the edges. If the word order is indifferent, then the

search term matching test is equivalent to a similarity test between the semantic

graphs.

3 Implementation options for natural language semantic

wildcards

For the implementation of search engine with the pre-defined wildcards there are

effective solutions. Data structures called Parallel Suffix Arrays [6, 7] offer a time-

efficient solution to serve queries of a much richer query language than the above

defined. In the case of natural language wildcards the implementation depends on the

definition of matching. If matching is based purely on comparing dependency graphs,

then we found it’s reasonable to represent these graphs in a Prolog database. For

matching test on the grammatical constituent level the Apache Lucene full-text search

system can be used. We will briefly show what problems we encountered during the

different approaches and then describe experimental results. Figure 1 depicts the

general approach.

188

Fig. 1. Lucene analyzer chain for indexing semantic data

3.1 Natural language semantic wildcards and Apache Lucene

Lucene is a Java-based open-source information retrieval software library. Lucene

provides indexing and full-text search functionality that can be built in to various

software. With Lucene we can index any textual data and store it in a schema-less

index. To encode the semantic information in the index the easiest possible solution is

to work around the problem, and store the semantic information as Lucene tokens. So

we need to write our own Tokenizer or TokenFilter classes that generate these

artificial, additional tokens. The SemanticFilter calls Apache OpenNLP parser for the

received input sentences and splits the output into tokens. The user's search query is

then interpreted as a composition of Lucene SpanQueries. Figure 2 depicts the Lucene

query for the query *somebody* will feed the *dog*.
1

1 In Figure 2 the notation of "NEAR" and "OR" were used for ease of clarity: they correspond

respectively to the SpanNearQuery and SpanOrQuery queries. For SpanNearQuery the

tokens matching must be in the order of the subqueries, for SpanOrQuery only one token

matching is enough for a subquery.

189

Fig. 2. The Lucene query tree of *somebody* will feed the *dog*

3.2 Natural language wildcards and Prolog language

In this section, we present a solution which makes it possible to construct indices

which support the dependency approach. When we introduced the concept of

dependency-based matching, it was already mentioned that in this case, dependencies

extracted from the processed texts can be represented by directed, labelled graphs.

The vertices of such a graph are the words (tokens) of a given sentence S and the

edges are labelled with elements of dependency relations ():
 (

) (

)

In the graph there is an edge from

 to
 which is labelled by :

In this case, directed graph can be represented by a Prolog program with rules:

rel(

).

rel(

).

...

rel(

).

The Prolog representation can entrust the pattern matching to the Prolog runtime

environment, as we shall later see. Of course, the above Prolog rule set represents

 of only one sentence of a single document (or its only one field). Since we want

to index multiple documents by the search engine, and a document (in a particular

field) typically contains more than one sentence, we have to make sure that the de-

pendencies of the different sentences do not get mixed up in a document. The effi-

190

ciency of a search in the Prolog runtime environment can be crucial, as in the end we

will use the stored Prolog knowledge base to pass the goal clause

 () ()

corresponding to the query which can perform the comparison

between the dependency graph of the query and of the stored sentences by evaluating

the goal clause. The first idea could be that dependencies of all fields (and each block

within each field) in all documents are stored in one large Prolog database. For a

given field field of a given document doc, the field's sentences can be represented by

the following Prolog code
2
:

rel(

).

...

rel(

).

rel(

).
...

rel(

).

...

rel(

).

...

rel(

,

 ,

 ,).

In this case, an appropriate goal clause for the query can be as follows
3
:

 ()
 ()

 .

However, regarding the implementation of Prolog database built in this way,

efficiency issues must be taken into account - especially in cases of large Prolog

databases. Depending on what kind of Prolog system is used, we can optimize the

evaluation time of the program in various ways. For example, if we require the text to

not contain special characters or values (e.g., Rel elements) we can store Prolog atoms

instead of strings. We have tested two Prolog systems: the SICStus Prolog [8] and

TuProlog [9]. The performance with Prolog database atoms was always slightly faster

than the string representation, but the biggest difference between the two

representations was only 0.1203 seconds (in the case of the Bible corpus
4
). This is

2 In the Prolog code is the number of sentences in the field field of the document

doc.
3 The following goal clause corresponds to the query just in case if the search term is com-

posed of a natural language sentence, the more complex cases are not discussed here.
4 We made measurements on two text documents which are available free of charge: one is

Tractatus Logico-Philosophicus by Ludwig Wittgenstein, and the other one is the English

Bible (Old and New Testament).

1. sentence

2. sentence

Last sentence

191

probably due to both SICStus and TuProlog represent the atoms and strings with

similar efficiencies in the background. A greater acceleration was achieved by finding

the right order of the terms of the clauses. However, the speed difference is

imperceptible in case of small datasets (such as the Tractatus), but it can be seen that

the term indexing has a great impact on the performance when dealing with large

corpora.

3.3 Term indexing: the optimal term order

In the previous Prolog example, we have presented a format with which the text

dependencies can be represented by the facts of the Prolog language. All such facts

were of form rel(

). The Prolog engines usually index

the facts by the first term, so in this case by . Thus, for a given produc-

ing the list of matching rules for this term will be very effective, while for the rest of

the terms it
5
 won’t. To find the optimal term order we made some measurements. At

first, one might be surprised that some orders are more efficient than others if we

restrict ourselves only to query the facts of our Prolog representation and if the repre-

sentation is supplemented with a few simple rules (see the next section for the rules).

If we are just querying the facts and there are no rules, the result is as shown in Figure

3.

Fig. 3. Effectiveness of Prolog queries for different term orders

(using only facts, a lower value means better)

5 But we could use hash predicates in SICStus Prolog such as term_hash and variant_sha1.

192

On the graph the storage strategy documents first means the order (doc, sentence, rel,

word1, word2, field), while relations first means the order (rel, word1, word2, doc,

sentence, field). With the strategy relations first (strings) we considered the same

order but the other representation of the relations was used (instead of atoms, string

values were represening the relations) - the difference is negligible. Words first, then

documents means (word1, word2, doc, sentence, rel, field), and finally words first,

then relations means the (word1, word2, rel, doc, sentence, field) ordering. The results

shown in Figure 4 are the averages of 10 runs, for five different search terms. It's clear

that if we work with only facts, then the strategy documents first gives the slowest

method of the possible permutations
6
, and indexing words is the fastest. The reason is

that we have a free variable in the argument document in the goal clause of the query.

However, we have significant changes in the case when we use inference rules in

addition to Prolog facts in the search.

Fig. 4. Effectiveness of Prolog queries for different term orders

(using facts and rules)

It's clear that the searches now are much slower than it can be seen on Figure 3 - this

is due to the introduction of rules. Depending on what kinds of inference rules we

work with, the obtained run times can be different from the above results. In these

measurements we used two simple rules, the rules dobj and prep, as we will see later.

It is also shown that the strategies that were effective using only facts for pattern

matching, are much slower when rules are also used. So, if we want to store data

dependencies derived from the text in only one Prolog knowledge base and inference

rules are used, then it is worth using the order documents first - of course, all this

should only be addressed if we use such Prolog runtime environment that supports

6 The number of possible permutations is 6! / 2! = 360, or 5! / 2! = 60 if fields are omitted.

However, for the most of these permutations we received very similar results. We present

only those indexing options which are interesting from the point of our observations.

193

term indexing. Based on the measurements we can be satisfied with the effectiveness

of SICStus Prolog. However, these results are given after a compilation step. The

compilation is computationally rather intensive operation, for the Bible corpus it takes

an average of 86 seconds (keep in mind that the Prolog representation in this case is a

24-megabyte source file). However, once that's done, then we can run fast and

efficient queries on the index. The speed of queries, of course, depends not only on

the term order, but the order of the terms (edges of the dependency graph to be

matched) in the goal clause of the query.

Evaluation of the goal clause is sequential on its terms, so if the first term in the goal

clause is too general (it means that the term matches a number of facts and left sides

of rules), then the surplus calculation is accumulated for matching of the complete

query, thereby matching the rest of the terms. However, if we are lucky, the first term

of the goal clause corresponding to the query is as

:-rel(DOC,S,'mahalalel','years',conj),

 rel(DOC,S,'day','that',det).

This is a favorable case, because 'mahalalel' and 'years' are certainly less

frequently together in the English Bible than 'that day'. Therefore, in addition to

the term indexing (or in its absence) also a possibility raised that with some metadata

we can further increase efficiency: for example, with automatic reordering of goal

clauses (because we know that in our case it will not change the operation of search),

or with specifying our own preprocessing algorithms, which in the first step filters the

list of the applicable Prolog rules by different, domain-specific meta-information.

As a kind of metadata-based filter, we implemented a simple in-memory inverted

index in Java programming language to store the Prolog representation. For seamless

integration with the Java platform, we chose TuProlog, which is a Prolog engine

implemented in pure Java. The advantage is that it is available for free, and we can

use our search engine without installing any Prolog runtime environment. Java inte-

gration was also necessary because we use NLP tools which are based on Java.

4 Prolog goal clauses

We have already discussed in detail the generation of Prolog codes from dependency

graphs. However, it has not been presented yet, how we can construct goal clauses

transferable to the Prolog runtime environment from the user queries. Of course, the

first step here is to clean the search terms from the syntax of the semantic wildcards,

that is, if the search query is as follows:

Russell *is wrong*, because *he did* when *doing something*.

Then the next string is extracted from the text:

Russell is wrong, because he did when doing something.

194

The extracted string has been stripped from the special wildcard syntax so we can

pass it to the dependency parser. Next, the dependency parser from the above string

generates the dependency graph of the text, thus we received n dependencies of the

form (), where type is the type of the dependency, are the words

which are in that dependency relationship. Note that from each of these we can

generate a Prolog term in the same form, where we substitute and with free

Prolog variables and , if and were a part of a semantic wildcard before

stripping the query string. In the previous example the output of the parser on the

cleaned search term will be the following dependency graph:

nsubj(wrong:3,Russell:1)

cop(wrong:3,is:2)

root(ROOT:0,wrong:3)

mark(did:7,because:5)

nsubj(did:7,he:6)

advcl(wrong:3,did:7)

advmod(doing:9,when:8)

advcl(did:7,doing:9)

dobj(doing:9,something:10).

Since the root relationship is only a virtual dependency, we can ignore that. In the

remaining dependencies on the next step we replace the word belonging to semantic

wildcards with variables. If these steps are carried out then we obtain the next graph
7
:

nsubj(WRONG,Russell:1)

cop(WRONG,IS)

mark(DID,because:5)

nsubj(DID,he:6)

advcl(WRONG,DID)

advmod(DOING,when:8)

advcl(DID,DOING)

dobj(DOING,SOMETHING).

From which the corresponding Prolog goal clause can be easily prepared:

:- rel(nsubj, WRONG, ”russell”),

 rel(cop, WRONG, IS),

 rel(mark, DID, ”because”),

 rel(nsubj, DID, ”he”),

 rel(advcl, WRONG, DID),

 rel(advmod, DOING, ”when”),

 rel(advcl, DID, DOING),

 rel(dobj, DOING, SOMETHING).

7 The names of the variables are written in capital letters for the sake of clarity.

195

But it does not solve all the problems. Indeed, in this case our too simple

graph-matching test would not recognize a number of dependencies which are present

in the text. Consider the following example:

The meaning *should play* a role in syntax.

Following the above, from the search expression we would get the following goal

clause.

:- rel(nsubj, PLAY, ”meaning”),

 rel(aux, PLAY, ”should”),

 rel(dobj, PLAY, ”role”),

 rel(prep, ”role”, ”syntax”).

Unfortunately the following sentence does not match the above goal clause:

In logical syntax the meaning of a sign should never play a

role.

Since Prolog representation of the above sentence is the following:

rel(amod,"syntax","logical",1).

rel(prep,"play","syntax",1).

rel(det,"meaning","the",1).

rel(nsubj,"play","meaning",1).

rel(det,"sign","a",1).

rel(prep,"meaning","sign",1).

rel(aux,"play","should",1).

rel(neg,"play","never",1).

rel(root,"root","play",1).

rel(det,"role","a",1).

rel(dobj,"play","role",1).

The terms filling into the terms of above goal clause are written in bold - the error is

in the underlined row. The parser recognizes the prepositional structure, but assigns it

to the verb “play”, which is a reasonable choice, but we do know, however, that if

there is a direct object of a verb, then the prepositional relation can be extended to this

object as well. This is expressed by the following Prolog rule:

rel(prep, X, Y, S):- rel(dobj, Z, X, SCORE1),

 rel(prep, Z, Y, SCORE2),

 S is SCORE1*SCORE2*0.5.

Now we can see how the scoring is done in the Prolog representation: the score of the

document (or more properly, the score of a given sentence in the given field of the

document) is calculated by Prolog facts and rules. Each application of the above rule

reduces the total score results with a factor λ (which has the value 0.5). This prevents

196

the inferred dependencies by the rules to be equal to those documents that can be

matched without applying any rules. Another rule, which we found useful is:

rel(dobj, X, Y, S):-rel(ccomp, X, Y, SCORE1),

 S is SCORE1*0.5.

Finding the weights λ could be a part of a separate optimization problem in the future.

However, we developed an alternative method of scoring, which prevents any infinite

cycles. Thus, it is useful for non-tree-based representations of the Stanford parser:

rel(DOC, SENTENCE, X, Y, dobj, INH, SYNT)

 :- INH > 0.1,

 rel(DOC, SENTENCE, X, Y, ccomp, INH*0.5, SYNT).

rel(DOC, SENTENCE, X, Y, prep, INH, SYNT)

 :- INH > 0.1,

 rel(DOC, SENTENCE, Z, X, dobj, INH*0.5, S1),

 rel(DOC, SENTENCE, Z, Y, prep, INH*0.5, S2),

 min_list([S1, S2], SYNT).

The general form of the rules can be seen from the code. Every rule gets an inherited

score (INH), and produces a synthesized one (SYNT). If the inherited score falls

below a certain threshold (which is determined in 0.1 in the above example), then the

dependency derivation tree gets discarded and the evaluation continues. If there are

multiple terms on the right side of the rule, then we take the minimum of the synthe-

sized scores, as they are already reduced by the factor of λ. In both cases, the final

score will be , but the value of is the number of interior nodes of the derivation

tree in the first case and is the depth of the tree, in the second case. The latter is

typically a smaller number for rules with more right-hand terms. So, in the end we get

a more stable and more accurate scoring logic.

5 Experimental results

The effectiveness of information retrieval systems are commonly measured by two

metrics: precision and recall. The aim of information retrieval which is to maximize

both of them could be difficult, because these two metrics often work against each

other - the lower the first one, the higher the second, and vice versa.

Solutions using Lucene are not sufficient neither from precision nor recall point of

view (both of them were approximately 0.1) - the root of this problem is the represen-

tation: in Lucene, we had to store the retrieved syntactic or semantic information as

ordinary Lucene tokens, so the retrieved metadata is stored at the same level or layer

as the original text. This is a problem because positionally nearby tokens can fall apart

from each other after processing. On the following figure, we can see the resulting

TokenStream for the string cat in the hat:

197

<NP> <NP> <NN> cat </NN> </NP> <PP> <IN> in </IN> <NP>

<DT> the </DT> <NN> hat </NN> </NP> </PP> </NP>.

In the original text, the distance between the cat and the hat words were only two

tokens. After processing, it is increased to 11. And because of the distance is directly

proportional to the depth of the parse tree, it is impossible to determine an upper limit

on Lucene SpanNearQuery's slop parameters.

Unlike the Lucene-based solution, the implementation in Prolog produced really good

results: on the same dataset we can achieve 0.8 precision and recall, not to mention

the fact that the TuProlog-based engine was also faster than the Lucene solution, as

shown in Figure 5.

Fig. 5. Average running times of the Lucene-based and the TuProlog-based solution

The reason of the relatively high execution time (as compared to the results of

SICStus Prolog) is that the parser model (a file with a several-megabyte size) must be

loaded into the memory in each case at the beginning of the program. If we analyze

the distribution of the execution time of the TuProlog-based solution, the bottlenecks

can be seen in Figure 6.

Fig. 6. The average distribution of the execution time of the TuProlog-based solution

6 Conclusions

We have presented two implementation plan for the semantic wildcard search. The

implementation has shed some light on practical problems. Namely, it turned out that

198

in the current version of Lucene (4.3, at the time of the writing) is not possible to store

complex meta-information in a parallel layer without clumsy workarounds, so this

means that implementing a semantic wildcard search engine in Lucene would be in-

herently sub-optimal and the outcome would be unsatisfactory. However, the next

version of Lucene can make a positive difference in this topic: as we can read in [10],

the Lucene attribute API already contains an attribute named PositionLength, which is

in principle could make Lucene capable to store word lattices. However, the overall

infrastructure of the Lucene has not support this attribute yet, however this may

change in the future, enabling Lucene to support complex wildcard searches and to be

a viable alternative for implementation of a semantic wildcard search engine.

It was surprising to see that the Prolog environments are capable to store large amount

of linguistic data (e.g., the Bible corpus), and to be a basis of a full-text search appli-

cation.

The rearrangement of terms in the auto-generated goal-clauses would be an interest-

ing goal for further development, as well as the optimization of the λ vector or the

development of additional document scoring methods or the complete integration

with the SICStus Prolog.

7 References

1. Barry Morley, Antoinette Renouf, Andrew Kehoe: Linguistic Research with the

XML/RDF aware WebCorp Tool, WWW2003 Conference, Budapest, 2003.

2. KWiCFinder: http://www.kwicfinder.com/KWiCFinder.html, 2013. 06. 08.

3. The Semantic Vectors package: https://code.google.com/p/semanticvectors/,

2013. 06. 08.

4. GloWbE : Corpus of Global, Web-based English:http://corpus2.byu.edu/glowbe/,

2013. 06. 08.

5. Penn Treebank II: http://www.cis.upenn.edu/~treebank/, 2013. 06. 08.

6. Johannes Goller: Parallel Suffix Arrays for Corpus Exploration. (2010).

7. Johannes Goller: Parallel Suffix Arrays for Linguistic Pattern Search -

http://www.aclweb.org/anthology-new/R/R11/R11-1068.pdf 2013. 06. 08.

8. SICStus Prolog: http://sicstus.sics.se/, 2013. 06. 08.

9. TuProlog: http://tuprolog.alice.unibo.it , 2013. 06. 08.

10. Michael McCandless: Lucene's TokenStreams are actually graphs,

http://blog.mikemccandless.com/2012/04/lucenes-tokenstreams-are-actually.html,

2013. 06. 08.

11. Rada Mihalcea: The semantic wildcard. Proceedings of the LREC Workshop on

Creating and Using Semantics for Information Retrieval and Filtering State of the

Art and Future Research. 2002.

12. Tony Veale: Creative language retrieval: A robust hybrid of information retrieval

and linguistic creativity. Proceedings of ACL. 2011.

199

Designing and Implementing Control Flow Graph

for Magic 4th Generation Language

Richárd Dévai, Judit Jász, Csaba Nagy, Rudolf Ferenc

Department of Software Engineering
University of Szeged, Hungary

devai@frontendart.com, {jasy|ncsaba|ferenc}@inf.u-szeged.hu

Abstract. A good compiler which implements many optimizations dur-
ing its compilation phases must be able to perform several static analysis
techniques such as control �ow or data �ow analysis. Besides compilers,
these techniques are common for static analyzers to retrieve information
from the code for example code auditing, quality assurance, or testing
purposes. Implementing control �ow analysis requires handling many
special structures of the target language. In our paper we present our
experiences in implementing control �ow graph (CFG) construction for
a special 4th generation language called Magic. During designing and im-
plementing the CFG for this language we identi�ed di�erences compared
to 3rd generation languages because the special programming technique
of this language (e.g. data access, parallel task execution, events). Our
work was motivated by our industrial partner who needed precise static
analysis tools (e.g. for quality assurance or testing purposes) for this lan-
guage. We believe that our experiences for Magic, as a representative of
4GLs might be generalized for other languages too.

1 Introduction

Control �ow analysis is a common technique to determine the control �ow of a
program via static analysis. The outcome of this analysis is the Control Flow
Graph (CFG), which describes the control relations between certain source code
elements of the application. The CFG is a directed graph: its nodes are usually
basic blocks representing statements of the code that are executed after each
other without any jumps. These basic blocks are connected with directed edges
representing the jumps in the control �ow. CFG is a useful tool for code opti-
mization techniques (e.g. unreachable code elimination, loop optimization, dead
code elimination). The �rst publications of using control �ow analysis goes back
to the 70s [1] and 80s [4,11,24], but since then most of the compilers have imple-
mented this technique to construct a CFG and implement optimization phases
based on it.

Although the basic structure of the CFG is quite common, the methods
constructing it for applications are very much language dependent. Identifying
control dependencies in special structures of the target language may result spe-
cial algorithms. Moreover, special program elements or applications may require
minor modi�cations of the structure of the CFG (e.g. nodes like entry nodes).

200

In our paper we present our experiences in implementing Control Flow Graph
construction for a special language called Magic. This language is a so-called
4th generation language [?] because the programmer does not write source code
in the traditional way, but he implements the application "at a higher level"
with the help of an application development environment (Magic xpa). This
special programming technique has many di�erences compared to 3GLs which
are the most common languages today (Java, C, C++, C#, etc.). Because of
the philosophy of the Magic language we had to revise traditional concepts like
program components, expressions and variables during the design of the CFG.

The main contributions of this paper are (1) a technique to implement a CFG
for applications developed in Magic xpa, (2) identi�ed di�erences of implement-
ing a CFG in a 4GL context compared to 3GLs.

Our work was motivated by our industrial partner who needed a tool set
which was able to perform precise static analysis for code auditing and for test
case generation purposes. Our experiences for Magic, as a representative of 4GLs
could provide a good bases to implement CFG construction for other 4GLs too.

2 Related work

Control �ow is a widely used information for example in compiler programs
of 3GLs. The method of CFG construction is well de�ned [18]. We need to
discover and identify the statements, and de�ne basic blocks by selection of leader
statements. Key parts are to de�ne the structures to handle control passing, and
elements for those items of logic which are implicitly in�uence the behavior of
control �ow.

Control �ow analysis has many uses, such as program transformations or
source code optimizations of compilers1 [12], rule checkers of analyzer tools
[6,7,22], security checkers [5], test input generator tools2 [28], or program slic-
ing [26]. Program dependence analysis approaches are also based upon control
dependencies computed by control �ow analysis [10].

The implementation of the control �ow analysis might di�er for di�erent
languages. There are many papers published about dealing with higher-order
languages (e.g. Scheme), for instance the work of Ashley et al. [2] and the PhD
thesis of Ayers [3] both summing up further works too [11,24]. An extensive
investigation has been done for functional languages too, which was recently
summed up by Midtgaard in a survey [17].

However, CFG solutions for 4GLs are really limited. These work usually
tackle the topic from the higher abstraction level of the language. E.g. ABAP,
the programming language of SAP is a popular 4GL and there are few published
�ow analysis techniques which mostly deal with work�ow analysis [14,27]. In
previous work [20] we implemented a reverse engineering tool set for Magic and
we found a real need to adapt some of these techniques to the language. Besides
our work, Magic Optimizer3, as a code auditing tool also shows this requirement.

1 GCC Internals Online Documentation: http://gcc.gnu.org/onlinedocs/gccint/
2 Prasoft Products: http://www.parasoft.com/jsp/products.jsp
3 Magic eDeveloper Tools Homepage: http://www.magic-optimizer.com/

201

This tool checks for violations of coding rules ("best practices"), and it is able to
perform optimization checks and further analyses to give an extended overview
of every part of a Magic applications.

3 Specialties of a Magic Application

In the early 80's Magic Software Enterprises4 introduced a new 4th generation
language, called Magic. The main concept was to write an application in higher
level meta language, and let an application generator engine create the �nal ap-
plication. A Magic application could run on popular operating systems such as
DOS and Unix, so applications were easily portable. Magic evolved and new ver-
sions of Magic have been released, uniPaaS and lately Magic xpa. New versions
support modern technologies such as RIA, SOA and mobile development.

The unique meta model language of Magic contains instructions at a higher
level of abstraction, closer to business logic. When one develops an application
in Magic, he actually programs the Magic Runtime Application Environment
(MRE) using its meta model. This meta model is what really makes Magic a
Rapid Application Development and Deployment tool.

Magic comes with many GUI screens and report editors as it was invented
to develop business applications for data manipulation and reporting. The most
important elements of Magic are the various entity types of business logic, namely
the data tables. A table has its columns which are manipulated by a number
of programs (consisting of subtasks) binded to forms, menus and help screens.
These items may also implement functional logic using logic statements, e.g.
for selecting variables (virtual variables or table columns), updating variables,
conditional statements.

The main building blocks of a Magic application are de�ned by repositories.
These repositories construct the workspace of a Magic xpa application. For ex-
ample in the Data Sources repository one can de�ne Data Objects. These are
essentially the descriptions of the database tables. Using these objects Magic is
able to handle several database server types. The logic of an application is imple-
mented in programs stored in the Programs Repository. Programs are the core
elements of an application. These are executable entities with several sub tasks
below them. Programs or tasks interact with the user trough forms to show the
results of the implemented logic. Forms are also part of the tasks or programs.

Developers can edit a program with the help of the di�erent views. The main
views are the followings:

Data View. Declares which Data Objects are binded to the programs. The
binding is in general some variable declaration, where the declaration can be
real or virtual. The real declaration connects to a data table column, while
the virtual declaration stores some precomputed data.

Logic View. De�nes the Logic Units of the program. During the execution each
task has a prede�ned evaluation order so-called execution levels. Logic Units

4 http://www.magicsoftware.com

202

Fig. 1. CFG of a simple conditional.

are that parts of the task which handles the di�erent execution levels. E.g.
the Task Pre�x is the �rst Logic Unit which will be executed to initialize the
task. Actually the Logic Unit is the place where the developer can write the
"code". Here we can de�ne statements to perform calculations, manipulate
data, call sub tasks, etc. Statements appear as Logic Lines in the Logic Unit.

Form View. De�nes the properties of a window (e.g. title, size and position).
Elements of a window can be typical UI elements such as controls or menus.
A window is represented by a Form Entry in Magic xpa. In the Magic xpa
development environment we can use many built-in controls or we can also
de�ne our custom controls.

As it can be seen now, a Magic 4GL application di�ers from programs de-
veloped in lower level languages. The developers can concentrate to implement
the business logic in a prede�ned layered form, and the rest is handled by the
Application Platform.

4 Control �ow graph construction

In this section we discuss the main de�nitions and steps of the control �ow
creation of 3rd generation languages and introduce the problems of the control
�ow graph construction of the Magic as a representative of 4GLs.

4.1 De�nitions and general steps

The control �ow graph is a graph representation of computation and control
�ow in the program, as it is represented by the example of Figure 1. The nodes
of a CFG are basic blocks represented by rectangles. Each basic block represents
a set of statements which execute after each other sequentially. Branching can
only exist at the end of the block, after the execution of its last encapsulated
statement.

The �rst step in the control �ow creation is to determine the starting points
of the basic blocks [18]. These statements called leaders are the followings:

� the �rst statement of the program,

203

Fig. 2. Example ICFG.

� any statement that is the target of a conditional or unconditional branch
statement,

� any statement that immediately follows a conditional or unconditional branch
statement,

� any statement that immediately follows method invocation statement5.

If we know the sequence of the statements in the program and the leaders of
the basic blocks, we can determine the blocks by the enumeration of the state-
ments from one leader up to but not including the next leader or the end of
the program. Compilers and other source code analyzer tools �rst build up an
intermediate program representation of the source code, called abstract syntax
tree (AST), that implicitly describes the sequence of the statements. With the
traversal of the AST representation we can determine the sequence of the state-
ments, and if we want to build the control �ow with much more granularity, we
can determine the evaluation order of the expressions of the statements too. We
will discuss �ner representations under the examination of Magic expressions
and call types in Section 5.

In general, control �ow information of methods, procedures or subroutines of
the program are represented individually. From technical reasons each of these
has two special kinds of basic blocks. The Entry block represents the entering
of a procedure, while the Exit block represents the returning from the called
procedure. The potential �ows of control among procedures are represented by
call edges. The connected control �ow graphs of the procedures with the call
information give the so-called interprocedural control �ow graph (ICFG) of the
analyzed program. Figure 2 shows an example of the ICFG, where call edges are
represented as an arrow headed dashed line between call site and the Entry block
of the called procedure. In some cases the detection of procedure boundaries
is not an easy task, and the target of a call or branch instruction cannot be
determined unambiguously. The earlier situation is commonly appears in binary
codes [13], while the later is typical in the presence of function pointers or virtual

5 Method invocations should not be basic block boundaries in all cases only if we need
compute some summarized information at the call sites in our connected application.

204

function calls at higher level languages. The problems appeared in 4th GLs are
discussed in the rest of this section.

4.2 Challenges in Magic

Like compiler programs or other software analyzer tools, our �rst step is to create
an intermediate representation of a Magic applications, called Magic Abstract
Syntax Graph (ASG), which is suitable to describe all necessary information
for our purpose. Information extracted and stored in the ASG is de�ned by the
Magic Schema [19]. This format allows us to traverse and process every required
elements of the Magic application in a well-de�ned hierarchical graph format
through an API to determine the execution order of the Magic statements. ASG
contains not only the nodes of the code, but every needed attributes that can
a�ect the control �ow. E.g. it contains the propagation information of Event

Handlers, which can terminate the execution of other event handlers, or the
wait attribute of Raise Event, which attribute determines the execution point
of the given event.

Developing an application in Magic requires a special way of thinking since
the programming language is special itself. However this special programming
language preserves some main characteristics of procedural languages. Mostly,
the main logic of an application can be programmed in a procedural way via con-
trol statements in programs and their subtasks. Programs can call each other and
they can call their subtasks. Also, tasks can use variables for their computations,
and they can have branches within their statements. These structures of the lan-
guage make it possible to adapt the CFG construction of 3GLs to Magic 4GL.
For example for every potential target of call sites of Magic (task, event handler,
developer function) we make an intraprocedural control �ow graph and we con-
nect these graphs by call edges to get the ICFG. However, there are a number
of structures in the language which make harder to construct the CFG of an
application. Here we discuss these challenges which we are going to elaborate in
later sections.

Tasks architecture is a special event based execution level system. There
are di�erent task types for di�erent operations. For example online tasks to
interact with user, or batch tasks running without any user interaction. Each
task type has its own levels (e.g. task, record) and the developer can operate
with these by the so-called Logic Units. A user action or a state change in the
program can trigger prede�ned events that are also handled by Logic Units of
tasks. So statements (Logic Lines) of these Logic Units get executed if a certain
event triggers them. The most challenging thing to construct the CFG of a
Magic program is to discover every circumstances that can change the �ow of
the control between Logic Units and between Logic Lines. We have to understand
and represent the e�ect of property changes which can in�uence the behavior of
the execution, and represent it in a well describing form.

Raise Event logic lines and Event logic units are components of Magic
logic to raise an event during the execution of the program and to handle the
raised event. A raised event could be handled with special logic units called Event

205

Logic Unit in a special prede�ned reverse order in tasks. When an event raised,
the MRE immediately looks for the last available handler in the given task, and
gives the control to the handler. This is the simplest case, the synchronous case.
However, we could raise events asynchronously; or set the scope of handlers as
they could be handled by parent tasks too, or only by the task which raised it;
or every matching handler could terminate the chain of handlers if propagate
property is set to no; etc. Describing the proper event handler chains within the
CFG requires a complex traverse of logic units in task hierarchy with respect to
the in�uencing attributes. Our model is limited those events which are raised by
a code element or a form item.

Data access is supported with a rich toolset in Magic to access databases for
e�ciency. Magic provides gateway to wide scale of RDBMS systems by handling
connection, transactions and generation of SQL queries, beside we could create
our own queries. In general we can select from two alternatives to perform our
transactions. In Physical mode other DB users see our changes in RDBMS log,
and we use the lock system of the DB server. In Deferred mode the Magic xpa
is responsible to store our changes and commit them when we have assembled
our transaction within a running task. Beside transactional modes we have to
select the method of update process for the records we use in the transactions.
Di�erent strategies give us opportunity to handle concurrency and integrity on
record updates. At the creation of the CFG we have to handle the di�erent event
handlers dependent from the selected transaction mode and update strategy.

Parallel task executionmakes it possible to execute more programs in par-
allel. Parallel programs are running in an isolated context where every loaded
components of main application are reloaded within the new context. In such
a context a parallel program has its own copy of memory tables, own database
connections with some limitations (e.g. it cannot store data in main program
or communicate directly with other running programs). Tasks can raise asyn-
chronous events in the context of another program to communicate, or they can
use shared variables through proper functions in expressions. Parallel processes
can run in Single or Multiple instance modes. In Single mode the context is the
same for every instance of the task, while Multiple mode uses di�erent context
for each task. At the CFG construction we have to simulate all hidden data base
copying and the parallel execution of statements.

Forms has many uses during a program execution. In each case we have to
build the CFG according the current use of the forms. On the forms the user can
manipulate variable data, which appear in the running program as assignment
instructions, or the user can a�ect the running program behavior too.

5 Implementation details

As we seen the process of CFG building is aggregated from several phases. First
by the traversal of the ASG we determine the sequence of statements and the
evaluation order of expressions. During evaluation we collect information about
calls. After we determine basic block leaders and �nally we build up the basic

206

blocks for later processes. In our representation each call site will be a block
boundary.

To determine the execution order of the contained statements of an analyzed
code, we traverse its ASG from the root node step by step on the tree hierarchy
and we re�ne the control �ow information among the sub components. In every
steps we de�ne the execution order of the composed nodes of an investigated
ASG node and we augment the execution sequence with additional expressions
or statements, if it is needed. We do this since many semantic elements of a pro-
gramming language is not appear explicitly in the source code and so in its ASG
representation. Due to the hierarchical traversal, the control �ow information of
descendant nodes are re�ned after the traversal of their ancestors.

Rectangles of �gures of this section represents nodes, or groups of ASG nodes.
Parallelograms denote branches where the possible �ow of control depends on
an attribute of Logic Units, Logic Lines, controls, variables, etc. Black ar-
rows denote control edges of the CFG, while dashed lines represent call edges
among the intraprocedural CFG components. Since in our representation call
instructions are basic block boundaries we represent each call with two virtual
nodes called Call Site and Return Site. In some cases we introduce solutions
of alternative program versions with the help of one �gure. To distinguish the
di�erences of these versions we use black branching points on the paths where
the behavior of the di�erent versions are di�er.

In the following we discuss cases where we could create general algorithms
to process group of nodes with the same base type. Finally we introduce some
special solutions where general algorithms are not able to describe precisely the
real evaluation order of the analyzed ASG node descendants.

5.1 General algorithms

Tasks in the ASG represent either programs or their sub tasks. The �nal repre-
sentation of a Task is in�uenced by the implementations of the contained Logic

Units, and the used variables, but we have to concentrate only the skeleton of
the tasks, since the �ner control �ows of Logic Units are determined in later
steps of the traversal.

When we reach a Task node in the traversal �rst we create an intraproce-
dural CFG context for the Task node. Our second step is to collect the ordered
sequence of logic units that take part of the execution progress of the task. These
nodes are the child nodes of the Task node in the ASG. Task, Group, Record are
subtypes of the Logic Unit, but of course the existence of these elements are
only optional in each Task. Prefix and Suffix are sub categories of previous
Logic Unit subtypes controlled by an attribute. The subtype and the selected
attribute value determine the exact execution point and order of these Logic

Units. So we nominate the distinct Logic Units with di�erent types and at-
tributes di�erently as in Figure 3.

We does not connect every Logic Unit subtypes in this step, only the Task,
Group and Record. For the Event and Function subtypes of Logic Unit we
associate a distinct intraprocedural CFG and handle them separately since this
kind of Logic Units can be triggered several times from distinct points.

207

Fig. 3. Evaluated control �ow of a Batch Tasks and Logic Units.

Generated source codes and behaviors of MRE are di�er at some point from
the structure that we can see in Magic xpa Studio during developing a Task,
because variable declarations and initializations are also part of the execution of
logic, but de�ned in a separated view as we shown in Section 3. The creations
of variables and default value assignments have been done at the start point of
a task execution. These commands are gathered by the Record Main node.

While the Task and Group logic units have only two subcategories, the Prefix
and the Suffix, the Record logic units logically have three distinct in a loop
of control. Each Record logic units execution round could have an initialization
part what explicitly does not appear in the code. Since it has an important
e�ect to the control �ow, we insert a virtual Record Init node into the �ow
of execution. If we does not �nd any initialization during the investigation of
variables in the traversal of the record unit, or the task is not in 'write' mode
and the initializations use real variables only we can delete this Logic Unit from
the CFG at the end of the traversal of the Task. In the last step we investigate
the return expression node of the Task, and if it exits we connect it as the last
item before the Exit block of the Task.

On the left side of Figure 3 we can see the execution order of a Batch Task

or a Browse Task. These tasks contain variables, implement all possible Logic

Unit types and de�ne a return expression.

Having visited all the contained nodes of the Task node, we are able to
build up the basic blocks and determine the control and call edges among these
elements, since we known the exact execution order of the contained statements,
expressions.

Each Logic Units consist of Logic Lines. Generally Logic Lines have two
distinct kinds. In the �rst kind the execution of the logic lines are not dependent
from any other factor; we handle them as they can run sequentially in the order of
appearance until further checks. We refer these as Common Logic Lines. In the

208

Fig. 4. Control �ow of Raise Events.

Fig. 5. CFG of Function Logic Unit.

second kind of Logic Lines we have to observe the wait attribute. From the so
called Raise Events nodes we determine the asynchronously executed Queued

Raise Events according to the Figure 3 if the value of the wait attribute is false.
The wait attribute of a Raise Event node can be a `yes' or `no' constant or a
boolean expression. Since the execution places of these lines are dependent from
the value of the wait attribute, we have to distinct cases. If this value is logically
true, we can speak about synchronous raise events, while in the other case we
can speak about asynchronous raise events. In the case where the wait value is
given by an expression, we have to explicitly sign the two possible cases in the
control �ow with additional conditional branches as it is shown by the Figure 4.

The execution of Logic Lines are dependent in general from a condition
which can allow or decline the execution of the certain line. If the given line get
right to run, the �ow of control get into the statement, which describe the exact
behavior of the logic line. Although this part of the evaluation of the logic lines
is general, the behavior of the distinct subtypes of Logic Lines can be very
di�erent as we can see in the next section.

5.2 Speci�c algorithms

As it was mentioned in the last subsection the Function and Event Logic Unit
nodes are di�erent from other logic units, but similar to each other. Since the
execution of these units are dependent from their context, and their execution

209

While Block

Incoming Control Edges

Outgoing Control Edges

Condition

"YES"

"NO"

Call

Incoming Control Edges

Outgoing Control Edges

Condition

"YES"

Result Variable

"NO"

Task

Fig. 6. CFG of a While block and a general Call logic line.

is triggerable by di�erent point from the program, it is better to handle them
similar as the Task Unit. So we create for these nodes an own intraprocedural
CFG representation, which are callable from distinct program points. Next we
collect Logic Lines which are variable declarations from their contained Logic

Lines, because they are not necessarily be in order before all other Logic Lines,
but executed collectively at the beginning of the execution of the Logic Unit.
Next we have to perform an algorithm like shown for Logic Units. The di�er-
ence between Function and Event Logic Units is that former could de�ne a
Return Expression declared by an attribute of Logic Unit, what is executed
before Queued Raise Events as it is shown by Figure 5.

Logic Lines are evaluated through the traversal by speci�c evaluators. These
elements of logic are much more unique from the point of view of the control �ow
processing than the Tasks and Logic Units are. We introduce some of these to
show the variety and the complexity of their processing.

A Block node is implemented by a Logic Line pair. A While Block with
its related End Block declare the start and the end of the Block. These two
encapsulate the body of the Block. When we �nd a While Block in the ASG
we have to search for its terminating End Block node, because they are not
connected directly in the ASG. The condition for a While Block can be a 'yes'
or 'no' constant or an Expression. Nesting of Block nodes makes harder to
carry out this task. Left hand side of Figure 6 shows the evaluation of a while
structure. The elaboration of If Block is similar to the While Block. First we
have to �nd the corresponding End Block and Else Blocks for each If Block

node. The multiple selection is implemented by the optional condition argument
of an Else Block node.

The right of Figure 6 shows a Call logic line, which implement a call based
on a Magic generated identi�er of a program, a sub task or by a public name,
etc. A Call logic line node has an optional argument list and could receive a
return value. The passed-by-reference arguments are updated after the control is
give back to the Return Site. To implement this behavior in the CFG we have

210

to create update nodes for them. Before the actual call, we insert a Call Site

node into the CFG, while after the execution of the Exit Block of the called
CFG we nominate the return with a Return Site node.

Select Logic Lines de�ned on the Data View are separated from the code.
The code representation refers to this elements only by identi�ers. The semantics
of these Select Logic Lines should appear by the Record Main and Record

Init nodes during the execution of a given task. The handling of the expressions
of Select Logic Lines are similar as the normal Logic Line types.

All Expressions of Magic are arranged into subtypes by categories in our
ASG representation. An Expression can be unary, binary operations, Function
Calls that refer to a built-in function or a Function Logic Units and literals.
Literals can make a reference to an identi�er, a resource or a component, or it
could contain a constant value. Control �ow of a Function Call can be built-up
as a simpler Call Logic Line, the only di�erence is that its arguments can not
passed by reference.

6 Evaluation

Finally we have made a veri�cation of our technique through result validations
and performance tests.

Our application has been developed in C++. We have created 105 test cases
with Magic xpa Studio and the ASG have produced with the ASG generator
application made by Szeged Software Ltd6.Our work allows C++ applications
to consume our CFG algorithm as a library. Validation progress based on the
speci�cation of CFG library, the output of the ASG builder in XML format,
textual log output, and dump of CFG builder in graphML. Finally we have
created a simple batch script to control the test execution progress. First we
have created an ASG representation of the analyzed Magic application. The
computed ASG is in binary format, but for manual validation we can dump its
content in XML too. Having computed the ASG we determine the ICFG of the
analyzed program. In the �rst case we compared the graphML CFG dumps of
the individual tasks with the original code, and we veri�ed our computations
manually. Finally we rerun the CFG computation without any logging steps to
simulate a real-life situation to gather runtime information about our algorithm.

An exported picture from graphML can be seen in Figure 7. The original
code contains an in�nite While Block. This information is shown on the �gure
too, where basic block with id 4 is unreachable. This information could be easily
retrieved by API calls during the traversal of the CFG. Of course in this case
this possibly malformed control structure is recognized by Magic xpa Studio too,
it warns the programmer about the existence of the in�nite loop. The example
of the �gure contains a call from the body of the While Block. This call is also
appear in our ICFG. We have compared all the resulting dumps with original
source codes manually, and we �nd each ICFG gives a good description from
possible execution pathes of the original codes.

6 http://www.szegedsw.hu

211

Fig. 7. Visualized ICFG by generated graphML dump.

To verify the usability of our algorithm we ran our implementation on an
Intel XENON E5450 @ 3GHz 32 GB Windows Server 2008. Performance results
on a medium sized sample project with nearly 200.000 nodes and about 500.000
attributes we get a 0,598 seconds runtime of the ICFG computation. As we can
see the ICFG computation is carried out in an a�ordable time, and so it will be
adaptable in any approaches based on this information.

7 Limitations of the approach

Beside the shown advances of our technique there are a few limitations too. Here
we describe two main limitations among others.

Our event handling does not handle all the possible specialties of a Magic
application. Currently, the implementation is able to follow events that are raised
and handled inside the code with a raise event statement or a certain logic
unit.Internal events of Magic xpa (such as hotkeys) are not yet supported unless
raised by raise event statement.

Our recent CFG model does not support the representation of parallel task
executions given by section 4.2. To improve our model, we should investigate
previous work about limitations and possible application forms of CFG for par-
allelism support e.g. [?].

8 Summary and Future Work

In our paper we present an application of CFG concepts for a speci�c 4th genera-
tion language, Magic 4GL. We use a static analysis approach to gain information
from generated Magic source code, and build a CFG with �ne granularity. We
create a reusable library for further use of our model which makes it possible to
perform further analyses and process the CFG and ICFG structures which we

212

created. We created a textual and an XML based graphML dump to make it
easy to get an overview of the processed information.

Our evaluation shows that the implemented approach is applicable for middle-
sized Magic applications. The presented method has an a�ordable space require-
ment and it constructs the CFG fast enough to analyze large projects too.

Besides, we show that implementing control �ow analysis for a higher-level
language, such as Magic, is possible via adapting 3GL techniques, but special
structures of the language may result in special methods and special structures in
the CFG. For example, the special use of Events enables us to gather more precise
information compared to 3GLs where these structures are mostly dynamic.

Conceptually, the presented technique can be applied to other 4GLs too. The
core elements of the CFG should be the same in a language independent way, but
special constructs of the language should require special solutions. Particularly
for other, higher level languages such as 5GLs.

Control �ow analysis is just one step for us towards a more complex approach,
where we plan to gather information about the available control paths, and
generate automatic test cases to support testing and maximize the test coverage
of Magic applications [8].

Although we have not yet implemented a speci�c application which is based
on our CFG model, the presented approach and results with our cost measure-
ments are already promising, hence useful for further analyses techniques.

Acknowledgements

This research was supported by the Hungarian national grant GOP-1.1.1-11-
2011-0039.

References

1. Frances E. Allen. Control �ow analysis. SIGPLAN Not., 5(7):1�19, July 1970.
2. J. M. Ashley and R. K. Dybvig. A practical and �exible �ow analysis for higher-

order languages. ACM Trans. Program. Lang. Syst., 20(4):845�868, July 1998.
3. Andrew Edward Ayers. Abstract analysis and optimization of Scheme. PhD thesis,

Cambridge, MA, USA, 1993. UMI Order No. not available.
4. P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick and N.D.

Jones, editors, Program Flow Analysis: Theory and Applications, chapter 10, pages
303�342. Prentice-Hall, Inc., Englewood Cli�s, New Jersey, 1981.

5. Anupam D., Somesh J., Ninghui L., D. Melski, and T. Reps. Analysis techniques
for information security. Synthesis Lectures on Information Security, Privacy, and
Trust, 2(1):1�164, 2010.

6. Rudolf Ferenc, Árpád Beszédes, and Tibor Gyimóthy. Fact Extraction and Code
Auditing with Columbus and SourceAudit. In Proceedings of the 20th International
Conference on Software Maintenance (ICSM 2004), page 513. IEEE Computer
Society, September 2004.

7. Rudolf Ferenc, Árpád Beszédes, Mikko Tarkiainen, and Tibor Gyimóthy. Columbus
� Reverse Engineering Tool and Schema for C++. In Proceedings of the 18th
International Conference on Software Maintenance (ICSM 2002), pages 172�181.
IEEE Computer Society, October 2002.

213

8. Dániel Fritsi, Csaba Nagy, Rudolf Ferenc, and Tibor Gyimóthy. A layout inde-
pendent GUI test automation tool for applications developed in Magic/uniPaaS.
In Proceedings of the 12th Symposium on Programming Languages and Software
Tools (SPLST 2011), pages 248�259, 2011.

9. S. Horwitz, P. Pfei�er, and T. Reps. Dependence analysis for pointer variables.
SIGPLAN Not., 24(7):28�40, June 1989.

10. Neil D. Jones. Flow analysis of lambda expressions (preliminary version). In
Proceedings of the 8th Colloquium on Automata, Languages and Programming,
pages 114�128, London, UK, UK, 1981. Springer-Verlag.

11. K. Kennedy and J. R. Allen. Optimizing compilers for modern architectures: a
dependence-based approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2002.

12. Ákos Kiss, Judit Jász, Gábor Lehotai, and Tibor Gyimóthy. Interprocedural static
slicing of binary executables. In Proc. Third IEEE International Workshop on
Source Code Analysis and Manipulation, pages 118�127, September 2003.

13. M. Kowalkiewicz, R. Lu, S. Bäuerle, M. Krümpelmann, and S. Lippe. Weak de-
pendencies in business process models. In Witold Abramowicz and Dieter Fensel,
editors, Business Information Systems, volume 7 of Lecture Notes in Business In-
formation Processing, pages 177�188. Springer Berlin Heidelberg, 2008.

14. M. S. Lam and R. P. Wilson. Limits of control �ow on parallelism. SIGARCH
Comput. Archit. News, 20(2):46�57, April 1992.

15. Jan Midtgaard. Control-�ow analysis of functional programs. ACM Comput. Surv.,
44(3):10:1�10:33, June 2012.

16. Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

17. Csaba Nagy, László Vidács, Rudolf Ferenc, Tibor Gyimóthy, Ferenc Kocsis, and
István Kovács. Complexity measures in 4GL environment. In Proceedings of the
2011 international conference on Computational science and Its applications - Vol-
ume Part V, pages 293�309. Springer-Verlag, 2011.

18. Csaba Nagy, László Vidács, Rudolf Ferenc, Tibor Gyimóthy, Ferenc Kocsis, and
István Kovács. Solutions for reverse engineering 4GL applications, recovering the
design of a logistical wholesale system. In Proceedings of the 15th European Confer-
ence on Software Maintenance and Reengineering (CSMR), pages 343 �346, 2011.

19. J. Rech and W. Schäfer. Visual support of software engineers during development
and maintenance. SIGSOFT Softw. Eng. Notes, 32(2):1�3, March 2007.

20. O. Shivers. Control �ow analysis in scheme. SIGPLAN Not., 23(7):164�174, June
1988.

21. The Institute of Electrical and Eletronics Engineers. Ieee standard glossary of
software engineering terminology. IEEE Standard, September 1990.

22. Frank Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3(3):121�189, September 1995.

23. Jussi Vanhatalo, Hagen Völzer, and Frank Leymann. Faster and more focused
control-�ow analysis for business process models through sese decomposition. In
BerndJ. Krämer, Kwei-Jay Lin, and Priya Narasimhan, editors, Service-Oriented
Computing � ICSOC 2007, volume 4749 of Lecture Notes in Computer Science,
pages 43�55. Springer Berlin Heidelberg, 2007.

24. Visser, W. and P�as�areanu, C. S. and Khurshid, S. Test Input Generation with
Java PathFinder. SIGSOFT Softw. Eng. Notes, 29(4):97�107, July 2004.

214

Runtime Exception Detection in Java Programs
Using Symbolic Execution?

István Kádár, Péter Hegedűs, and Rudolf Ferenc

University of Szeged, Department of Software Engineering
Árpád tér 2. H-6720 Szeged, Hungary

{ikadar|hpeter|ferenc}@inf.u-szeged.hu

Abstract. Most of the runtime failures of a software system can be re-
vealed during test execution only, which has a very high cost. In Java
programs, runtime failures are manifested as unhandled runtime excep-
tions.
In this paper we present an approach and tool for detecting runtime
exceptions in Java programs without having to execute tests on the soft-
ware. We use the symbolic execution technique to implement the ap-
proach. By executing the methods of the program symbolically we can
determine those execution branches that throw exceptions. Our algo-
rithm is able to generate concrete test inputs also that cause the program
to fail in runtime.
We used the Symbolic PathFinder extension of the Java PathFinder as
the symbolic execution engine. Besides small example codes we evaluated
our algorithm on three open source systems: jEdit, ArgoUML, and log4j.
We found multiple errors in the log4j system that were also reported as
real bugs in its bug tracking system.

Keywords: Java Runtime Exception, Symbolic Execution, Rule Check-
ing, Java Virtual Machine

1 Introduction

Nowadays, it is a big challenge of the software engineering to produce great,
reliable and robust software systems. About 40% of the total development costs
go for testing [1], and the maintenance activities, particularly bug fixing of the
system also require a considerable amount of resources [2]. Our purpose is to
develop a new method and tool, which supports this phase of the software engi-
neering lifecycle with detecting runtime exceptions in Java programs, and finding
dangerous parts in the source code, that could behave as time-bombs during fur-
ther development. The analysis will be done without executing the program in
a real environment.

Runtime exceptions in the Java programming language are the instances of
class java.lang.RuntimeException, which represent a sort of runtime error, for
example an invalid type cast, an array over indexing, or division by zero. These
exceptions are dangerous because they can cause a sudden stop of the program,
as they do not have to be handled by the programmer explicitly.

Exploration of these exceptions is done by using a technique called symbolic
execution [3]. When a program is executed symbolically, it is not executed on

? This research was supported by the Hungarian national grant GOP-1.1.1-11-2011-
0038 and the TÁMOP 4.2.4. A/2-11-1-2012-0001 European grant.

215

concrete input data but input data is handled as symbolic variables. When the
execution reaches a branching condition containing a symbolic variable, the ex-
ecution continues on both branches. This way, all of the possible branches of
the program will be executed in theory. Java PathFinder (JPF) [4] is a software
model checker which is developed at NASA Ames Research Center. In fact, Java
PathFinder is a Java virtual machine that executes Java bytecode in a special
way. Symbolic PathFinder (SPF) [5] is an extension of JPF, which can perform
symbolic execution of Java bytecodes. The presented work is based on these
tools.

The paper explains how the detection of runtime exceptions of the Java pro-
gramming language was implemented using Java PathFinder and symbolic exe-
cution. Concrete input parameters of the method resulting a runtime exception
are also determined. It is also described how the number of execution branches,
and the state space have been reduced to achieve a better performance. The
implemented tool called Jpf Checker has been tested on real life projects, the
log4j, ArgoUML, and jEdit open source systems. We found multiple errors in
the log4j system that were also reported as real bugs in its bug tracking system.
The performance of the tool is acceptable since the analysis was finished in a
couple of hours even for the biggest system.

The remainder of the paper is organized as follows. We give a brief intro-
duction to symbolic execution in Section 2. After that in Section 3 we present
our approach for detecting runtime exceptions. Section 4 discusses the results of
the implemented algorithm on different small examples and real life open source
projects. Section 5 collects the works that related to ours. Finally, we conclude
the paper and present some future work in Section 6.

2 Symbolic Execution

During its execution, every program performs operations on the input data in
a defined order. Symbolic execution [3] is based on the idea that the program
is operated on symbolic variables instead of specific input data, and the output
will be a function of these symbolic variables. A symbolic variable is a set of the
possible values of a concrete variable in the program, thus a symbolic state is a
set of concrete states. When the execution reaches a selection control structure
(e.g. an if statement) where the logical expression contains a symbolic variable,
it cannot be evaluated, its value might be also true and false. The execution
continues on both branches accordingly. This way we can simulate all the possible
execution branches of the program.

During symbolic execution we maintain a so-called path condition (PC). The
path condition is a quantifier-free logical formula with the initial value of true,
and its variables are the symbolic variables of the program. If the execution
reaches a branching condition that depends on one or more symbolic variables,
the condition will be appended to the current PC with the logical operator AND
to indicate the true branch, and the negation of the condition to indicate the false
branch. With such an extension of the PC, each execution branch will be linked
to a unique formula over the symbolic variables. In addition to maintaining the

216

path condition, symbolic execution engines make use of the so called constraint
solver programs. Constraint solvers are used to solve the path condition by
assigning values to the symbolic variables that satisfy the logical formula. Path
condition can be solved at any point of the symbolic execution. Practically, the
solutions serve as test inputs that can be used to run the program in such a way
that the concrete execution follows the execution path for which the PC was
solved.

All of the possible execution paths define a connected and acyclic directed
graph called symbolic execution tree. Each point of the tree corresponds to a
symbolic state of the program. An example is shown in Figure 1.

(a) (b)

Fig. 1: (a) Sample code that determines the distance of two integers on the number line
(b) Symbolic execution tree of the sample code handling variable x and y symbolically

Figure 1 (a) shows a sample code that determines the distance of two integers
x and y. The symbolic execution of this code is illustrated on Figure 1 (b) with
the corresponding symbolic execution tree. We handle x and y symbolically, their
symbols are X and Y respectively. The initial value of the path condition is true.
Reaching the first if statement in line 3, there are two possibilities: the logical
expression can be true or false; thus the execution branches and the logical
expression and its negation is added to the PC as follows:

true ∧X > Y ⇒ X > Y, and true ∧ ¬(X > Y)⇒ X ≤ Y

The value of variable dist will be a symbolic expression, X-Y on the true
branch and Y-X on the false one. As a result of the second if statement (line 8)
the execution branches, and the appropriate PCs are appended again. On the
true branches we get the following PCs:

X > Y ∧X − Y < 0⇒ X > Y ∧X < Y,

X ≤ Y ∧ Y −X < 0⇒ X ≤ Y ∧X > Y

It is clear that these formulas are unsolvable, we cannot specify such X and
Y that satisfy the conditions. This means that there are no such x and y inputs
with which the program reaches the write(”Error”) statement. As long as the PC
is unsatisfiable at a state, the sub-tree starting from that state can be pruned,
there is no sense to continue the controversial execution.

217

It is impossible to explore all the symbolic states. It takes unreasonably long
time to execute all the possible paths. A solution for this problem can be e.g. to
limit the depth of the symbolic execution tree or the number of states which, of
course, inhibit to examine all the states. The next subsection describes what are
the available techniques in Symbolic PathFinder to address this problem.

2.1 Java PathFinder and Symbolic PathFinder

Java PathFinder (JPF) [4] is a highly customizable execution environment that
aims at verifying Java programs. In fact, JPF is nothing more than a Java
Virtual Machine which interprets the Java bytecode in a special way to be able
to verify certain properties. It is difficult to determine what kind of errors can
be found and which properties can be checked by JPF, it depends primarily
on its configuration. The system has been designed from the beginning to be
easily configurable and extendable. One of its extensions is Symbolic PathFinder
(SPF) [5] that provides symbolic execution of Java programs by implementing a
bytecode instruction set allowing to execute the Java bytecode according to the
theory of symbolic execution.

JPF (and SPF) itself is implemented in Java, so it also have to run on a
virtual machine, thus JPF is actually a middleware between the standard JVM
and the bytecode. The architecture of the system is illustrated on Figure 2.

Fig. 2: Java PathFinder as a virtual machine itself runs on a JVM, while performing a
verification of a Java program

To start the analysis we have to make a configuration file with .jpf extension
in which we specify different options as key-value pairs. The output is a report
that contains e.g. the found defects. In addition to the ability of handling log-
ical, integer and floating-point type variables as symbols, SPF can also handle
complex types symbolically with the lazy initialization algorithm [6], and allows
the symbolic execution of multi-threaded programs too.

SPF supports multiple constraint solvers and defines a general interface to
communicate them. Cvc3 is used to solve linear formulas, choco can handle non-
linear logical formulas too, while IASolver use interval arithmetic techniques
to satisfy the path condition. Among the supported constraint solvers, CORAL
proved to be the most effective in terms of the number of solved constraints and
the performance [7].

To reduce the state space of the symbolic execution SPF offers a number
of options. We can specify the maximum depth of the symbolic execution tree,

218

and the number of elementary formulas in the path condition can also be lim-
ited. Further possibility is that with options symbolic.minint, symbolic.maxint,
symbolic.minreal, and symbolic.maxreal we can restrict the value ranges of the
integer and floating point types. With the proper use of these options the state
space and the time required for the analysis can be reduced significantly.

3 Detection of Runtime Exceptions

We developed a tool that is able to automatically detect runtime exceptions
in an arbitrary Java program. This section explains in detail how this analysis
program, the JPF checker works.

To check the whole program we use symbolic execution, which is performed
by Symbolic PathFinder. However, we do not execute the whole program sym-
bolically to discover all of the possible paths, instead we symbolically execute
the methods of the program one by one. This results in a significant reduction
in the state space of the symbolic execution.

An important question is which variables to be handled symbolically. In gen-
eral, execution of a method mainly depends on the actual values of its parameters
and the referred external variables. Thus, these are the inputs of a method that
should be handled symbolically to generally analyze it. Currently, we handle the
parameters and data members of the class of the analyzed method symbolically.

Our goal is not only to indicate the runtime exceptions a method can throw
(its type and the line causing the exception), but also to determine a param-
eterization that leads to throwing those exceptions. In addition, we determine
this parameterization not only for the analyzed method which is at the bottom
of the call stack, but for all the other elements in the call stack (i.e. recursively
for all the called methods).

Our work can be divided into two steps:

1. It is necessary to create a runtime environment which is able to iterate
through all the methods of a Java program, and start their symbolic execu-
tion using Symbolic PathFinder.

2. We need a JPF extension which is built on its listener mechanism, and which
is able to indicate potential runtime exceptions and related parameterization
while monitoring the execution.

3.1 The Runtime Environment

The concept of the developers of Symbolic PathFinder was to start running the
program in normal mode like in a real life environment, than at given points,
e.g. at more complex or problematic parts in the program switch to symbolic
execution mode [8]. The advantage of this approach is that, since the context is
real, it is more likely to find real errors. E.g. the values of the global variables are
all set, but if these variables are handled symbolically we can examine cases that
never occur during a real run. A disadvantage is that it is hard to explore the
problematic points of a program, it requires prior knowledge or preliminary work.
Another disadvantage is that you have to run the program manually namely, that
the control reach those methods which will be handled symbolic by the SPF.

219

In contrast, the tool we have developed is able to execute an arbitrary method
or all methods of a program symbolically. The advantage of this approach is that
the user does not have to perform any manual runs, the entire process can be
automated. Additionally, the symbolic state space also remains limited since
we do not execute the whole program symbolically, but their parts separately.
The approach also makes it possible to analyze libraries that do not have a
main method such as log4j. One of the major disadvantages is the that we back
away from the real execution environment, which may lead to false positive error
reports.

For implementing such an execution environment we have to achieve some-
how that the control flow reaches the method we want to analyze. However,
due to the nature of the virtual machine, JPF requires the entry point of the
program, which is the class containing the main method. Therefore, we generate
a driver class for each method containing a main method that only passes the
control to the method we want to execute symbolically and carries out all the
related tasks. Invoking the method is done using the Java Reflection API. We
also have to generate a JPF configuration file that specifies, among others, the
artificially created entry point and the method we want to handle symbolically.
After creating the necessary files, we have to compile the generated Java class
and finally, to launch Symbolic PathFinder.

Fig. 3: Architecture of the runtime environment

The architecture of the system is illustrated in Figure 3. The input jar file
is processed by the JarExplorer, which reads all the methods of the classes from
the jar file and creates a list from them. The elements of the list is taken by the
Generator one by one. It generates a driver class and a JPF configuration file for
each method. After the generation is complete, we start the symbolic execution.

3.2 Implementing a Listener Class

During functioning, JPF sends notifications about certain events. This is real-
ized with so-called listeners, which are based on the observer design pattern. The
registered listener objects are notified about and can react to these events. JPF
can send notifications of almost every detail of the program execution. There are
low-level events such as execution of a bytecode instruction, as well as high-level
events such as starting or finishing the search in the state space. In JPF, basi-
cally two listener interfaces exist: the SearchListener and VMListener interface.
While the former includes the events related to the state space search, the lat-
ter reports the events of the virtual machine. Because these interfaces are quite

220

large and the specific listener classes often implement both of them, adapter
classes are introduced that implement these interfaces with empty method bod-
ies. Therefore, to create our custom listener we derived a class from this adapter
and implemented the necessary methods only.

Our algorithm for detecting runtime exceptions is briefly summarized below.
By performing symbolic execution of a method all of its paths are executed, in-
cluding those that throw exceptions. When an exception occurs, namely when the
virtual machine executes an ATHROW bytecode instruction, JPF triggers and
excpetionThrown event. Thus, we implemented the exceptionThrown method in
our listener class. The pseudo code of our exceptionThrown implementation is
shown in Figure 4.

1. exceptionThrown() {

2. exception = getPendingException();

3. if (isInstanceOfRuntimeException(exception)) {

4. pc = getCurrentPc();

5. solve(pc);

6. summary = new FoundExceptionSummary();

7. summary.setExceptionType(exception);

8. summary.setThrownFrom(exception);

9. summary.setParameterization(parsePc(pc, analyzedMethod));

10. invocationChain = buildInvocationChain();

11. foreach(Method m : invocationChain) {

12. summary.addStackTraceElement(m, parsePc(pc, m));

13. }

14. foundExceptions.add(summary);

15. }

16.}

Fig. 4: Pseudo code of the exceptionThrown event

First, we acquire the thrown Exception object (line 2), then we decide whether
it is a runtime exception (i.e. whether it is an instance of the class RuntimeEx-
ception) (line 3). If it is, we request the path condition related to the actual path
and use the constraint solver to find a satisfactory solution (lines 4-5). Lines 6-9
set up a summary report that contains the type of the thrown exception, the
line that throws it and a parameterization which causes this exception to be
thrown. The parameterization is constructed by the parsePC() method, which
assigns the satisfactory solutions of the path condition to the method param-
eters. Lines 10-13 take care of collecting and determining parameterization for
the methods in the call stack. If the source code does not specify any constraint
for a parameter on the path throwing an exception (i.e. the path condition does
not contain the variable), then there is no related solution. This means that it
does not matter what the actual value of that parameter is, it does not affect
the execution path, the method is going to throw an exception due to the values
of other parameters. In such cases parsePc() method assigns the value “any” to
these parameters.

221

It is also possible that a parameter has a concrete value. Figure 5 illustrates
such an example. When we start the symbolic execution of method x(), its pa-
rameter a is handled symbolically. As x() calls y() its parameter a is still a
symbol, but b is a concrete value (42). In a case like this, parsePc() have to get
the concrete value from the stack of the actual method.

1. void x(int a) {

2. short b = 42;

3. y(a, b);

4. }

5. void y(int a, short b) {

6. ...

7. throw new NullPointerException();

8. ...

9. }

Fig. 5: An example call with both symbolic and concrete parameters

We note that the presented algorithm reports any runtime exceptions re-
gardless of the fact whether it is caught by the program or not. The reason of
this is that we think that relying on runtime exceptions is a bad coding practice
and a runtime exception can be dangerous even if it is handled by the pro-
gram. Nonetheless, it would be easy to modify our algorithm to detect uncaught
exceptions only as SPF provides a support for it.

4 Results

The developed tool was tested in a variety of ways. The section describes the
results of these test runs. We analyzed manually prepared example codes contain-
ing instructions that cause runtime exceptions on purpose; then we performed
analysis on different open-source software to show that our tool is able to detect
runtime exceptions in real programs, not just in artificially made small examples.
The subject systems are the log4j (http://logging.apache.org/log4j/) logging li-
brary, the ArgoUML modeling tool (http://argouml.tigris.org/), and the jEdit
text editor program (http://www.jedit.org/). We prove the validity of the de-
tected exceptions by the bug reports, found in the bug tracking systems of these
projects, that describe program faults caused by those runtime exceptions that
are also found by the developed tool.

4.1 A Manually Prepared Example

A small manually prepared example code is shown on Figure 6. The method un-
der test is callRun() which calls method run() in line 12. Running our algorithm
on this code gives two hits: the first is an ArrayIndexOutOfBoundsException,
the second is a NullPointerException. The first exception is thrown by method
run() at line 24. A parameterization leading to this exception is callRun(7, 11).
Method run() will be called only if x > 6 (line 10) that is satisfied by 7 and
it is called with the concrete value 9 and symbol y. At this point there is no
condition for y. Method run() can reach line 24 only if y > 10, the indicated
value 11 is obtained by satisfying this constraint. Throwing of the ArrayIndex-
OutOfBoundsException is due to the fact that in line 22 we declare a 5-element
array but the following for loop runs from 0 to x. The value of x at this point is
9 which leads to an exception.

222

The train of thought is similar in case of the second exception. The problem is
that variable i created in line 27 initialized only in line 29 to a value different form
null, but not in the else block, therefore line 33 throws a NullPointerException.
This requires that the value of y not to be greater than 10 and not to be less
than 5. These restrictions are satisfied by e.g. 5, and value 7 for x is necessary
to invoke run(). So the parameterizations are callRun(7, 5) and run(9, 5). The
analysis is finished in less than a second.

public class Example5 {

...

8. void callRun(int x, int y) {

9. Integer i = null;

10. if (x > 6) {

11. int b = 9;

12. run(b, y);

13. i = Integer.valueOf(b);

14. System.out.println(i);

15. } else {

16. i = Integer.valueOf(3);

17. System.out.println(i);

18. }

19. }

20. public void run(int x, int y) {

21. if (y > 10) {

22. int[] tomb = new int[5];

23. for (int i = 0; i < x; i++) {

24. tomb[i] = i;

25. }

26. } else {

27. Integer i = null;

28. if (y < 5) {

29. i = Integer.valueOf(4);

30. i.floatValue();

31. } else {

32. System.out.println(

33. i.floatValue());

34. }

35. }

36. }}

Fig. 6: Manually prepared example code with the analysis of method callRun()

4.2 Analysis of Open-source Systems

Analysis of log4j 1.2.15, ArgoUML 0.28 and jEdit 4.4.2 were carried out on a
desktop computer with an Intel Core i5-540M 2.53 GHz processor and 8 GB of
memory. In all three cases the analysis was done by executing all the methods
of the release jar files of the projects symbolically.

(a) (b) (c)

Fig. 7: (a)Number of methods examined in the programs and the number of JPF or
SPF faults (b) Number of successfully analyzed methods and the number of defective
methods (c) Analysis time

223

Figure 7 (a) displays the number of methods we analyzed in the different pro-
grams. We started analyzing 1242 methods in log4j of which only 757 were suc-
cessful, in 474 cases the analysis stopped due to the failure of the Java PathFinder
(or Symbolic PathFinder). There are a lot of methods in ArgoUML which also
could not be analyzed, more than half of the checks ended with failure. In case
of jEdit the ratio is very similar. Unfortunately, in general JPF stopped with a
variety of error messages.

Despite the frequent failures of JPF, our tool indicated a fairly large number
of runtime exceptions in all three programs. Figure 7 (b) shows the number
of successfully analyzed methods and the methods with one or more runtime
exceptions. The hit rate is the highest for log4j and despite its high number of
methods, relatively few exceptions were found in ArgoUML.

The analysis times are shown in Figure 7 (c). Analysis of log4j completed
within an hour, while analysis of ArgoUML, that contains more than 7500 meth-
ods, took 3 hours and 42 minutes. Although jEdit contains fewer methods than
ArgoUML, its full analysis were more time-consuming. The performance of our
algorithm is acceptable, especially considering that the analysis was performed
on an ordinary desktop PC not on a high-performance server. However, it can
be assumed that the analysis time would grow with less failed method analysis.

It is important to note, that not all indicated exceptions are real errors. This
is because the analysis were performed in an artificial execution environment
which might have introduced false positive hits. When we start the symbolic
execution of a method we have no information about the circumstances of the
real invocation. All parameters and data members are handled symbolically, that
is, it is considered that their value can be anything although it is possible that
a particular value of a variable never occurs.

Despite the fact that not all the reported exceptions are real program errors
they are definitely representing real risks. During the modification of the source
code there are inevitably changes that introduce new errors. These errors often
appear in form of runtime exceptions (i.e. in places where our algorithm found
possible failures). So the majority of the reported exceptions do not report real
errors, but potential sources of danger that should be paid special attention.

4.3 A Real Error

In this subsection a log4j defect is shown which is reported in its bug tracking
system, and caused by a runtime exception found also by our tool. The affected
bug 1 reports the stoppage of an application using log4j version 1.2.14 caused by a
NullPointerException. The reporter got the Exception from line 59 of Throwable-
Information.java thrown by method org.apache.log4j.spi.ThrowableInformation.
getThrowableStrRep() as shown in the given stack trace. The code of the method
and the problematic line detected by our analysis is shown on Figure 8.

The problem here is that the initialization of the throwable data member of
class ThrowableInformation is omitted, its value is null causing a NullPointerEx-
ception in line 59. This causes that the log() method of log4j can also throw an

1 https://issues.apache.org/bugzilla/show bug.cgi?id=44038

224

...

public class ThrowableInformation implements java.io.Serializable {

private transient Throwable throwable;

...

54. public String[] getThrowableStrRep() {

55. if(rep != null) {

56. return (String[]) rep.clone();

57. } else {

58. VectorWriter vw = new VectorWriter();

59. throwable.printStackTrace(vw);

60. rep = vw.toStringArray();

61. return rep;

62. }

63. }

...

}

Fig. 8: Source code of method org.apache.log4j.spi.ThrowableInformation.getThrow-
ableStrRep() included in the bug report

exception which should never happen. Our tool found other errors as well which
demonstrate its strength of being capable of detecting real bugs.

5 Related Work

In this section we present works that are related to our research. First, we intro-
duce some well-known symbolic execution engines, then we show the possible ap-
plications of the symbolic execution. We also summarize the problems that have
been solved successfully by Symbolic PathFinder that we used for implementing
our approach. Finally, we present the existing approaches and techniques for
runtime exception detection.

The idea of symbolic execution is not new, the first publications and execu-
tion engines appeared in the 1970’s. One of the earliest work is by King that lays
down the fundamentals of symbolic execution [3] and presents the EFFIGY sys-
tem that is able to execute PL/I programs symbolically. Even though EFFIGY
handles only integers symbolically, it is an interactive system with which the
user is able to examine the process of symbolic execution by placing breakpoints
and saving and restoring states. Another work from the 1970’s by Boyer et al.
presents a similar system called SELECT [9] that can be used for executing LISP
programs symbolically. The users are allowed to define conditions for variables
and return values and get back whether these conditions are satisfied or not as
an output. The system can be applied for test input generation; in addition, for
every path it gives back the path condition over the symbolic variables.

Starting from the last decade the interest about the technique is constantly
growing, numerous programs have been developed that aim at dynamic test
input generation using symbolic execution. The EXE (EXecution generated Ex-
ecutions) [10] presented by Cadar et al. at the Stanford University is an error
checking tool made for generating input data on which the program terminates
with failure. The input generation is done by the STP built-in constraint solver

225

that solves the path condition of the path causing the failure. EXE achieved
promising results on real life systems. It found errors in the package filter imple-
mentations of BSD and Linux, in the udhcpd DHCP server and in different Linux
file systems. The runtime detection algorithm presented in this work solves the
path condition to generate test input data similarly to EXE. The basic differ-
ence is that for running EXE one needs to declare the variables to be handled
symbolically while for Jpf Checker there is no need for editing the source code
before detection.

The DART [11] (Directed Automata Random Testing) by Godefroid et al.
tries to eliminate the shortcomings of the symbolic execution e.g. when it is
unable to handle a condition due to its unlinear nature. DART executes the pro-
gram with random or predefined input data and records the constraints defined
by the conditions on the input variables when it reaches a conditional statement.
In the next iteration taking into account the recorded constraints it runs the pro-
gram with input data that causes a different execution branch of the program.
The goal is to execute all the reachable branches of the program by generating
appropriate input data. The CUTE and jCUTE systems [12] by Sen and Agha
extend DART with multithreading and dynamic data structures. The advantage
of these tools is that they are capable of handling complex mathematical con-
ditions due to concrete executions. This can be also achieved in Jpf Checker by
using the concolic execution of SPF; however, symbolic execution allows a more
thorough examination of the source code. Further description and comparison
of the above mentioned tools can be found e.g. in the work of Coward [13].

There are also approaches and tools for generating test suites for .NET pro-
grams using symbolic execution. Pex [14] is a tool that automatically produces
a small test suite with high code coverage for .NET programs using dynamic
symbolic execution, similar to path-bounded model-checking. Jamrozik et al. in-
troduce an extension of the previous approach called augmented dynamic sym-
bolic execution [15], which aims to produce representative test sets with DSE
by augmenting path conditions with additional conditions that enforce target
criteria such as boundary or mutation adequacy, or logical coverage criteria. Ex-
periments with the Apex prototype demonstrate that the resulting test cases
can detect up to 30% more seeded defects than those produced with Pex.

Song et al. applied the symbolic execution to the verification of networking
protocol implementations [16]. The SymNV tool creates network packages with
which a high coverage can be achieved in the source code of the daemon, therefore
potential rule violations can be revealed according to the protocol specifications.

The SAFELI tool [17] by Fu and Qian is a SQL injection detection program
for analyzing Java web applications. It first instruments the Java bytecode then
executes the instrumented code symbolically. When the execution reaches a SQL
query the tool prepares a string equation based on the initial content of the web
input components and the built-in SQL injection attack patterns. If the equation
can be solved the calculated values are used as inputs which the tool verifies by
sending a HTML form to the server. According to the response of the server it
can decide whether the found input can be a real attack or not.

226

The main application of the Java PathFinder and its symbolic execution
extension is the verification of the internal projects in NASA. Bushnell et al.
describes the application of Symbolic PathFinder in TSAFE (Tactical Separation
Assisted Flight Environment) [18] that verifies the software components of an air
control and collision detection system. The primary target is to generate useful
test cases for TSAFE that simulates different wind conditions, radar images,
flight schedules, etc.

The detection of design patterns can be performed using dynamic approaches
as well as with static program analysis. With the help of a monitoring software
the program can be analyzed during manual execution and conclusions about the
existence of different patterns can be made based on the execution branches. In
his work, von Detten [19] applied symbolic execution with Symbolic PathFinder
supplementing manual execution. This way, more execution branches can be
examined and the instances found by traditional approaches can be refined.

Ihantola [20] describes an interesting application of JPF in education. He
generates test inputs for checking the programs of his students. His approach is
that functional test cases based on the specification of the program and their
outcome (successful or not) is not enough for educational purposes. He generates
test cases for the programs using symbolic execution. This way the students can
get feedbacks like “the program works incorrectly if variable a is larger than
variable b plus 10”.

Sinha et al. deal with localizing Java runtime errors [21]. The introduced
approach aims at helping to fix existing errors. They extract the statement that
threw the exception from its stack trace and perform a backward dataflow analy-
sis starting from there to localize those statements that might be the root causes
of the exception.

The work of Weimer and Necula [22] focuses on proving safe exception han-
dling in safety critical systems. They generate test cases that lead to an exception
by violating one of the rules of the language. Unlike Jpf Checker they do not gen-
erate test inputs based on symbolic execution but solving a global optimization
problem on the control flow graph (CFG) of the program.

The JCrasher tool [23] by Csallner and Smaragdakis takes a set of Java
classes as input. After checking the class types it creates a Java program which
instantiates the given classes and calls each of their public methods with random
parameters. This algorithm might detect failures that cause the termination
of the system such as runtime exceptions. The tool is capable of generating
JUnit test cases and can be integrated to the Eclipse IDE. Similarly to Jpf
Checker JCrasher also creates a driver environment but it can analyze public
methods only and instead of symbolic execution it generates random data which
is obviously not feasible for examining all possible execution branches.

6 Conclusions and Future Work
The introduced approach for detecting runtime exceptions works well not just on
small, manually prepared examples but it is able to find runtime exceptions which
are the causes of some documented runtime failures (i.e. there exists an issue for
them in the bug tracking system) in real world systems also. However, not all the

227

detected possible runtime exceptions will actually cause a system failure. There
might be a large number of exceptions that will never occur running the system
in real environment. Nonetheless, the importance of these warnings should not
be underrated since they draw attention to those code parts that might turn to
real problems after changing the system. Considering these possible problems
could help system maintenance and contributes to achieving a better quality
software. As we presented in Section 4 the analysis time of real world systems
are also acceptable, therefore our approach and tool can be applied in practice.

Unfortunately the Java PathFinder and its Symbolic PathFinder extension
– which we used for implementing our approach – contain a lot of bugs. It made
the development very troublesome, but the authors at the NASA were really
helpful. We contacted them several times and got responses very quickly; they
fixed some blocker issues particularly for our request.

The achieved results are very promising and we continue the development of
our tool. Our future plan is to eliminate the false positive and those hits that are
irrelevant. We would also like to provide more details about the environment of
the method in which the runtime exception is detected. The implemented tool
gives only the basic information about the reference type parameters whether
they are null or not, and we cannot tell anything about the values of the member
variables of the class playing a role in a runtime exception. These improvements
of the algorithm are also in our future plans.

The presented approach is not limited to runtime exception detection. We
plan to utilize the potentials of the symbolic execution by implementing other
types of error and rule violation checkers. E.g. we can detect some special types
of infinite loops, dead or unused code parts, or even SQL injection vulnerabilities.

References

1. Pressman, R.S.: Software Engineering: A Practitioner’s Approach. McGraw-Hill
Science/Engineering/Math (November 2001)

2. Tassey, G.: The Economic Impacts of Inadequate Infrastructure for Software Test-
ing. Technical report, National Institute of Standards and Technology (2002)

3. King, J.C.: Symbolic Execution and Program Testing. Communications of the
ACM 19(7) (July 1976) 385–394

4. Java PathFinder Tool-set. http://babelfish.arc.nasa.gov/trac/jpf

5. Păsăreanu, C.S., Rungta, N.: Symbolic PathFinder: Symbolic Execution of Java
Bytecode. In: Proceedings of the IEEE/ACM International Conference on Auto-
mated Software Engineering. ASE ’10, New York, NY, USA, ACM (2010) 179–180

6. Khurshid, S., Păsăreanu, C.S., Visser, W.: Generalized Symbolic Execution for
Model Checking and Testing. In: Proceedings of the 9th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. TACAS’03,
Berlin, Heidelberg, Springer-Verlag (2003) 553–568

7. Souza, M., Borges, M., d’Amorim, M., Păsăreanu, C.S.: CORAL: Solving Complex
Constraints for Symbolic Pathfinder. In: Proceedings of the Third International
Conference on NASA Formal Methods. NFM’11, Berlin, Heidelberg, Springer-
Verlag (2011) 359–374

8. Pǎsǎreanu, C.S., Mehlitz, P.C., Bushnell, D.H., Gundy-Burlet, K., Lowry, M., Per-
son, S., Pape, M.: Combining Unit-level Symbolic Execution and System-level

228

Concrete Execution for Testing NASA Software. In: Proceedings of the 2008 In-
ternational Symposium on Software Testing and Analysis. ISSTA ’08, New York,
NY, USA, ACM (2008) 15–26

9. Boyer, R.S., Elspas, B., Levitt, K.N.: SELECT – a Formal System for Testing and
Debugging Programs by Symbolic Execution. In: Proceedings of the International
Conference on Reliable Software, New York, NY, USA, ACM (1975) 234–245

10. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: Automat-
ically Generating Inputs of Death. In: Proceedings of the 13th ACM Conference
on Computer and Communications Security. CCS ’06, New York, NY, USA, ACM
(2006) 322–335

11. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed Automated Random Testing.
In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’05, New York, NY, USA, ACM (2005) 213–223

12. Sen, K., Agha, G.: CUTE and jCUTE: Concolic Unit Testing and Explicit Path
Model-checking Tools. In: Proceedings of the 18th International Conference on
Computer Aided Verification. CAV’06, Berlin, Springer-Verlag (2006) 419–423

13. Coward, P.D.: Symbolic Execution Systems – a Review. Software Engineering
Journal 3(6) (November 1988) 229–239

14. Tillmann, N., De Halleux, J.: Pex: White Box Test Generation for .NET. In:
Proceedings of the 2nd International Conference on Tests and Proofs. TAP’08,
Berlin, Heidelberg, Springer-Verlag (2008) 134–153

15. Jamrozik, K., Fraser, G., Tillman, N., Halleux, J.: Generating Test Suites with
Augmented Dynamic Symbolic Execution. In: Tests and Proofs. Volume 7942 of
Lecture Notes in Computer Science., Springer Berlin Heidelberg (2013) 152–167

16. Song, J., Ma, T., Cadar, C., Pietzuch, P.: Rule-Based Verification of Network
Protocol Implementations Using Symbolic Execution. In: Proceedings of the 20th
IEEE International Conference on Computer Communications and Networks (IC-
CCN’11). (2011) 1–8

17. Fu, X., Qian, K.: SAFELI: SQL Injection Scanner Using Symbolic Execution. In:
Proceedings of the 2008 Workshop on Testing, Analysis, and Verification of Web
Services and Applications. TAV-WEB ’08, New York, ACM (2008) 34–39

18. Bushnell, D., Giannakopoulou, D., Mehlitz, P., Paielli, R., Păsăreanu, C.S.: Veri-
fication and Validation of Air Traffic Systems: Tactical Separation Assurance. In:
Aerospace Conference, 2009 IEEE. (2009) 1–10

19. von Detten, M.: Towards Systematic, Comprehensive Trace Generation for Behav-
ioral Pattern Detection Through Symbolic Execution. In: Proceedings of the 10th
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools.
PASTE ’11, New York, NY, USA, ACM (2011) 17–20

20. Ihantola, P.: Test Data Generation for Programming Exercises with Symbolic
Execution in Java PathFinder. In: Proceedings of the 6th Baltic Sea Conference
on Computing Education Research. Baltic Sea ’06, New York, ACM (2006) 87–94

21. Sinha, S., Shah, H., Görg, C., Jiang, S., Kim, M., Harrold, M.J.: Fault Localization
and Repair for Java Runtime Exceptions. In: Proceedings of the 18th International
Symposium on Software Testing and Analysis. ISSTA ’09, New York, NY, USA,
ACM (2009) 153–164

22. Weimer, W., Necula, G.C.: Finding and Preventing Run-time Error Handling
Mistakes. In: Proceedings of the 19th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications. OOPSLA
’04, New York, NY, USA, ACM (2004) 419–431

23. Csallner, C., Smaragdakis, Y.: JCrasher: an Automatic Robustness Tester for Java.
Software Practice and Experience 34(11) (September 2004) 1025–1050

229

Composable hierarchical synchronization support
for REPLICA

Jari-Matti Mäkelä1, Ville Leppänen1, and Martti Forsell2

1 University of Turku
Dept. of Information Technology

jmjmak@utu.fi, ville.leppanen@utu.fi
2 VTT

Oulu, Finland
Martti.Forsell@VTT.Fi

Abstract. Synchronization is a key concept in parallel programming.
General purpose languages and architectures often assume a restricted
form of synchronicity with the focus on asynchronous execution. The
most notable trend during the recent years against asynchrony has been
the raise of GPGPU devices with support of tightly synchronous regions
in programs. Our REPLICA architecture continues this trend for chip
multi-processors with the aim to provide an execution platform for the
rich algorithm theory of synchronous shared memory algorithms.
In a simplified multi-threaded computational model with unit time amor-
tized instruction execution cost, step-wise inter-thread synchronicity can
be realized. However, the synchronicity does not trivially extend to higher
level abstractions. A procedural language Fork introduces means for
maintaining hierarchical synchronicity on block basis. The block level
synchronicity invariant is maintained with explicit annotations. Control
statements for synchronicity mode transitions are explicit.
We focus on a new chip multi-processor architecture REPLICA, em-
ploying step-wise synchronization along with fine-grained requirements
for special thread group based parallel operations. A new hierarchical,
composable, control flow synchronization analysis method is proposed.
Our annotations capture the intent better and can be partly inferred.
We demonstrate the method’s potential with comparisons to existing
systems. Our Replica compiler contains an initial implementation.

Keywords: parallel programming, synchronization, threads

1 Introduction

Synchronization is one of the key concepts in parallel programming. In general
purpose programming languages and architectures, it is a common approach to
assume the synchronicity of some core features, but consider the programming
model asynchronous as a whole [1,2]. Whenever synchronous execution is re-
quired, it is achieved by applying expensive explicit synchronization on limited

230

regions. This trend has become the norm as architectures and programming en-
vironments depend more on out-of-order execution and dynamically scheduled
pre-emptive multitasking for speed-ups and as the cost of synchronization has
increased with relaxation of synchronization and consistency models [3].

MPI-style and typical OO-language style solutions to specify several con-
currently running threads are not very fruitful in the large scale, because by
default the threads’ execution proceeds asynchronously resulting vagueness in
computation’s state, and the correctness of multithreaded program is hard to
guarantee. Extensive use of locks removes vagueness but leads to poor paral-
lel performance. [4] puts this as “Programming parallel applications with basic
concurrency primitives, be it on shared or distributed memory models, breaks
all rules of software composition. This leads to non-determinism, unexplained
performance issues, debugging and testing mightmares, and does not allow for
architectural optimizations. Even specialists struggle to comprehend . . . ”

The concept of computation’s state gets promoted when one aims at having
thread-wise synchronously proceeding control flows. The concept of state has
been in a central role in achieving correctness in SW engineering of sequential
programs as it is heavily related to algorithmic design, specification and testing.

The REPLICA architecture [5,6,7] is a very different approach to parallelism
compared to the current mainstream. It has an execution mode for maintaining
the synchronicity property implicitly at the instruction level. This is achieved
with synchronization wave technique embedded into the whole architecture. As
instructions have a unit time amortized cost in terms of cycles in relation to other
threads, it is possible to reason about the time cost of a sequence of instructions
assuming no branching happens, but even REPLICA’s strong synchronization
guarantees do not automatically extend to high level abstractions.

The Replica language [7,8] introduces a way to extend the same style of
synchronicity to the level of high level language abstractions, expressions, state-
ments, and declarations using a hierarchical concept of thread groups. The Fork
[9] language adopts a similar approach for maintaining synchronicity on block
and function level, but does it explicitly with annotated regions. Our approach
is a novel new synchronization analysis which is similar but orthogonal to the
language’s type system. The system can be used for checking the program cor-
rectness via constraints related to synchronicity conditions, but it also gives
rise to a possibility to infer the synchronicity properties, mitigating the need to
annotate large bodies of code.

The proposed synchronization analysis uses conservative structural induction
to build up a view of the program, starting from basic language features, and
extending seamlessly to user defined abstractions. As the analysis is conservative,
programs violating the synchronicity assumption will not be accepted, but the
synchronicity inference is not optimal and can be improved or manually guided
with annotations. While only core language is considered in this paper, the
analysis is generic enough to be further extended with the language.

The scope and main contribution of this paper is to present the new synchro-
nization model and the algorithms for using the model and discuss its applica-

231

bility in practice. The treatment of the system focuses on its expressiveness and
comparing the computational capabilities and behavior to existing languages de-
signed for similar architectures such as E [10] and Fork. A full analysis of the
model’s effect on execution performance requires further tuning of the inference
algorithm and is listed as a future work.

The rest of the paper is outlined as follows: Section 2 discusses modeling the
synchronicity in a parallel language and considers the feasibility of using them for
parallel programming on an architecture such as REPLICA. Section 3 introduces
the new synchronization model and gives a description of the semantics for core
language constructs. In Section 4 we demonstrate the use of languages to solve
a parallel programming kernel using different features of the language. Finally
in Section 5 we draw conclusions and discuss future work.

2 Modeling synchronicity

Modern computational platforms employ varying models of synchronicity, mem-
ory consistency models and granularity of parallelism. The motivation for such
complex core semantics arise from the hardware and programming models and
the effort of efficiently translating programs to the machine architecture. Ad-
ditionally, general purpose programming languages can provide different forms
of synchronicity for different kinds of tasks involving concurrency as all tasks
do not require or benefit from strictly synchronous execution. To list a few, ex-
amples of such tasks are fully independent background tasks with no need for
synchronization, asynchronous interaction with I/O devices, exclusive concur-
rent access to a resource, and propagating the results of a parallel computation
between worker threads. Some architectures have special parallel operations [11]
that require synchronized state for each thread participating in the operation.

Many attempts to speed up sequential performance by relaxing synchronic-
ity on hardware and operating system level have had a negative impact on the
complexity of building well performing and behaving parallel programs [3]. Ex-
amples of such issues are the overhead of starting new concurrent tasks and the
cost of propagating the result of a computation inside a concurrent program.

Recently a door to significant performance speed-ups opened in the form of
general purpose GPUs with a tighter, group-oriented synchronicity and execu-
tion model [12]. We argue that more and different forms of parallel computational
power can still be harnessed from a similar kind of inherently synchronous model.
Our aim is a structured, tighter form of synchronicity, similar to one provided
by the Fork language. A practical aspect to this work comes from our implemen-
tation and design of a systems programming language Replica employing these
techniques on the new architecture prototype called REPLICA.

The semantics of our synchronization model is based on the idea of tagging
the control flow and executable language operations with synchronization re-
lated conditions and compile-time verification of the condition constraints. The
assortment of supported conditions is based on the work of evaluating previous
language techniques and computational kernels and extracting their patterns.

232

2.1 Previous work on strong hierarchical synchronicity

Keller et al. [13] carried out a similar survey on potential languages for a MIMD
style, exactly synchronous shared memory architecture and found that there is
only little interest in that particular area. Moreover, while traditional research
paradigms such as functional languages are gaining traction in practice, we be-
lieve that a traditional procedural language with specially crafted extensions still
hits the sweet spot in the near future, when it comes to practicality in terms of
execution overhead and interacting with hardware on this abstraction level.

Widely known standard solutions for asynchronous shared memory program-
ming (POSIX threads, OpenMP [2]), data-parallel (variants of Fortran) and mes-
sage passing (MPI [14]) exist, but are all suboptimal for a hardware architecture
with strong (lock-step) synchronicity and no special emphasis on massive data
parallelism (e.g. vector registers, XMT [15] style on-demand thread creation).
Thus, we found the E and Fork languages to be closest to our goals. In the next
sections we take a brief look at both languages and their synchronization models.

However, worth noting is that while this style of parallel programming greatly
benefits from the hardware feature set of architectures such as REPLICA, we do
not believe a strong synchronicity model fits all purposes. One of our goals is to
combine together several compatible techniques such as task parallelism [16] and
high level parallel skeleton frameworks [17]. From this perspective, the role of a
strongly synchronous model is to provide a safer, easier, and more refined model
for taking advantage of fine-grained parallelism and the architecture dependent
accelerated multi-operations.

2.2 Fork language

Fork assumes a hardware model with lock-step execution semantics and P in-
dependent, concurrently running threads, each carrying local data such as their
thread id. The execution mode for a group of threads can be asynchronous or
synchronous. In the former, all threads work independently, in the latter the
threads work in groups. A synchronicity invariant holds for each group. The ma-
chine starts with all threads in a single group, but the groups can be recursively
split to subgroups, forming a hierarchical tree-like model. Split groups can later
be joined together into the parent group. It is also possible to step outside the
hierarchy tree and form a new group from any existing set of threads, but care
needs to be taken when manually maintaining the synchronicity invariant.

Fork provides a control primitives for synchronicity (start, seq, farm, and
join) and three modes of execution (async, sync, straight) for blocks and
functions. Fork enforces synchronicity constraints by prohibiting certain calls
statically on block basis. Synchronous code cannot call asynchronous functions,
asynchronous code cannot call synchronous functions and straight code can only
call straight functions. The control primitives extend the rules by allowing asyn-
chronous statements inside synchronous blocks (farm, seq), and synchronous
statements inside the other two blocks (start, join). In addition, heap object
allocation is prohibited in asynchronous and continue in synchronous mode.

233

The difference between farm and seq is that farm lets all threads participate
in asynchronous execution while in seq only one thread is active. Start switches
to a synchronous mode by performing a barrier with all the threads from the
group whose member the thread last was. Join is a more flexible way of forming
synchronous groups, based on a dynamic condition expressions.

Fork also adds code related to synchronicity in certain cases: short-circuit
expressions, conditionals and loops generate subgroups if a condition depends
on thread private state (a conservative heuristic is used). Farm, seq, and start
add barriers to enforce synchronicity. Statements break and return also add
barriers in the synchronous mode.

The downside of Fork is that mixing asynchronous and synchronous code
requires explicit notation also on the calling side. Both modes support different
functionality and the transitions between the modes have an overhead. This
makes the programming effort of switching between the modes cumbersome.
The default mode is asynchronous, but the programmer has to explicitly realize
e.g. when a helper function is also usable by synchronous code. Subgroups are
also created conservatively, which may affect performance. Instead of prohibiting
certain cases of bad behavior, Fork only warns e.g. if farm is used in asynchronous
mode. These rationale behind the loopholes is most likely that the compiler’s
constraints would otherwise also prohibit certain cases of correct, useful code.

2.3 E language

Compared to Fork, E seems like a poor man’s version with similar type of goals. It
assumes similar hardware model with lock-step execution semantics and thread-
ing model. The language is rather built as a macro extension for C and cannot
enforce e.g. region based synchronization modes. While its model is easier to
implement in terms of compilation techniques, it provides a rich set of intrinsics
and constructs for manipulating the machine state – for example, functions for
experimental fast versions of parallel operations under special assumptions.

E provides alternative parallel versions of standard C control structures (se-
lection, loops) that either create similar subgroups for diverging control flows
like Fork or end with a synchronization or do both. In addition, other hardware
provided features such are barriers and multi(prefix)-operations are available via
macros. The programmer can easily construct parallel programs using diverse set
of hardware features. However, the machine conditions are only enforced in triv-
ial cases where the code used is surrounded with the parallel control structures
and a correct version structure is selected.

While E’s design is less inspiring as a starting point for compilation algo-
rithms, E’s functionality and lightweight style contributed to the list of require-
ments for refining the Replica language, which is treated in the next section.

2.4 Replica language

The original goal in the REPLICA project was to implement language changes
required by the new parallel architecture on top of plain C, extended in Fork or E

234

style. Notable new hardware level requirements were e.g. the step-wise synchro-
nized execution, fast synchronization and parallel aggregate instructions, and
the bunch/NUMA hybrid modes for accelerating "legacy" code, which are un-
fortunately out of the scope of this paper. A low-overhead support for improved
parallel library construction in generic or object oriented style was also planned,
along with improvements in the analysis of synchronicity, data ownership and
new parallel code optimizations.

The complexity of integrating all the features lead to the introduction of
Replica language [7,8]. Replica implements a strongly typed, simplified subset of
C. It includes the basic data types (integral, composite structs, functions, global
and local variables) and imperative operations (if-else, while, do-while,
switch). The distinction between statements and expressions is more strict. For
example, assignments only work as statements. Expresions with immediate side
effects are disallowed (e.g. post- and pre-increments). As an exception, function
calls still work both as statements and expressions.

In Replica, the control flow operations are extended to automatically support
thread subgroup creation when the control flow may diverge. A split construct
is introduced for explicitly splitting the thread group into subgroups. Replica also
provides similar access to thread/group id variables as Fork and E. In addition,
a type-class [18] based generics implementation was adopted for implementing
low-overhead parallel libraries.

Although Replica is a simplified version of C, in this paper we consider a
language subset with decreased redundancy (e.g. only do-while, no while).
The EBNF representation of the relevant grammatical part is given in Figure 1.

3 Control flow and state invariants

The base of our model is the notion of synchronicity. For simplicity, we start
building the model from a synchronized subset of language features. We assume
core execution semantics from REPLICA, i.e. an amortized unit time instruction
execution cost with respect to other threads (distinct from wall-clock time) and
a global lockstep synchronization between all threads. Synchronicity is defined
pair-wise as an inter-thread relation of having the same program counter value at
a given point of time. Thus, at any point of time, threads can be partitioned into
groups of one or more according to their synchronicity. If the threads in a group
of size n each have a unique id between 0 and n− 1, the group is enumerated.

Due to the global lock-step synchronization, threads maintain synchronicity
between any two points in their execution path unless explicit branching based
on a thread-local condition is used. However, in a high level language, it becomes
hard to keep track of synchronicity on machine instruction level as the execu-
tion costs of operations on a certain abstraction level can be both variable and
dynamic. On high level, we statically model the execution with the concept of
concurrent control flows, which can be used to piece-wise define sections of code
with a certain property with respect to synchronicity.

235

〈declaration〉 ::= ‘fun’ 〈type〉 〈variable〉 ‘(’ [〈type〉 〈variable〉 ‘,’ 〈type〉
〈variable〉] ‘)’ ‘{’ 〈statement〉 ‘}’

〈statement〉 ::= [〈annotation〉] (〈seq〉 | 〈funcall〉 | 〈if-else〉 | 〈do〉 |
〈assignment〉 | 〈return〉)

〈annotation〉 ::= ‘@{’ 〈annsign〉 〈variable〉 〈annsign〉 ‘}’
〈annsign〉 ::= ‘+’ | ‘-’ | 〈empty〉
〈seq〉 ::= 〈statement〉 〈statement〉
〈funcall〉 ::= 〈funexpr〉 ‘;’
〈if-else〉 ::= ‘if’ ‘(’ 〈expression〉 ‘)’ 〈statement〉 ‘else’ 〈statement〉
〈do〉 ::= ‘do’ 〈statement〉 ‘while’ ‘(’ 〈expression〉 ‘)’ ‘;’
〈assignment〉 ::= 〈expression〉 ‘=’ 〈expression〉 ‘;’
〈return〉 ::= ‘return’ 〈expression〉 ‘;’
〈expression〉 ::= 〈primitive-literal〉 | 〈reference〉 | 〈conditional〉 |

〈short-circuit〉 | 〈composite〉 | 〈funexpr〉
〈reference〉 ::= 〈variable〉
〈conditional〉 ::= 〈expression〉 ‘?’ 〈expression〉 ‘:’ 〈expression〉
〈composite〉 ::= (‘!’ | ‘*’ | ‘&’) 〈exression〉 | 〈binary〉
〈binary〉 ::= 〈expression〉 (‘+’ | ‘-’ | ‘*’ | ‘/’) 〈expression〉
〈short-circuit〉 ::= 〈expression〉 (‘&&’ | ‘||’) 〈expression〉
〈funexpr〉 ::= 〈expression〉 ‘(’ [〈expression〉 ‘,’ 〈expression〉] ‘)’

Fig. 1. Basic Replica language grammar

In an imperative language, the execution is controlled with three basic rules:
sequence, repetition, and selection. In C [19] and its derivatives, these map to the
implicit top-down execution semantics of statements, call-by-value expression
evaluation order, and explicit control constructs (do, while, goto, if, and
switch). Functions aggregate and encapsulate statements, raising the level of
abstraction in a structured, hierarchical manner.

3.1 Modeling the flow condition invariant

The program’s possible execution paths form a graph, where the set of vertices is
a union of expressions, statements and declarations derived from the program’s
abstract syntax tree, the edges are determined from the evaluation order and the
function calling sequence between the nodes. We associate with each edge a set
of control flow conditions (e.g. 〈F, F ′〉 or 〈F1, F2〉), and with each vertex a pair
of sets of flow conditions representing the constraints for flow conditions before
and after the node’s evaluation. The model also comes with a list of inference

236

rules similar to type rules that determine the relations between flow conditions
internal to a node (e.g. subexpressions) and the external pre- and postconditions.
The model supports arbitrary amount of conditions, but our preliminary version
is focused on the REPLICA architecture with the following list of conditions:

– CS = The flow consists of threads with the same program counter value.
– CG = After last group creation, no branching occurred / branches converged.
– CT = The flow has exclusive ownership of a fast synchronization token.
– C1 = The control flow consists of at most a single thread.
– CL = Threads in the flow are located on the same physical processor.
– CP = The control flow executes code that depends on thread-private state.

CG represents a possibly asynchronous, enumerated thread group, CS a
synchronous thread group (not necessarily enumerated), and {CG, CS} a syn-
chronous enumerated group. CT models REPLICA’s support for a limited num-
ber of concurrent fast parallel multiprefix-style operations, each associated with
an id value on the machine level. CT is needed as the REPLICA architecture
has special hardware for these operations – but only a limited number of such
operations can be issued at the same time. C1 annotates operations that are
inherently sequential, CL enables using coalesced active memory operations and
processor local features such as local storage, CP models expressions that may
diverge execution when encountering a conditional. While the conditions are
related to REPLICA, a similar set of conditions can be extracted from other
parallel computational models.

3.2 Checking of the condition constraints

As the flow constraints are defined as inference rules in formal logic, a standard
type checker can be adapted to automatically check for program correctness with
respect to synchronicity. Analogous to type checking, the rules also give rise to
similar potential for synchronicity and flow condition inference, for which a full
algorithm is out of the scope of this paper on this model, but we outline the
mechanism at the end of the section.

The rules for the core features of Replica are given next. Equations 1. . . 5
represent shorthand functions for testing conditions (pr, sync, tok) related to
node node, for removing synchronicity (async) and for extracting the CP condi-
tion from a list of nodes (prs). The rest of the rules for each category of language
constructs are described in Sections 3.2.1. . . 3.2.4.

pr(node) = CP ∈ F2 | node : 〈F1, F2〉 (1)

tok(node) = CT ∈ F2 | node : 〈F1, F2〉 (2)

sync(node) = CS ∈ F2 | node : 〈F1, F2〉 (3)

async(F) = F \ {CS} (4)

prs(node1, . . . , noden) =

n⋃

i=1

Fei ∩ {CP } | ∀i ∈ 1 . . . n. nodei : 〈Fi, Fei〉 (5)

237

3.2.1 Condition inference rules of user-defined annotations The con-
dition rules bear resemblance to ordinary type inference rules. Instead of a type,
the nodes are ascribed with a pair of sets of conditions associated with the con-
trol flow graph vertex, i.e. the syntax tree node. For each condition inference
rule (or a set of rules), an analogous grammar construct exists (see Figure 1).

The first two rules (Equations 6, 7) depict the user defined annotations that
can be associated with any node (the analogous grammar rule in Figure 1 is
<annotation>). @{+X} requires that the condition is set, @{-X} is means the
opposite, that X is not set. @{X+} means that the condition is set after the node,
@{X-} means again the opposite, that X is set off. X can be any variable name,
for example any of the condition names mentioned above (CS , CG, CT , etc.).

It is always considered safe to add pre-conditions with @{+X} and to remove
post-conditions with @{X-} as they will only disable (correct) code from com-
piling. The opposite could potentially lead to code that misbehaves e.g. if the
synchronicity property is broken. Special intrinsic functions may use the other
two annotations.

F-PRE
s : 〈F, F ′〉 ∀X

(@{+X} s) : 〈F ∪ {CX}, F ′〉 (@{−X} s) : 〈F \ {CX}, F ′〉 (6)

F-POST
s : 〈F, F ′〉 ∀X

(@{X+} s) : 〈F, F ′ ∪ {CX}〉 (@{X−} s) : 〈F, F ′ \ {CX}〉
(7)

3.2.2 Condition inference rules for statements The second category has
a list of basic statements. Other statements (for, if without else, switch,
split) can be composed from these by rewrite. For simplicity, a set of other
Replica features (break, continue, goto, label, sequential, numa, blocks)
have been left out from this version, but the behavior described in [13] can be
adopted by expanding the set of conditions. To simplify the analysis, we assume
functions to be non-recursive, first-order and have a single explicit exit point
(return) – multiple exit points can be reduced by similar rewrite rules.

The basic rule for statements (F-STMT) defines that an unannotated state-
ment must preserve all flow conditions except synchronicity. The sequence rule
(F-SEQ) states that the next statement may only require a subset of conditions
offered by the preceding statement. The rules related to conditionals (F-IF) and
loops (F-DO) state that the CT token (see Section 3.1) cannot duplicate when
the flow diverges and also that CG will not propagate to diverging branches.
F-ASSIGN obeys the same kind of sequence logic as F-SEQ and F-RET does
not change the return value’s (e) flow conditions.

F-STMT
s : 〈F, F ′〉 async(F) = async(F ‘)

> (8)

F-SEQ
s : 〈F1, F2〉 s2 : 〈F3, F4〉 F2 ⊇ F3

s; s2 : 〈F1, F4〉
(9)

238

F-FUN
f(p1, . . . , pn) : 〈F, F ′〉
f(p1, . . . , pn) : 〈F, F ′〉 (10)

F-SYNC∗
sync : 〈F, F ∪ {CS}〉

(11)

F-GROUP∗
group : 〈F ∪ {CS}, F ∪ {CS , CG}〉

(12)

F-IF

e : 〈F1, Fc〉 s1 : 〈Fe1 , Fee1〉 s2 : 〈Fe2 , Fee2〉 Fc ⊇ Fe1 ∪ Fe2

pr(e)⇒ F2 = async(F1) tok(e)⇒ ¬tok(s1) ∧ ¬tok(s2)
pr(e)⇒ CG /∈ Fe1 ∪ Fe2 ¬pr(e)⇒ F2 = Fee1 ∩ Fee2 ∪ (F1 ∩ {CT })

if (e) s1 else s2 : 〈F1, F2〉
(13)

F-DO

s : 〈F1, Fl〉 e : 〈Fe, Fee〉 Fee ⊇ F1 ¬pr(e)⇒ F2 = Fee

pr(e)⇒ F2 = async(F1) ∧ ¬tok(s) ∧ ¬tok(e) ∧ CG /∈ F1 Fl ⊇ Fe

do s while (e) : 〈F1, F2〉
(14)

F-ASSIGN
e : 〈F1, F2〉 e2 : 〈F3, F4〉 F2 ⊇ F3

e2 = e : 〈F1, F4〉
(15)

F-RET
e : 〈F, F ′〉

return e : 〈F, F ′〉 (16)

3.2.3 Condition inference rules for expressions The next list defines
all language expressions. Rules for primitives (T-PRIMITIVE) and shared refer-
ences (T-REF) are trivial. References to private variables (T-REF-PRIV) spawn
the CP condition. Ternary (T-COND) and short-circuit (T-SHORT) operations
make similar assumptions as conditional statements (see T-IF in Equation 13),
but also propagate the thread-private state CP like many expressions. Function
call checks arguments’ conditions according to the evaluation order. The rest of
the built-in expressions can be fit to use the same composite rule, which checks
the condition compatibility in the evaluation order of subexpression arguments.

F-PRIMITIVE / F-REF
e : 〈F, F 〉 (17)

F-REF-PRIV
e : 〈F, F ∪ CP 〉

(18)

F-COND

c : 〈F1, Fc〉 e1 : 〈Fe1 , Fee1〉 e2 : 〈Fe2 , Fee2〉
Fc \ {CP } ⊇ Fe1 ∪ Fe2 tok(c)⇒ ¬tok(s1) ∧ ¬tok(s2)

pr(c)⇒ F2 = async(F1) ∪ Fp ∧ CG /∈ Fe1 ∪ Fe2

¬pr(c)⇒ F2 = Fee1 ∩ Fee2 ∪ (F1 ∩ {CT }) ∪ Fp Fp = prs(c, e1, e2)

(c ? e1 : e2) : 〈F1, F2〉
(19)

239

F-SHORT

e1 : 〈F1, F2〉 e2 : 〈F3, F4〉 F2 ⊇ F3 tok(e1)⇒ ¬tok(e2)
pr(e1)⇒ F5 = async(F1) ∪ Fp ∧ CG /∈ F3

¬pr(e1)⇒ F5 = Fee1 ∩ Fee2 ∪ (F1 ∩ {CT }) ∪ Fp Fp = prs(e1, e2)

(e1 && e2) : 〈F1, F5〉 (e1 || e2) : 〈F1, F5〉
(20)

F-COMPOSITE
∀i.ci : 〈Fci , Fcei〉 ∀i > 1.Fcei−1 ⊇ Fci

< operator > (c1, . . . , cn) : 〈Fc1 , Fcen ∪ prs(c1, . . . , cn)〉
(21)

F-FUN-E
f : 〈Ff , Ffe〉 ∀i.pi : 〈Fpi

, Fpei〉 ∀i > 1.Fpei−1
⊇ Fpi

Fpen ⊇ Ff

f(p1, . . . , pn) : 〈Fp1 , Ffe〉
(22)

3.2.4 Condition inference rules for function declarations Finally the
rule for function declarations mainly propagates the result from the function
body, but can be used as a point for attaching annotations on the callee’s side
is given in Equation 23.

F-FUNDECL
s : 〈F, F ′〉

fun < type >< name > (< p1 >, . . . , < pn >) {s} : 〈F, F ′〉
(23)

Since the rules have been described, we discuss the condition checking al-
gorithm, which is quite simple. We start from all top-level declarations and
recursively apply the rules until we obtain a pair of sets of conditions for the
top-level declarations. If there is no matching rule for a certain node, we can
still do a pattern match based on the syntax tree node type and display the
offending rule and related flow conditions. Once the top-level declarations are
associated with a pair, we check to see if the pre-condition of the main function
is compatible with {CS}, the initial state of the machine.

3.2.5 On condition inference algorithm To get an idea of the condition
inference algorithm, we describe a preliminary version used in our current com-
piler. Instead of starting with all top-level declarations we start with the main
function and pass around the current flow conditions calculated from the previ-
ous flow state. The rules are built in such a way that in a correct program, we
can progress to all subnodes in a certain order without backtracking. If there is
no way to proceed, we have three implicit conversion rules for switching between
the states: in the inference equations, the rules marked with a star, F-SYNC
(Equation 11), F-GROUP (Equation 12), and the third rule is a sequence of
rules F-SYNC & F-GROUP. There is also a plan to add a fourth conversion

240

to a single threaded context with the code split { group(1) { ...} }). If
none of the conversions can be applied, we issue an error as in the previous
algorithm. The purpose of the implicit conversion rules is to achieve the same
implicit barriers and group creation as in E and Fork when mixing asynchronous
and synchronous code.

This section gave an overview of the language from this point of view. How-
ever, lots of related details had to be left out of the scope of this paper. For
example, the conditions CT and CL are closely tied to the runtime task system
and no other code should activate the conditions. Enabling condition C1 requires
more static analysis and in the preliminary compiler it is tied to the split con-
struct not covered here. While designing the system, it became apparent that
the previous set of control constructs might be too limited if we want to support
more fine-grained control operations such as if-then-else with CT used by a single
branch and the subsequent code. In case more conditions are added to the sys-
tem, there also needs to be a more structured way of categorizing the conditions
into classes to make sure the existing rules are applicable to new conditions. For
example, some conditions can be multiplied as branching occurs, others pick at
most one branch.

4 Programming a computational kernel

In Figure 2 we give a brief example of the synchronicity model with a computa-
tional kernel utilizing both synchronous and asynchronous regions of code and
also multi-operations. The simple example divides the control flow into three
parts, threads 0 . . . 4 get a new reverse numbering 10 . . . 6. The first two threads
execute an asynchronous region, continue with a parallel multi-operation. The
result of the branch is printed once. The next three threads enter the second
branch, print a single result of 0. Finally the whole program terminates.

To give a better idea of the coding style employed by each of the languages,
the code listings begin with definitions for certain library routines used in the
example. In practical parallel programming, the focus is less on generic library
code and more in the computational kernel since the library code is part of the
standard toolchain distribution and less prone to change, if at all. While the
definitions in the example written in E look like normal C, both Replica and
Fork examples are annotated with constraints.

In Replica code we use the constraints CT , CS , and C1 introduced in Sec-
tion 3.1. Since the language compilers may expect ASCII input, we denote the
subscript with a leading underscore. The fast_multi function expects the fast
synchronization token and will not operate in this example when it is not being
called from a task parallel worker function initiated by the task parallel runtime
system. Since the printf function writes the output to standard output or screen,
it expects a single thread of control – otherwise the output could be messed up
badly. The function disrupt is a function that makes the execution asynchronous.

In Fork, each type of region with differing synchronicity needs to be manually
annotated with a block level annotation (start, farm, seq) while in Replica

241

ke rne l . r e p l i c a :

@{+C_S} @{+C_T}
@{C_S+} @{C_T+} void

fast_mult i (int , i n t ∗ , i n t) ;
@{+C_1} @{C_1+} void

p r i n t f (s t r i ng , i n t) ;
@{C_S−} void

d i s rupt () ;
void mult i (int , i n t ∗ , i n t) ;

void main () {
i n t i = $$;
i f ($$ < 5) {
$ = 10 − $;
i f (i < 2) {
i n t tmp = 0 ;
d i s rupt () ;
// sync ; imp l i c i t l y added

// fast_mult i (MADD,
// &tmp , $) ; not a l lowed
mult i (MADD, &tmp , $) ;
p r i n t f ("#1 , sum %d" , tmp) ;

} e l s e {
p r i n t f ("#2 , sum %d" , 0) ;

}
}}}

kerne l . e :

// c a l l s can be unsa fe
#de f i n e fast_mult i (

int , i n t ∗ , i n t) . . .

void p r i n t f (s t r i ng , i n t) ;
void d i s rupt () ;
#de f i n e mult i (

int , i n t ∗ , i n t) . . .

k e rne l . f o rk :

sync void mpadd(i n t ∗ , i n t) ;
async void d i s rupt () ;

void main () {
s t a r t {
i n t i = $$;
i f ($$ < 5) {
$ = 10 − $;
i f (i < 2) {
i n t tmp = 0 ;
farm d i s rupt () ;
mpadd(&tmp , $) ;
seq p r i n t f (
"#1, sum %d" , tmp) ;

} e l s e {
seq p r i n t f (
"#2, sum %d" , 0) ;

}
}

}
}

void main () {
i n t i = $$;
i f ($$ < 5) {
$ = 10 − $;
i f (i < 2) {
i n t tmp = 0 ;
d i s rupt () ;
sync ;
// a l lowed (but i l l e g a l)
fast_mult i (MADD, &tmp , $) ;
mult i (MADD, &tmp , $) ;
p r i n t f ("#1 , sum %d" , tmp) ;

} e l s e {
p r i n t f ("#2 , sum %d" , 0) ;

}
}}}

Fig. 2. Examples of kernels using diverse forms synchronicity.

242

the region type is checked and inferred from the library function signatures.
In E checking is omitted and even illegal fast multi-operations can be called
without a special synchronicity token. Subgroup creation is carried out manually
by renumbering the threads, but the implicit subgroup creation semantics leave
untested in this example. In addition, performance considerations related to
such implicit boilerplate code generation are unrealistic with simple examples
demonstrating the language semantics and require a thorough analysis in the
context of computational kernels once the Replica’s inference system is optimized
for code efficiency.

In this example, Replica’s control flow model checks equal amount or more
conditions than the two existing languages without opening new possibilities for
evident synchronicity errors. It also enables moving verbose annotations from
user code to the library, which supports our goals of designing a more expressive,
generic and easy to use language for parallel programming. A thorough analysis
with a larger set of real world benchmarks is still needed to validate our claims
in a practical setting and clearly defined semantics for flow conditions in cases
like recursion is still needed for parallel algorithms such as quick sort.

5 Conclusions and future work

In this paper, we presented a new framework for composable, hierarchical, syn-
chronization support on REPLICA and other architectures with a similar kind
of execution model. The preliminary framework and its implementation in our
Replica language compiler consists of a definition of synchronicity using parallel
control flows, a partially formal description of the rules for correctness, a simple
checking algorithm, and ideas for doing preliminary condition inference.

We demonstrated the resulting language by comparing example code against
equal, ported implementations in previous languages E and Fork. The example
mainly focused on demonstrating the new programming model with each system
and, for now, omitted necessary performance evaluation needed when dealing
with practical HPC kernels. In the next version of the system, strong emphasis
will be put on practical implementation aspects.

While the preliminary work on the model can be already used to check pro-
grams, as future work, we suggest extending the rules to cover the whole lan-
guage and (task) parallel runtime system, studying and extending the inference
algorithm to work in a wider set of cases, opening possibilities for program per-
formance tuning. The set of useful parallel control abstractions may also be far
from complete. Examples of possibly useful fine-grained abstractions were given.

Acknowledgment

This work was funded by VTT.

243

References

1. Garcia, F., Fernandez, J.: Posix thread libraries. Linux Journal 2000(70es) (2000)
36

2. Dagum, L., Menon, R.: OpenMP: An Industry Standard API for Shared-Memory
Programming. Computational Science & Engineering, IEEE 5(1) (1998) 46–55

3. Adve, S.V., Gharachorloo, K.: Shared Memory Consistency Models: A Tutorial.
computer 29(12) (1996) 66–76

4. Duranton, M., Black-Schaffer, D., Yehia, S., De Bosschere, K.: Computing systems:
Reseach challenges ahead – the hipeac vision 2011/2012 (2012)

5. Forsell, M.: A PRAM-NUMA Model of Computation for Addressing Low-TLP
Workloads. Int. Journal of Networking and Computing 1(1) (2011) 21–35

6. Forsell, M.: TOTAL ECLIPSE – An Efficient Architectural Realization of The
Parallel Random Access Machine. Parallel and Distributed Comput., Ed. A. Ros,
IN-TECH, Wien (2010) 39–64

7. Mäkelä, J.M., Hansson, E., Forsell, M., Kessler, C., Leppänen, V.: Design Princi-
ples of the Programming Language Replica for Hybrid PRAM-NUMA Many-Core
Architectures. In: Proceedings of 4th Swedish Workshop on Multi-Core Comput-
ing, Linköping University (2011) 136

8. Mäkelä, J.M., Hansson, E., Åkeson, D., Forsell, M., Kessler, C., Leppänen, V.:
Design of the Language Replica for Hybrid PRAM-NUMA Many-Core Architec-
tures. In Werner, B., ed.: 10th IEEE International Symposium on Parallel and
Distributed Processing with Applications, ISPA 2012, IEEE (2012) 697–704

9. Kessler, C., Seidl, H.: The Fork95 Parallel Programming Language: Design, Im-
plementation, Application. Int. Journal of parallel programming (1997)

10. Forsell, M.: E – A Language for Thread-Level Parallel Programming on Syn-
chronous Shared Memory NOCs. WSEAS Trans. on Computers 3(3) (jul 2004)
807–812

11. Forsell, M., Roivainen, J.: Supporting Ordered Multiprefix Operations in Emulated
Shared Memory CMPs. In: Proceedings of the 2011 International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA’11). Las
Vegas, USA. (2011)

12. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable Parallel Programming
with CUDA. Queue 6(2) (2008) 40–53

13. Keller, J., Kessler, C., Träff, J.: Practical PRAM Programming. Wiley (2001)
14. Forum, M.P.: MPI: A Message-Passing Interface Standard. Technical report,

Knoxville, TN, USA (1994)
15. Vishkin, U., Dascal, S., Berkovich, E., Nuzman, J.: Explicit Multi-threaded (XMT)

Bridging Models for Instruction Parallelism. In: Proc. 10th ACM Symposium on
Parallel Algorithms and Architectures (SPAA). (1998) 140–151

16. Kessler, C., Hansson, E.: Flexible Scheduling and Thread Allocation for Syn-
chronous Parallel Tasks. In: Proc. of 10th Workshop on Parallel Systems and
Algorithms (PASA’12). (2012)

17. Darlington, J., Field, A., Harrison, P., Kelly, P., Sharp, D., Wu, Q., While, R.: Par-
allel Programming Using Skeleton Functions. In: PARLE’93 Parallel Architectures
and Languages Europe, Springer (1993) 146–160

18. Wadler, P., Blott, S.: How To Make Ad-Hoc Polymorphism Less Ad Hoc. In:
Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’89, New York, NY, USA, ACM (1989) 60–76

19. Kernighan, B., Ritchie, D.: The C Programming Language",(\ ANSI C"). Prentice
Hall,(ISBN: 0-13-110362-8) (1988)

244

Checking visual data flow programs with finite
process models

Jyrki Nummenmaa1, Maija Marttila-Kontio2, and Timo Nummenmaa1

1 School of Information Sciences, University of Tampere, Finland
2 School of Computing, University of Eastern Finland, Finland

jyrki.nummenmaa@uta.fi, maija.marttila@uef.fi, timo.nummenmaa@uta.fi

Abstract. A visual data flow language (VDFL) allows graphical pre-
sentation of a computer program in the form of a directed graph, where
data tokens travel through the arcs of the graph, and the vertices present
e.g. the input token streams, calculations, comparisons, and condition-
als. Amongst their benefits, VDFLs allow parallel computing and they
are presumed to improve the quality of programming due to their intu-
itive readability. Thus, they are also suitable for computing education.
However, the token-based computational model allowing parallel pro-
cessing may make the programs more complicated than what they look.
We propose a method for checking properties of VDFL programs using
finite state processes (FSPs) using a commonly available labelled transi-
tion system analyser (LTSA) tool. The method can also be used to study
different VDFL programming constructs for development or re-design of
VDFLs. For our method, we have implemented a compiler that compiles
a textual representation of a VDFL into FSPs.

1 Introduction

In computing studies, programs are often visualized with flow-charts or similar,
demonstrating the program flow and giving a visual representation for the ba-
sic concepts of programming, such as choice, iteration, and input introduction.
Visual data flow languages (VDFLs) are special visual programming languages
[7]. The programs are presented in the form of directed graphs. The vertices
present such functionalities as e.g. calculations, comparisons, and conditionals.
The data flow in the form of data tokens in the arcs from functionalities to other
functionalities.

The visual nature of the VDFL programs makes them intuitive and is sup-
posed to increase their understandability [4] [7] [13]. This is an important factor,
when the quality of software is a crucial factor. Furthermore, a system based on
the data flow execution paradigm has advantages such as easier program ver-
ification, better modularity and extendability of hardware, reduced protection
problems and superior confinement of software errors [1].

The computational model, based on the function application, allows parallel
and concurrent execution strategies for the programs [2] [11]. Even though this

245

is an important and desired feature, at the same time this increases the com-
plexity of the program, as it may be hard for the programmer to understand and
anticipate the different execution sequences allowed by the VDFL program.

A formal method is a set of tools and notations (with a formal semantics)
used to specify unambiguously the requirements of a computer system, support-
ing the proof of properties of that specification and proofs of correctness of an
eventual implementation with respect to that specification [8]. Formal methods
are commonly used to study the properties of computational systems allowing
concurrent or parallel processing. However, to our knowledge there has been
little interest to apply formal methods to study the properties of VDLF pro-
grams. The work of Marttila-Kontio et al. [10] established a mapping between
VDFL programs and actions systems. This mapping provides a possible path for
reasoning on VDFL programs.

When applying formal methods, a formal specification can be created. The
formal specification should precisely state what the piece of software being spec-
ified is supposed to do [6]. In this work, we propose to use finite state processes
as formal specifications to represent and analyse the processing of VDFL pro-
grams. In our work, we limit our attention to a basic VDFL language, which
allows the definition of basic constructs: inputs, outputs, conditionalities and
basic computations, and iteration, which comes by the cyclic structure of the
programs. Even though VDFL programs are visual by nature, for the analysis
of the programs, only non-visual information is needed. We have implemented
a simple compiler, which compiles a textual representation of a VDFL program
into finite state processes (FSPs). The FSPs can then be automatically analysed
by a labelled transition system analyser (LTSA) tool for certain safety proper-
ties, such as deadlocks, and certain reachability properties, such as terminal sets.
It is also possible to state explicit progress properties about the FSP model, and
to check those using the LTSA tool. The book by Magee and Kramer [9] explains
the usage of the tool and formalism we use for the analysis and modeling of the
FSPs.

There is some previous work in the area, where formal approach has been used
to study visual programing or modeling languages. E.g. Zhang et al. [14] have
studied the visual language semantics specification using grammatical treatment
of the programming language structures, and Gostagliola et al. [3] have studied
the use of grammars in the development of visual modeling languages. Even
though we utilize grammars and parsing in our work, our goal is different: We aim
for a formal model that can be used as an input for a tool that can automatically
check certain formal properties of the program.

The content of the rest of the paper is as follows. Section 2 presents our
VDFL model. Section 3 describes how FSPs are compiled out of the VDFL
model. Section 4 discusses the applicability of our work in the context of a
commercial VDFL system, LabView [13]. Section 5 explains how our approach
can be utilized in the context of visual language development. Section 6 contains
concluding remarks.

246

2 The basic VDFL model

Our version is quite a minimal version of a visual data flow language, however,
it contains the necessary basic building blocks that allow to specify basic VDFL
programs. We will introduce the elements of the VDFL and their grammatical
representation, which is used in the process of the compilation. For readability,
our syntax is not as concise as would be possible. The operations are selected
from the set introduced by Davis and Keller [5].

A VDFL program can be represented as a directed graph, where arcs denote
the data channels (or data wires) by which data tokens flow along the direction of
the arcs, and the nodes represent inputs, outputs, and functions of the program.
The tokens contain values, which are used in the computations. In our example,
we limit ourselves to integer and Boolean values, even though in many practical
applications other data types, simple and structured, would be used. To feed the
intuition of the reader, we give a visual example of a simple VDFL program in
Figure 1.

In that program, X and Y feed input tokens to the system. The tokens go to
a ”less than” comparison, the result of which is taken to the Selector node. If the
result of the comparison is True, then the Y valued token, fed to the T-marked
entrance to the Selector, will be passed to the Result, and otherwise the X valued
token from the F-marked entrance will be passed to the Result. So, the value of
Result will be Y, if X is smaller than Y, and X otherwise.

Let us now consider our modelling primitives for a basic VDFL. The primi-
tives are given with grammatical representations, as our system will utilize tex-
tual input, which could be exported from a graphical programming environment.

The arcs are defined by a simple statement

"channel" Ident

where Ident denotes an identfying name. These names are then used to refer to
the arcs.

The source token streams are defined by

"source" Ident "to" [Ident]

where the Ident gives a name to the source (completely documentary and not
used in the computation) and the [Ident] specifies a list of names of the arcs
to which the source stream feeds the tokens. This way, it is possible to send the
values to several places, as will be done also with several other structures.

The desired result from the computation is specified as

"result" ":" Ident

where the Ident specifies the arc that is feeding the result (output) tokens.
In addition to variables, whose values are not supposed to be known by the

time the program is specified, it is possible to introduce constants:

"constant" Integer "to" [Ident]

247

X Y

<

F T

 SELECTOR

RESULT

Fig. 1. A simple VDFL program

where Integer specifies the constant value, and [Ident] specifies the arcs to
which the stream of constant tokens are fed.

Binary arithmetics are specified with statements of the form:

"bin_arith" Ident BOper Ident "to" [Ident]

where BOper specifies the binary operator, such as * or +, and the first and
second Ident specify the input arcs, and the token resulting from the arithmetic
operation is fed into the arcs specified by [Ident].

In the similar way, comparisons are specified with statements of the form:

"compare" Ident COper Ident "to" [Ident]

where COper specifies the comparison operator, one of <, <=, =, >=, or >, and the
first and second Ident specify the left and right input arcs, respectively, and the

248

token resulting from the arithmetic operation is fed into the channel specified
by the third Ident. It should be noted that in the visual representation, the
input arcs are read from left to right, and this needs to be converted into text
respectively.

According to the standard computational model, once there are input tokens
in the incoming arcs, the function of an edge can be performed and the result can
be passed on. In this work, we assume that only one token fits into one arc, that
is, if the outgoing arc is still occupied by a previously produced token, a function
is not going to output more tokens to the arc. The same assumption was made
by Davis and Keller. As for the source/input tokens, we just assume that when
there is space in the arc and input is available, a token will be positioned in the
arc. As for the result/output, we assume that the user or the process using the
program will need to explicitly consume the result/output tokens before a next
result is produced.

The structures introduced this far are just data flow based counterparts
of standard computational operations. However, VDFL programming includes
some features that are specific to the computational model. The selector has two
standard incoming arcs (of course in our case limited to integers and Booleans),
one input arc that brings in Boolean (selector) tokens, and a set of outgoing arcs.
The two standard inputs are labeled by True and False. If the selector value is
True, then a token from the True-labelled input stream is passed to the outgoing
arcs, and if the selector value is False, then a token from the False-labelled input
stream is passed to the outgoing arcs. The selector is specified as follows, where
it should be evident how True-labelled and False-labelled arcs map to the Ident
elements.

"selector" "if" Ident "then" Ident "else" Ident "to" [Ident]

The selector is a bit more complicated structure for the computational model.
First of all, it is in principle capable of executing even if it does not have tokens
in all input arcs, that is, if the selector input is False, then the True input is not
needed, and vice versa. Also, it could only consume a token from one input, thus
leaving one token in its arc. Both of these assumptions imply some complications,
so we abandon them and in our work the assumption is that the selector only
executes, when all inputs are present, and they are all consumed.

Let us now reconsider the program of Figure 1. There are two sources, X
and Y. Due to the computational model, once X and Y produce tokens, they
will go to the Selector and the comparison (smaller than) node. However, the
selector can only execute once the comparison is done. If X is smaller than Y, the
result will be Y, and otherwise X. Notably, the figure contains graphical layout
information about the parameters, the smaller than comparison is read from
left to right, and the True and False incoming arcs in the Selector are placed
at the T and F symbols. The graphical layout information is, of course, coded
in the textual representation that we use. This needs some bookkeeping in the
VDFL development environment. The program, expressed in textual form, is
given below. The first line has a program name, which would also be extracted
from the VDFL environment.

249

program comp :

channel ch1

channel ch2

channel ch3

channel ch4

channel ch5

channel ch6

source X to ch1, ch2

source Y to ch3, ch4

compare ch1 < ch3 to ch5

selector if ch5 then ch4 else ch2 to ch6

result : ch6

3 Compilation of VDFL programs into FSPs

This section explains the FSP structures used to represent the VDFL programs,
introduces the implementation technology used in VDFL compilation, and dis-
cusses the choices done in the implementation.

Before discussing how we have mapped the VDFL programs into FSPs, we
give a very short introduction to FSPs. FSPs are composed of actions using se-
quentiality (->), choice (|), guards (when (boolean cond)), the if-else struc-
ture (if (boolean cond) then else), parallel composition (||) and other op-
erations, not used here. The process names start with uppercase and the action
names with lowercase. The action names can be indexed, e.g. with values that
are related to the action. When we use integer indexing and a new value is in-
troduced, a range for the possible values needs to be given. The generated code
defines a range MaxInt = 0..1 which, of course, can be changed by the user.
This way, we can define e.g. the process CHANNEL = (in chan1[i:MaxInt]->

out chan2[i] -> CHANNEL) to say that the channel can produce an alterna-
tion of taking in a token with index from the given range and once i is thus fixed,
it will produce an out action that has the now fixed index, and after that it can
start again and a new index can be chosen.

Parallel composition is used to combine processes, e.g. we combine process
CONSTANT = (in chan1[1] -> CONSTANT) with CHANNEL, given above:

||CHANNEL_WITH_CONSTANT = (CONSTANT || CHANNEL).

and now the common actions can only be executed when both CHANNEL and
CONSTANT can execute them. This generally limits the possible execution traces,
and may lead to deadlock ie. a situation where there are no actions availabe for
execution. In this case, the process CONSTANT is limited to execute in chan 1[1]

only when CHANNEL is also ready to execute it. Notably, since this is the only value
available, the parameter in CHANNEL = (in chan1[i:MaxInt]-> out chan2[i]

-> CHANNEL) is always bound to 1.
Even though the VDFL programs we used as examples seem limited for their

data types, only including an integer and Boolean datatype, in practice general

250

integers lead into state-space explosion, and their values need to be strongly
limited. In this work, we will only include binary integer values in the models.
Even though slightly bigger values would in practice be feasible, this choice will
simplify our models and processing, still giving a possibility to analyze certain
part of the behavior of the programs.

This way, a channel / arc of the program is implemented as a process, where
Ident stands for the channel identifying name.

CHANNEL_Ident = (in_Ident[i:MaxInt] -> out_Ident[i]

-> CHANNEL_Ident).

With this process definition, the channel admits a token with a value from range
MaxInt and then the same token value needs to go out of the channel before
the next token can enter. This is exactly how the arcs should work under the
assumption that the arc can hold at most one value at all times.

The source simply needs to input a token into a list channels. This is achieved
by:

SOURCE_Ident = (value_Ident[i:MaxInt] -> in_Ident1[i]

->... -> in_Identk[i] -> SOURCE_Ident).

In this FSP Ident is the identifying name of the channel into which the source
outputs tokens, and Ident1, ..., Identk are the identifying names of the
channels to which the token will be put. This way the action of the source
synchronizes with the related channels actions to take in tokens. CONSTANT
is just like SOURCE apart from the index value for the in-action is fixed. Even
though this means that the channels need to take in the values in the order
specified by the identifiers, this makes no difference in practice.

Comparisons take two input values and produce an output value, either 0 or
1, representing False and True. Here, we use the simple if-then-else structure
of the FSPs that allows to define conditional behavior. Since the assumption
is that both input values need to exist, it does not matter in which order the
comparison takes them in.

COMP_Ident1_Ident2 = (out_Ident1[i:MaxInt] -> out_Ident2[j:MaxInt]

-> if (i COper j) then (in_Ident3[1] -> COMP_Ident1_Ident2)

else (in_Ident3[0] -> COMP_Ident1_Ident2)).

Binary arithmetic is even simpler than comparison, it takes the two input
value tokens and passes on the result of the arithmetic expression, which is easy
to generate.

BOPER_Ident1_Ident2 = (out_Ident1[i:MaxInt] -> out_Ident2[j:MaxInt]

-> in_Ident3[i BOper j] -> BOper_Ident1_Ident2).

Finally, the selector process takes in the Boolean (0 or 1) token and the
tokens from which to select, and then puts the appropriate token in the output
channel:

251

SELECTOR_Ident1 = (out_Ident1[i:0..1] -> out_Ident2[j:MaxInt]

-> out_Ident3[k:MaxInt] ->

if (i==1) then (in_Ident4[j] -> SELECTOR_Ident1)

else (in_Ident4[k] -> SELECTOR_Ident1).

Our compiler implementation is based on the use of the BNF Converter
(BNFC) [12], a compiler construction tool that is given a labelled BNF grammar,
produces various useful artefacts. Our compiler is implemented using the Haskell
programming language, so we use the following files, generated by BNFC.

– A parser generator file for Happy. The file can directly be used to generate
a Happy parser. Happy is a parser generator that comes as a part of the
Haskell Platform environment.

– A lexer generator file for Alex . The file can directly be used to generate an
Alex lexer. Alex is a lexical analyser generator that comes as a part of the
Haskell Platform environment.

– A test program to parse source language inputs and to pretty-print out
the parse tree. Since the actual compilation needed is very simple, we have
managed to create a compiler just by modifying these source files to eliminate
some debug output and to generate the necessary code.

Since we are basically developing a method that would use output from a
VDFL development environment, the error management is not a central issue
in the compiler. We may assume that these environments print out the program
information in the correct form. The top level of the labelled BNF grammar is
largely introduced in the grammar snippets we have given. The whole labelled
BNF grammar is given below.

Prog. Program ::= "program" Ident ":" [Stm] ;

Chan. Stm ::= "channel" Ident ;

Sour. Stm ::= "source" Ident "to" [Ident] ;

Cons. Stm ::= "constant" Integer "to" [Ident] ;

BAri. Stm ::= "bin_arith" Ident BOper Ident "to" [Ident] ;

UAri. Stm ::= "un_arith" UOper Ident "to" [Ident] ;

Comp. Stm ::= "compare" Ident COper Ident "to" [Ident] ;

Sel. Stm ::= "selector" "if" Ident "then" Ident

"else" Ident "to" [Ident] ;

Dist. Stm ::= "distributor" "if" Ident "then" Ident "to" Ident

"else" "to" [Ident] ;

Res. Stm ::= "result" ":" Ident ;

separator Stm "" ;

separator Ident "," ;

EEq. COPer ::= "==" ;

ENeq. COper ::= "!=" ;

ELeq. COper ::= "<=" ;

ELt. COper ::= "<" ;

EGeq. COper ::= ">=" ;

252

EGe. COper ::= ">" ;

EAdd. BOper ::= "+" ;

ESub. BOper ::= "-" ;

EMul. BOper ::= "*" ;

EDiv. BOper ::= "/" ;

Thus, the program of Figure 1 compiles into the following code, where the
compilation rules are given above, apart from the fact that we need a final
definition that composes everything into the common model.

range MaxInt = 0..1

CHANNEL_ch1 = (in_ch1[i:MaxInt] -> out_ch1[i] -> CHANNEL_ch1).

CHANNEL_ch2 = (in_ch2[i:MaxInt] -> out_ch2[i] -> CHANNEL_ch2).

CHANNEL_ch3 = (in_ch3[i:MaxInt] -> out_ch3[i] -> CHANNEL_ch3).

CHANNEL_ch4 = (in_ch4[i:MaxInt] -> out_ch4[i] -> CHANNEL_ch4).

CHANNEL_ch5 = (in_ch5[i:MaxInt] -> out_ch5[i] -> CHANNEL_ch5).

CHANNEL_ch6 = (in_ch6[i:MaxInt] -> out_ch6[i] -> CHANNEL_ch6).

SOURCE_X = (value_X[i:MaxInt] -> in_ch1[i] -> in_ch2[i] ->

SOURCE_X).

SOURCE_Y = (value_Y[i:MaxInt] -> in_ch3[i] -> in_ch4[i] ->

SOURCE_Y).

COMP_ch1_ch3 = (out_ch1[i:MaxInt] -> out_ch3[j:MaxInt] ->

if (i<j) then (in_ch5[1] -> COMP_ch1_ch3)

else (in_ch5[0] -> COMP_ch1_ch3)).

SELECTOR_ch5 = (out_ch5[i:0..1] -> out_ch4[j:MaxInt] ->

out_ch2[k:MaxInt] -> if (i==1)

then (in_ch6[j] -> SELECTOR_ch5)

else (in_ch6[k] -> SELECTOR_ch5)).

RESULT_ch6 = (out_ch6[i:MaxInt] -> RESULT_ch6).

||SYSTEM = (CHANNEL_ch1 || CHANNEL_ch2 || CHANNEL_ch3

|| CHANNEL_ch4 || CHANNEL_ch5 || CHANNEL_ch6

|| SOURCE_X || SOURCE_Y || COMP_ch1_ch3

|| SELECTOR_ch5 || RESULT_ch6).

This specification model can now be pasted into the LTSA tool, and the
tool can be used to check for error / undefined states, and deadlocks. There are
none. Also, the tool can be used to check if there are terminal sets, that is, if the
execution will eventually cycle in just a subset of states. In this case, also this
does not happen.

The LTSA tool can also be used to execute the model step-by-step, thereby
generating an action trace. The following is an example trace from an execution
with the LTSA tool.

value_X.1 -> value_Y.0 -> in_ch1.1 -> in_ch2.1 -> in_ch3.0 ->

in_ch4.0 -> out_ch1.1 -> out_ch3.0 -> in_ch5.0 -> out_ch5.0 ->

out_ch4.0 -> out_ch2.1 -> in_ch6.1 -> out_ch6.1

253

4 LabView

LabView [13] is a commercial VDFL system. To show how our work maps to a
real commercial system, we will discuss some LabView code samples. It should
be noted that LabView has additional features and not only the ones presented
until now, so naturally covering all of them would need additional structures to
our grammar and compilation.

Four separate LabVIEW codes are illustrated in Figure 2. The first code
represents a simple summation operation. When the program executes, the Add
node waits until it has received values from the data channels attached to it. The
data channel between the control A and the indicator B is populated by a token
right after the user has given an input value to the control A. The lower data
channel is immediately populated by the constant value (4) when the program
executes. The indicator B represents a user interface VI for presenting the result
of the summation operation to the user. Colours in LabVIEW program represent
different data types. Integer values are represented by blue colours, whereas green
colour is for Boolean values. It would be straightforward to represent this code
sample with our grammar.

The second code contains a basic For loop. The constant value (3) is attached
to the For loop’s input terminal N which represents the number of iterations.
Inside the For loop is the Round indicator presenting the iteration round (0,1,
and finally 2) on the user interface. The code sample is implementable using our
grammar, but a direct For loop structure provides convenience to the program-
mer. Using the grammar we have used above in our paper, it would be necessary
to add 1 to the counter on every round and to compare it to the number of
rounds, to know when the result of the iteration should be passed further on.

In the third code, the Select node waits until the integer controls C and D,
and the Boolean control ”True or False?” have got new data given by a user. If
the user enters True to the control, the select node passes the value from C to
the indicator E. If False is entered, the value from D is passed to the indicator
E. Both data channels become empty after the Select node executes. This is the
same as the Selector discussed in this paper.

The fourth code represent the case structure. Here, the case structure is
dependent on Boolean values, but other data types can be attached to the ”?”-
terminal as well. The case structure only executes once the user enters a value
to the Multiply? control. The multiplication inside the True case is performed
immediately when the Multiply? control has True value. In False case, the pro-
gram stops. The False case is not visible in the code because LabVIEW shows
only one case at a time. Implementation of this type of conditionality would
need more building blocks in our grammar.

The basic primitives we have used for VDFLs match reasonably well with
practical examples, however, it is easy to see that for the programmer’s con-
venience, certain higher-level structures would be useful (even if they can de-
composed into our initial modeling primitives). The examples also demonstrate
that in LabView the user may give input as direct manipulation. This is another
feature not covered by our model, however the Source definitions we have used

254

Fig. 2. LabView program examples

are not dependent on how the input values enter the computation system, be
it through e.g. some device giving physical readings, or an end-user feeding the
data through a user interface.

5 Language development

In this section we discuss how our work can be applied in the development and
specification of a VDFL. The idea is simple: Once a new language feature is

255

designed, it can be implemented as a part of the grammar of expressions, and
example programs can be tried out to test for possible unexpected and unwanted
phenomena and side effects. We exemplify this by extending the language pre-
sented this far. However, we point out that all steps we have produced are fairly
straighforward for other, similar languages, and the same approach could be
used with some changes to the textual representation of the language and re-
lated changes to the compilation.

As an example, let us consider adding the Distributor structure [5] to our
grammar. The distributor has one standard incoming arc (of course in our case
limited to integers and Booleans), one input arc that brings in Boolean tokens,
and two outgoing arcs, labelled as True and False. If the selector value is True,
then a token from the standard input stream is passed to the outgoing True arc,
and if the selector value is False, then a token from the standard input stream is
passed to the outgoing False arc. The distributor is specified as follows, where,
again, it should be evident how True-labelled and False-labelled arcs map to the
Ident elements. In practice, there could be many outgoing True and False arcs,
but this is enough for our purposes now.

"distributor" "if" Ident1 "then" Ident2 "to" [Ident3]

"else" "to" [Ident4]

The distributor would be represented as follows in the FSP model, in the
case that outgoing arc lists have just one arc each. The extension to a list is
straightforward with a sequence of actions.

DISTRIBUTOR_Ident1 = (out_Ident1[i:0..1] -> out_Ident2[j:MaxInt]

-> if (i==1) then (in_Ident3[j] -> DISTRIBUTOR_Ident1)

else (in_Ident4[k] -> DISTRIBUTOR_Ident1).

The reader might guess, by now, that the distributor may be problematic as
an operation, because it does not put data into all of the channels. Below is a
sample program that uses the distributor.

program dist :

channel ch1

channel ch2

channel ch3

channel ch4

channel ch5

channel ch6

channel ch7

channel ch8

source X to ch1, ch2

source Y to ch3, ch4

compare ch1 < ch3 to ch5

distributor if ch5 then ch2 to ch6 else to ch7

compare ch4 < ch7 to ch8

result : ch8

256

The compiled FSP model is as follows.

range MaxInt = 0..1

CHANNEL_ch1 = (in_ch1[i:MaxInt] -> out_ch1[i] -> CHANNEL_ch1).

CHANNEL_ch2 = (in_ch2[i:MaxInt] -> out_ch2[i] -> CHANNEL_ch2).

CHANNEL_ch3 = (in_ch3[i:MaxInt] -> out_ch3[i] -> CHANNEL_ch3).

CHANNEL_ch4 = (in_ch4[i:MaxInt] -> out_ch4[i] -> CHANNEL_ch4).

CHANNEL_ch5 = (in_ch5[i:MaxInt] -> out_ch5[i] -> CHANNEL_ch5).

CHANNEL_ch6 = (in_ch6[i:MaxInt] -> out_ch6[i] -> CHANNEL_ch6).

CHANNEL_ch7 = (in_ch7[i:MaxInt] -> out_ch7[i] -> CHANNEL_ch7).

CHANNEL_ch8 = (in_ch8[i:MaxInt] -> out_ch8[i] -> CHANNEL_ch8).

SOURCE_X = (value_X[i:MaxInt] -> in_ch1[i] -> in_ch2[i] ->

SOURCE_X).

SOURCE_Y = (value_Y[i:MaxInt] -> in_ch3[i] -> in_ch4[i] ->

SOURCE_Y).

COMP_ch1_ch3 = (out_ch1[i:MaxInt] -> out_ch3[j:MaxInt] ->

if (i<j) then (in_ch5[1] -> COMP_ch1_ch3)

else (in_ch5[0] -> COMP_ch1_ch3)).

DISTRIBUTOR_ch5 = (out_ch5[i:0..1] -> out_ch2[j:MaxInt] ->

if (i==1) then (in_ch6[j] -> DISTRIBUTOR_ch5)

else (in_ch7[j] -> DISTRIBUTOR_ch5)).

COMP_ch4_ch7 = (out_ch4[i:MaxInt] -> out_ch7[j:MaxInt] ->

if (i<j) then (in_ch8[1] -> COMP_ch4_ch7)

else (in_ch8[0] -> COMP_ch4_ch7)).

RESULT_ch8 = (out_ch8[i:MaxInt] -> RESULT_ch8).

||SYSTEM = (CHANNEL_ch1 || CHANNEL_ch2 || CHANNEL_ch3

|| CHANNEL_ch4 || CHANNEL_ch5 || CHANNEL_ch6 || CHANNEL_ch7

|| CHANNEL_ch8 || SOURCE_X || SOURCE_Y || COMP_ch1_ch3

|| DISTRIBUTOR_ch5 || COMP_ch4_ch7 || RESULT_ch8).

When tested with the LTSA tool, the tool identifies a potential deadlock and
shows a trace to the deadlock. The trace has over 40 actions. The experiment
is easy to repeat. This cannot be seen as firm evidence against the distributor
structure, particularly as our program was a bit carelessly programmed, but it
does show that our approach can be used to pin-point risky situations, where
either one needs to be careful with the language structures, the programs need
to be analyzed carefully before execution, or the language constructs need re-
consideration.

6 Conclusions

We propose a method to automatically analyze VDFL programs using finite
state processes. For this, we have implemented a simple compiler that compiles
our example VDFL programs from textual representation into FSPs, in a form
that can readily be read into an analyzer program. Our method is, in principle,
aimed for a toolset for VDFL program development. However, the method can

257

also be used in new language design. By first implementing the new language
features in our system, programs utilizing the new features can be analyzed.

Due to potential state-space explotion, one needs to be careful about the
integer value ranges used in the analysis models. In practice, they usually need
to be very small.

References

1. T. Agerwala and Arvind. Data flow systems: Guest editors’ introduction. Com-
puter, 15(2):10–13, February 1982.

2. John Backus. Acm turing award lectures. chapter Can programming be liberated
from the von Neumann style?: a functional style and its algebra of programs. ACM,
New York, NY, USA, 2007.

3. Gennaro Costagliola, Vincenzo Deufemia, and Giuseppe Polese. A framework for
modeling and implementing visual notations with applications to software engi-
neering. ACM Trans. Softw. Eng. Methodol., 13(4):431–487, October 2004.

4. Lorrie Cranor and Ajay Apte. Programs worth one thousand words: visual lan-
guages bring programming to the masses. Crossroads, 1(2):16–18, December 1994.

5. A. L. Davis and R. M. Keller. Data flow program graphs. Computer, 15(2):26–41,
February 1982.

6. Antoni Diller. Z - An introduction to formal methods. John Wiley & Sons, 1990.
7. Daniel D. Hils. Visual languages and computing survey: Data flow visual program-

ming languages. Journal of Visual Languages & Computing, 3:69–101, 1992.
8. M.G. Hinchey and J.P. Bowen. Applications of formal methods. Prentice-Hall

international series in computer science. Prentice Hall, 1995.
9. Jeff Magee and Jeff Kramer. Concurrency: State Models & Java Programs. John

Wiley & Sons, Inc., New York, NY, USA, 2006.
10. M. Marttila-Kontio, M. Ronkko, and P. Toivanen. Visual data flow languages with

action systems. In Computer Science and Information Technology, 2009. IMCSIT
’09. International Multiconference on, pages 589–594, 2009.

11. Walid A. Najjar, Edward A. Lee, and Guang R. Gao. Advances in the dataflow
computational model. Parallel Computing, 25:1907–1929, 1999.

12. Aarne Ranta. Implementing Programming Languages - An Introduction to Com-
pilers and Interpreters. Texts in Computing. College Publications, 2012.

13. Kirsten N. Whitley, Laura R. Novick, and Doug Fisher. Evidence in favor of
visual representation for the dataflow paradigm: An experiment testing labview’s
comprehensibility. Int. J. Hum.-Comput. Stud., 64(4):281–303, April 2006.

14. Ke-Bing Zhang, Mehmet A. Orgun, and Kang Zhang. Visual language semantics
specification in the vispro system. In Selected papers from the 2002 Pan-Sydney
workshop on Visualisation - Volume 22, VIP ’02, pages 121–127, Darlinghurst,
Australia, Australia, 2002. Australian Computer Society, Inc.

258

Efficient Saturation-based Bounded Model
Checking of Asynchronous Systems

Dániel Darvas1, András Vörös1, and Tamás Bartha2

1 Dept. of Measurement and Information Systems
Budapest University of Technology and Economics, Budapest, Hungary

vori@mit.bme.hu
2 Computer and Automation Research Institute

MTA SZTAKI,
Budapest, Hungary

Abstract. Formal verification is becoming a fundamental step in as-
suring the correctness of safety-critical systems. Since these systems are
often asynchronous and even distributed, their verification necessitates
methods that can deal with huge or even infinite state spaces. Model
checking is one of the current techniques to analyse the behaviour of
systems, as part of the verification process. The so-called saturation
algorithm has an efficient iteration strategy combined with symbolic
data structures, providing a powerful state space generation and model
checking solution for asynchronous systems. In this paper we present
the first approach to integrate two advanced saturation algorithms —
namely bounded saturation and constrained saturation-based structural
model checking— in order to improve on previous methods. Bounded
saturation utilizes the efficiency of saturation in bounded state space ex-
ploration. Constrained saturation is an efficient structural model check-
ing algorithm. Our measurements confirm that the new approach does
not only offer a solution to deal with even infinite state spaces, but in
many cases it even outperforms the original methods.

1 Introduction

Assuring the quality of safety critical, embedded systems is a challenging task.
Advances in technology are making it even more difficult: components are be-
coming more complex, and systems have more components that interact using
complicated communication and synchronisation mechanisms. Due to this com-
plexity it is impossible to make claims about the correctness of these systems
without the help of formal methods. On the other hand, exactly this complexity
raised the need for highly efficient formal verification algorithms.

Formal verification usually starts with the creation of a formal model of the
studied system. Then the behaviour of the formal model is analysed to prove its
adequacy. One of the most prevalent analysis techniques is model checking [4], an
automatic technique to check whether the model (and thus the modelled system)
satisfies its specification. The specification is typically expressed in temporal

259

logic. Computation Tree Logic (CTL) is a popular temporal logic language due
to the efficient and relatively simple analysis algorithms supporting it.

Model checking traverses the state space of the model being analysed. Safety
critical systems are often asynchronous, even distributed, so the composite state
space of their asynchronous subsystems can be as large as the Cartesian product
of the local components’ state spaces, i.e., the state space of the whole system ex-
plodes. Symbolic methods [4] are advanced techniques to handle huge state spaces
of synchronous systems. Instead of storing states explicitly, symbolic techniques
rely on an encoded representation of the state space such as decision diagrams.
These are compact graph representations of discrete functions. Ordinary sym-
bolic methods, however, usually perform poorly for asynchronous systems.

Saturation [1] is considered as one of the most effective state space gen-
eration and model checking algorithms for asynchronous systems It combines
the efficiency of symbolic methods with a special iteration strategy. Saturation-
based state space exploration computes the set of reachable states. The so-called
saturation-based structural model checking algorithm can analyse temporal logic
properties. Nowadays, the so-called constrained saturation-based structural model
checking algorithm is one of the most efficient algorithms for model checking [12].

However, many complex models still have a state space, which is either too
large to be represented even symbolically, or it is infinite. In these cases bounded
model checking can be a solution, as it explores and examines the prescribed
properties on a bounded part of the state space. Bounded saturation-based state
space exploration was introduced in [11], where the authors described a new
saturation algorithm that explores the state space only to some bounded depth.

1.1 Motivation

Former approaches solved only one of the problems: they could either be used
for structural model checking over the entire state space; or they could traverse
the state space up to a given bound, but without being able to check complex
properties on it. In this paper we introduce a new saturation-based bounded
model checking algorithm that integrates both approaches. Our algorithm in-
crementally explores the state space and performs structural model checking on
the uncovered bounded part. To our best knowledge, this is the first attempt
to combine bounded saturation-based state space exploration with constrained
saturation-based CTL model checking, in order to gain the advantages of both
techniques.

Furthermore, bounded model checkers usually do not support full CTL. Even
though there were theoretical results in this area, former bounded model checking
approaches did not work well with CTL due to its branching characteristics.
Our work is a step towards efficient bounded CTL model checking with many
directions to be explored in the future.

This paper extends our former work [8] described in 3.1 with an efficient
iteration strategy (namely constrained saturation) to traverse the bounded state
space. This is the first time where the efficiency of constrained saturation based
state space traversal is utilized for bounded model checking.

260

The structure of our paper is as follows: section 2 introduces the back-
ground and prerequisites of our work. Section 3 gives an overview of the ad-
vanced saturation-based algorithms our work relies on. Section 4 describes the
new bounded CTL model checking algorithm and its details. Section 5 presents
our measurements results. At the end our conclusions and ideas for future work
complete the paper.

2 Background

In this section we outline the theoretical background of our work. First, we de-
scribe the underlying data structures of our algorithms for storing the state space
during model checking: Multiple-valued Decision Diagrams (MDDs) and Edge-
valued Decision Diagrams (EDDs). EDDs extend MDDs with extra information:
in addition to storing the state space they also provide the distance information
for bounded state space generation. Finally, we summarize the saturation-based
state space exploration algorithm and the model checking background.

2.1 Decision Diagrams

This section is based on [10]. Decision diagrams are used in symbolic model
checking for efficiently storing the state space and the possible state changes of
the models. A Multiple-valued Decision Diagram (MDD) is a directed acyclic
graph, representing a function f consisting of K variables: f : {0, 1, . . .}K →
{0, 1}. An MDD has a node set containing two types of nodes: non-terminal and
two terminal nodes (terminal 0 and terminal 1). The nodes are ordered into K+1
levels. A non-terminal node is labelled by a variable index 1 ≤ k ≤ K, which
indicates to which level the node belongs (which variable it represents), and has
nk (domain size of the variable, in binary case nk = 2) arcs pointing to nodes
in level k − 1. A terminal node is labelled by the variable index 0. Duplicate
nodes are not allowed, so if two nodes have identical successors in level k, they
are also identical. These rules ensure that MDDs are canonical and compact
representation of a given function or set. The evaluation of the function is the
top-down traversal of the MDD through the variable assignments represented
by the arcs between nodes.

Figure 1(a) depicts a simple example Petri net [7] model of a producer-
consumer system. The producer creates items and places them in the buffer, from
where the consumer consumes them. For synchronizing purposes the buffer’s
capacity is one, so the producer has to wait till the consumer takes away the item
from the buffer. This Petri net model has a finite state space containing 8 states.
Figure 1(b) depicts an MDD used for storing the encoded state space of the
example Petri net. Each edge encodes a possible local state [1], and the possible
(global) states are the paths from the root node to the terminal one node. (The
model has to be decomposed to be able to represent its state space using decision
diagrams efficiently. This decomposition will be discussed in Section 2.3.)

261

producer buffer consumer

(a) The Petri net of
producer-consumer model

terminal
level

consumer
level

producer &
buffer level

11

(b) State space
representation with MDD

(c) State space and state
distance representation
with EDD

Fig. 1. Producer-consumer example

An Edge-valued Decision Diagram (EDD) is an extended MDD that can
represent the following function: f : {0, 1, . . .}K → N∪{∞}. Figure 1(c) depicts
an EDD storing the encoded state space enriched with the distance information
(computed from the initial state). The differences between an MDD and an EDD
are the following:

– Every p node is visualized as a rectangle with k slots, where k is the number
of children (domain of the variable).

– On the terminal level there is only one terminal node, named ⊥. This is
equivalent to the terminal one node in an MDD.

– Every edge has a weight and a target node. The ith edge starts from the
ith slot of the p node, and the value p[i].value (the weight of the edge) is
written to that slot. We write 〈n,w〉 if the edge has weight w ∈ N ∪ {∞}
and has target node n. In addition, we write p[i] = 〈n,w〉 if the ith edge of
the node p is 〈n,w〉 and p[i].value ≡ w, p[i].node ≡ n.

– If p[i].value = ∞, then p[i].node = ⊥. This is equivalent to an edge in an
MDD which goes to the terminal zero node. Usually the zero valued dangling
edges and the ∞ valued edges are not shown.

– Every non-terminal node has an outgoing edge with weight 0.

In the example of Figure 1(c) let the node on the left side of the consumer
level be x. This x node has two children: x[0] = 〈⊥, 0〉 and x[1] = 〈⊥, 3〉.

2.2 Model Checking and Bounded Model Checking

Given a formal model, model checking [4] is an automatic technique to decide
whether the model satisfies the specification. Formally: let M be a Kripke struc-
ture (i.e., the model in the form of a labelled state-transition graph). Let f be a
formula of temporal logic (i.e., the specification). The goal of model checking is
to find all states s of M that M, s � f .

Bounded model checking decides whether the model satisfies the specification
in a predefined number of steps, i.e., the depth of the state space traversal.

262

Formally: let M be a Kripke structure, and f be a formula of temporal logic.
The bounded model checking problem for the k-bounded state space is to find
all states s of M such that M, s �k f . Among others, bounded model checking
is useful when the full state space is not needed to decide on a property. This is
e.g. the case for shallow bugs that can be found in a bounded state space quickly.

Structural model checking uses a set operations to evaluate temporal logic
specifications by computing fixed-points in the state space. CTL (Computation
Tree Logic) [4] is widely used temporal logic specifications formalism, as it has
expressive syntax, and structural model checking yields efficient algorithms to
analyse CTL specifications. CTL expressions contain state variables, Boolean
operators, and temporal operators. Temporal operators occur in pairs in CTL:
the path quantifier, either A (on all paths) or E (there exists a path), is followed
by the tense operator, one of X (next), F (future, or finally), G (globally), and
U (until). However, only three: EX, EU, EG of the 8 possible pairings need to be
implemented due to duality [4]. The remaining five can be expressed with the
help of the former three in the following way: AXp ≡ ¬EX¬p, AGp ≡ ¬EF¬p,
AFp ≡ ¬EG¬p, A[pUq] ≡ ¬E[¬q U(¬p ∧ ¬q)] ∧ ¬EG¬q, EFp ≡ E[true U p].

2.3 Saturation

Saturation is a symbolic algorithm for state space generation and model checking.
Decomposition serves as the prerequisite for the symbolic encoding: the algorithm
maps the state variables of the chosen high-level formalism into symbolic vari-
ables of the decision diagram. The global state of the model can be represented as
the composition of the local states of components: sg = (s1, s2, . . . , sn), where n
is the number of components. See Figure 1(b) for a possible decomposition and
the corresponding MDD representation of the example model in Figure 1(a).
Furthermore, decomposition helps the algorithm to efficiently exploit locality,
which is inherent in asynchronous systems. Locality ensures that a transition
usually affects only some components or some parts of the submodels. The al-
gorithm does not create a large, monolithic next state function representation.
Instead it divides the global next state function N into smaller parts, according
to the high-level model. Formally: N =

⋃
e∈E Ne, where E is the set of events in

the high level model. The granularity of the decomposition, i.e. the next state
relations represented by Ne can be chosen arbitrarily [3].

Saturation uses symbolic encoding of the next state function. In our work
we use the symbolic next state representation from [3]. This approach parti-
tions disjunctively the global next state function according to the high level
model events in the system: N =

⋃
e∈E Ne. Logically, if N is represented by the

relation between state variables (in the decision diagram representation) x,x′

with Re(x,x
′), then the global relation can be expressed by the symbolic next

state relations of the events: R(x,x′) =
∨

e∈E Re(x,x
′). This way the algo-

rithm can use smaller next state representations. However, in many cases the
computation of the local Ne functions is still expensive. The algorithm handles
this problem by conjunctive partitioning according to the enabling and updating
functions (denoted by N enable and N update) [3]: Ne =

⋂
∀i(N enable

e,i

⋂N update
e,i),

263

which can be symbolically computed by the following equation: Re(x,x
′) =∧

∀i(Renable
e,i (x,x′)

∧Rupdate
e,i (x,x′)). Applying Ne to a given set of states repre-

sented by states results inNe(states) = RelProd(Re(x,x
′), states), where RelProd

is the well-known relational product function [3]. The smaller the partitions we
create, the less computation they need. The limit for the size of the partitioning
comes from the used high level modelling formalism.

Saturation uses a special iteration strategy, which is efficient for asynchronous
systems. The construction of the MDD representation of the state space starts
by building the MDD representing the initial state. Then the algorithm saturates
every node in a bottom-up manner, by applying saturation recursively, if new
states are discovered. Saturation iterates through the MDD nodes and generates
the whole state space representation using a node-to-node transitive closure. In
this way saturation avoids the peak size of the MDD to be much larger than the
final size, which is a critical problem in traditional approaches. The result is the
state space representation encoded by MDD.

Saturation-based Structural Model Checking. Saturation-based struc-
tural CTL model checking was first presented in [2], where the authors intro-
duced how the least fixed point operators can be computed with the help of
saturation. CTL model checking explores the state space in a backward man-
ner. It constructs the inverse representation N−1 and computes the inverse next
state, greatest and least fixed points of the operators. The semantics of the three
implemented CTL operators [4] is:

– EX: i0 � EX p iff ∃i1 ∈ N (i0) s.t. i1 � p. This means that EX corresponds
to the function N−1, applying one step backward through the next state
relation.

– EG: i0 � EG p iff i0 � p and ∀n > 0,∃in ∈ N (in−1) s.t. in � p so that
there is a strongly connected component containing states satisfying p. This
computation needs a greatest fixed point computation, so that saturation
cannot be applied directly to it. Computing the fixed point, however, benefits
from the locality accompanying the decomposition.

– EU: i0 � E[p U q] iff i0 � p and ∃n > 0,∃i1 ∈ N (i0), . . . ,∃in ∈ N (in−1) s.t.
in � q and im � p for all m < n (or i0 � q). The states satisfying this property
are computed with the following least fixed-point: lfp Z[q ∨ (p ∧ EXZ)]
Informally: we search for a state q reached through only states satisfying p.

3 Bounded and Constrained Saturation

In this section we give an overview of the two saturation-based advanced algo-
rithms that form important parts of our new approach. Bounded saturation is
used for state space exploration. Constrained saturation is used to restrict struc-
tural model checking to the bounded state space. The integration of constrained
saturation with the bounded saturation-based state space generation lead to the
first saturation-based bounded model checking algorithm, which exploits the
efficiency of structural model checking for bounded state spaces.

264

3.1 Bounded Saturation

It is difficult to exploit the efficiency of saturation for bounded state space ex-
ploration, because saturation uses an irregular recursive iteration order, which is
totally different from traditional breadth-first traversal. Consequently, bounding
the recursive exploration steps of saturation does not necessarily guarantee this
bound to be global for the state space representation.

There are different solutions for the above problem in the literature, both
for globally and locally bounded saturation-based state space generation. In
our work we chose one that has already proved its efficiency [11]. Although
MDDs provide a highly compact solution for state space representation, bounded
saturation needs additional distance information during the traversal. For this
reason, [11] uses Edge-valued Decision Diagrams (EDDs) instead of MDDs, and
—in addition to the state space— it also encodes the minimal distance of each
state from the initial state(s) into the EDD. The algorithm first iterates through
the state space until a given bound is reached, which is represented by an edge in
the EDD. After that it cuts the parts that are beyond the depth of the traversal
from the EDD, thereby computing the reachability set below the bound.

In our previous work [10] we extended the algorithm [11] with on-the-fly
updates [1] and an additional caching mechanism.

3.2 Constrained Saturation

In [12] the authors introduced an advanced saturation-based iteration strategy
for the purpose of structural model checking. The algorithm, called constrained
saturation, computes the least fixed point of the reachability relation that satis-
fies a given constraint.

The main novelty of the new algorithm is the slightly different iteration
style. Instead of combining saturation with breadth-first traversal, it uses a pre-
checking phase. The algorithm builds on the following observation [12]: in or-
der to do the symbolic step Ne from the set of state states to a set of states
satisfying the constraint C, we have to compute Ne(states) ∩ C. This contains
an expensive intersection operation after each step. Using the following obser-
vation: Ne(states) ∩ C = RelProd(Re(x,x

′), states) ∩ C = RelProd(Re(x,x
′) ∧

x′ ∩ C 6= 0, states) the algorithm can use pre-checking phase and it avoids the
computation-intensive intersection operation after the symbolic state space step,
instead it simply skips those steps which would go out of the constraint [12].

Algorithms 1 and 2 formalize the operation of the constrained saturation
algorithm. The lines starting with ∗ are the additions to traditional satura-
tion. In Algorithm 1 it is easy to see that the ConsSaturate(c,s) computes
RelProd(Re(x,x

′)∩C, states) without using the expensive symbolic intersection
operation. Research showed [12] that ConsSaturate is faster than traditional sat-
uration when there is a constraint on the possible states. This is the situation
e.g. in the case of the EU CTL operator.

265

Algorithm 1: ConsSaturate

input : c, s : node
// c: constraint,

// s: node to be saturated

output : node

1 l← s.level; r ← N−1
l ;

2 t← NewNode(l);
3 foreach i ∈ Sl : s[i] 6= 0 do
4∗ if c[i] 6= 0 then
5 t[i]← ConsSaturate(c[i], s[i]);
6 else
7∗ t[i]← s[i];

8 repeat
9 foreach i, i′ ∈ Sl : r[i][i′] 6= 0 do

10∗ if c[i′] 6= 0 then
11 u← RelProd(c[i′], t[i], r[i][i′]);
12 t[i′]← Union(t[i′], u);

13 until t unchanged ;
14 t← CheckIn(l, t);
15 return t;

Algorithm 2: RelProd

input : c, s, r : node
// c: constraint,

// s: node to be saturated,

// r: next state function

output : node

1 if s = 1 ∧ r = 1 then return 1;
2 ;
3 l← s.level; t← 0;
4 foreach i, i′ ∈ Sl : r[i][i′] 6= 0 do
5∗ if c[i′] 6= 0 then
6 u← RelProd(c[i′], t[i], r[i][i′]);
7 if u 6= 0 then
8 if t = 0 then

t← NewNode(l);
9 ;

10 t[i′]← Union(t[i′], u);

11 t← CheckIn(l, t);
12 t← ConsSaturate(c, t);
13 return t;

4 Efficient Saturation-based Bounded Model Checking

In this section we present our new, saturation-based bounded model checking
algorithm. In order to have an efficient model checking procedure that produces
the model checking result from the specification and the formal model, the fol-
lowing ingredients are needed:

– an efficient state space exploration method,
– an efficient model checking algorithm,
– a powerful search strategy,
– a mechanism to decide on the specification.

We use bounded saturation to efficiently explore the bounded state space
and produce a symbolic representation [8]. In this section we introduce a new
approach for model checking: we employ constrained saturation-based model
checking to provide full CTL model checking on this state space. The motivation
of the new approach is that this way we can constrain the CTL model checking
algorithm to traverse only the bounded state space which is not the situation
for traditional CTL model checking algorithms (for example presented in [8]).

4.1 Constrained Saturation using the Bounded State Space

Many model checking tools limit the specification syntax to a subset of the CTL
temporal language, in order to simplify the analysis task and boost performance.

266

We want to support the full CTL semantics in model checking, and thus we must
use backward traversal. This is our main reason for choosing the traditional,
fixed-point–based algorithms; as the semantics of forward and backward CTL
model checking are different (and incomparable) [5].

The naive approach to combine bounded exploration and structural model
checking would be to apply the fixed point computations from the bounded state
space on the complete lattice. However, the efficiency of this naive approach
would converge to traditional fixed point computations. It could be improved by
constructing the intersection of the result from the fixed point iterations with
the bounded state space representation, practically restricting each iteration
of the fixed point computation to the bounded subspace. All the same, the
improvement still suffers from poor performance due to the extensive use of the
costly intersection operation.

Our aim is to utilize the saturation approach also during model checking,
and to exploit the constrained saturation iteration strategy to provide an effi-
cient bounded model checking algorithm. The main idea is that the symbolically
encoded explored bounded state space can serve as the constraint in the con-
strained saturation algorithm. This way we can expeditiously bound the least
fixed point computations. Below we define how the constrained saturation de-
cides on the following CTL operators (where lfp denotes the least fixed-point,
and bss denotes the bounded state space as stored by the MDD):

– EF: M, s �k EFp iff s0 ⊆ lfp Z[(p ∧ bss) ∨ (bss ∧ EXZ)] = ConsSatura-
tion(bss, p∩bss). This way we can directly exploit the constrained saturation
algorithm to produce the least fixed point in the given bounded state space
bss. The result can be utilised by other, both least and greatest fixed point
operators.

– EU: M, s �k E[pUq] iff s0 ⊆ lfp Z[(q ∧ bss) ∨ (bss ∧ p ∧ EXZ)] = ConsSat-
uration(bss ∩ q, bss ∩ p). This is similar to using the constrained saturation
algorithm in traditional saturation-based model checking [12], but within a
bounded setting. This result can also be nested into both least and greatest
fixed point operators.

As greatest fixed point computations (EG) and simple next state operators (EX)
does not require such restrictions in the exploration, we apply traditional fixed
point algorithms for them. Although operator EF is just a special case of operator
EU, for performance reasons it is worth to be implemented separately.

4.2 Search Strategies

The choice of the search strategy followed during bounded model checking has
a significant impact on performance. In this section we evaluate the possible
search strategy alternatives. With regard to bounded state space generation, we
can have two approaches:

– Given a fixed bound b, we explore the b bounded state space and evaluate
the specification on it. We call it the fixed bound strategy.

267

– Given an initial bound init and increment value inc, we start exploring the
state space to the given bound init. The model checking algorithm then
decides whether it can stop, or it has to increase the bound by inc. The
procedure stops when it runs out of resources, or the model checking question
is answered. We call it the incremental strategy.

Traditional bounded model checking uses the increasing depth incremental
strategy, typically looking one step further in the state space in a breadth-first
manner. Applying this strategy in saturation would lead to lose the efficiency of
the special iteration order of saturation. Our experience shows that it is better to
let saturation increase the depth by at least 5–10 steps. Finding a good trade-off
in choosing the iteration depth is important. A one-step iteration results in the
loss of efficiency during saturation. On the other hand, a too large increase of
iteration depth results in the loss of efficiency during bounded model checking.
We have developed two different incremental search strategies:

– The restarting strategy starts again the iteration from the initial state after
each iteration, and uses the increased bound in the exploration.

– The continuing strategy reuses the formerly explored bounded state space
as the set of initial states in the next iteration, and extends it using the
bounded saturation algorithm to represent the state space of the increased
bound.

The restarting strategy was straightforward to implement, since it simply uses
the bounded saturation algorithm. For the continuing strategy we had to modify
the bottom-up building strategy of the saturation algorithm. For this purpose,
we needed to extend the algorithm to be able to handle even huge initial state
sets. This extension contained the modification of the truncating operations, the
caching mechanisms in order to preserve correctness, and the construction of the
decision diagram representation to be able to handle huge initial set of states.
The continuing strategy uses the formerly built data structures which can be
more efficient than building every data structure from scratch at each iteration.

4.3 Decision Mechanism

It is also important to be able to decide if the specification is satisfied. Bounded
model checking is a semi-decision procedure, therefore it can be used to ensure
the following behavioural properties of the specification:

– Invariant and safety : proving these properties needs the full state space to
be explored, or bounded model checking can give a short counterexample
(witness), if it exists.

– Liveness: bounded model checking can find a short witness to these proper-
ties, or the full state space has to be explored to refute them.

– Other properties, such as combination of safety and liveness properties:
3-valued logic can be used for decision.

Invariant and safety properties are usually proved (in symbolic model check-
ing) by finding inductive invariants without exploring the full state space. This
approach cannot be used directly for liveness properties.

268

Finding Inductive Proof against Liveness Properties. EDD-based state
space representation helps us to tell more about liveness properties. Refuting
liveness properties may come from the fact that: (1) the algorithm has to ex-
plore more from the state space to find a witness, (2) the liveness property does
not hold, and there exists a counterexample in the bounded state space. Our
approach can handle these differences. This is in contrast to traditional bounded
model checking approaches, since they have to encode the difference of the two
cases into the SAT formula directly, which is inefficient.

If a liveness property EG p does not hold in the bounded state space bss, we
can decide whether to investigate the state space further, or to conclude that
it will never hold. Let pd=bound be the set of states, where p is true and their
distance from the initial state is d = bound. pd=bound is encoded in the EDD,
we need to traverse the EDD once to get this state set. It can be computed
efficiently from the symbolic encoding. Let result = lfp Z[pd=bound ∨ (p∧EXZ)]
= ConsSaturate(p, pd=bound), then s0 ∧ result = false⇒ EG p = false holds.

4.4 Summary of Our Contributions

In this section we described the first efficient saturation-based bounded model
checking algorithm, which combines the efficiency of constrained saturation and
bounded state space exploration. It has the following properties:

– ∀f(Z): fp f(Z) ⊆ bss, for all fixed point the bounded saturation algorithm
is bounded by the state space, even for the least fixed point computations.

– It is efficient from the model checking point of view as the algorithm traverses
the bounded state space with the saturation iteration strategy.

– With the creative use of constrained saturation it avoids to examine states
outside of the discovered bounded state space in the model checking phase.

– It avoids expensive intersection operators during the state traversal of least
fixed point operators.

5 Evaluation

We have performed measurements in order to confirm that the presented novel
constrained saturation-based bounded model checking algorithm performs better
than former approaches. This section summarizes our measurement results.

Our aim was to examine the efficiency of our new algorithm and compare
it to a classical saturation-based structural model checking algorithm. We have
also examined how saturation-based bounded state space traversal can make
CTL-based model checking more scalable. For this purpose we have developed
an experimental implementation of our algorithm using the C# programming
language. We have also implemented the algorithm taken from [12] as the refer-
ence for comparison, which we denoted in the measurements as “Unbounded”.
For the measurements we used a desktop PC (Intel Q8400 2.66 GHz CPU, 4 GB
memory with Windows 7 x64 and .NET 4.0 framework).

269

The models we used for the evaluation are widely known in the model check-
ing community. We took the models of Tower of Hanoi from [10]. The state
space of the Tower of Hanoi models scales from 531 441 up to 3, 5 · 109 states.
The saturation algorithm does not perform well for this model, as it does not
correspond to an asynchronous system. These measurements demonstrate that
our bounded model checking algorithm can analyse even those models, which
are not well suited for saturation. The Slotted Ring (SR) is the model of a com-
munication protocol [1], [9]. The size of the state space of the SR–100 model is
about 10100 states. The Flexible Manufacturing System (FMS–N) is a model of
production systems [1]. The parameter N refers to the complexity of the model
checking problem. For N = 20 the state space of the FMS model has 1020 states.

Both the initial bound and the increment distance are changeable parameters,
thus our algorithm can be fine tuned by the user. If the properties to prove are
expected to be “shallow”, then the algorithm can be set to work optimally for
smaller distances. On the other hand, when the properties to prove are “deeper”,
then both the initial bound and the increment distance can be set bigger to find
a proof in fewer iterations. A priori knowledge about the expected behaviour of
the properties can significantly reduce the computational time.

0 50 100
0

2,000

4,000

Bound

U
se

d
E

D
D

n
o
d
es

(a) Slotted Ring (SR–10)

0 10 20 30 40
0

200

400

600

Bound

U
se

d
E

D
D

n
o
d
es

(b) FMS–3

Fig. 2. Size of state space representation (EDD) at each iteration

Table 1 lists our run time measurements for simple reachability properties of
the structural model checking (Unbounded), and our bounded model checking
approach (Bounded, incremental, restarting strategy). Saturation-based model
checking is extremely efficient for asynchronous systems, and the modified iter-
ation strategy requires more computational resources, so one would expect that
for these models the traditional approach is better. In the case of Slotted Ring
(SR–N , where N is the number of components) models, the analysed property
was the following: E(B1 6= 1 ∨ F1 6= 1 U G2 = 1 ∧ A2 = 1). The advantage of

270

Table 1. Comparing run times of model checking for different asynchronous models

Model Unbounded
Bounded, incremental,
restarting strategy

SR–100 > 1800 s 15.99 s
SR–200 > 1800 s 38.12 s
SR–300 > 1800 s 49.82 s

RR–100 0.24 s 0.27 s
RR–200 0.47 s 0.05 s
RR–1000 2.61 s 0.28 s
RR–10 000 32.54 s 3.39 s

DPhil–10 0.05 s 0.04 s
DPhil–100 0.40 s 0.53 s
DPhil–1000 5.26 s 5.14 s
DPhil–3000 16.19 s 19.52 s
DPhil–10 000 79.64 s 323.26 s

Table 2. Tower of Hanoi model checking run time results

Model Unbounded

Bounded,
incremental,
restarting
strategy

Bounded,
incremental,
continuing
strategy

Bounded,
fixed bound

Hanoi–12 39.2 s 6.45 s 2.15 s 1.62 s
Hanoi–14 > 1800 s 6.85 s 2.38 s 1.76 s
Hanoi–16 > 1800 s 10.09 s 2.72 s 1.92 s
Hanoi–18 > 1800 s 10.80 s 3.09 s 2.04 s
Hanoi–20 > 1800 s 11.26 s 3.12 s 2.64 s

Table 3. Comparing strategies for complex properties

Model Unbounded

Bounded,
incremental,
restarting
strategy

Bounded,
incremental,
continuing
strategy

Bounded,
fixed bound

FMS–25 1.70 s 1.01 s 1.14 s 0.39 s
FMS–50 9.58 s 2.37 s 3.00 s 1.03 s
FMS–100 82.39 s 4.88 s 6.55 s 1.93 s
FMS–1000 > 1800 s 5.58 s 6.49 s 1.93 s
FMS–10 000 > 1800 s 5.60 s 7.16 s 1.91 s
FMS–1 000 000 > 1800 s 5.68 s 7.11 s 1.95 s

271

bounded model checking is revealed by the model, as traditional model checking
runs out of resources even for such a simple property.

We have also examined Round-Robin models (RR–N , where N is the number
of components), which are quite efficiently handled by the traditional saturation
based model checking approach. We chose the following property to be checked:
E(pload1 = 0 U psend0 = 1). This property is shallow, so the advantage of our
bounded model checking approach is well reflected in the results.

The model of the Dining Philosophers (DPhil–N , where N is the number
of philosophers) revealed that for those models, where the saturation algorithm
answers the model checking question (in this case: E(¬eating2 U eating1)) ex-
tremely fast, bounded model checking is slower. The reason for this is that the
overhead of bounded model checking simply does not pay off.

In Table 2 and Table 3 we compare the different approaches for complex
properties. Table 2 contains the measurements of the Tower of Hanoi models.
We have examined a combined safety-liveness property (EG(EF(B↓8 > 0)), where
B↓8 > 0 denotes the placement of the 8th disk to the 2nd rod). The traditional
structural model checking approach (Unbounded) runs out of resources early.
Knowing the exact bound can help the algorithm to answer the model checking
question as fast as possible (Bounded, fixed bound). Comparing the two different
bounded model checking strategies, the continuing strategy has advantage as it
uses up the formerly computed results during the model checking.

In Table 3 the run time results for the property EG(E(M1 > 0 U (P1s = P2s =
P3s = 8))) of the model FMS are depicted. This property is also a combined
safety-liveness property that represents the existence of a circle in a certain set of
states satisfying some safety requirements (based on [2]). The structural model
checking algorithm time-outs for big parameters. By setting an adequate bound,
the bounded model checking approach answers the model checking question very
fast (Bounded, fixed bound). When we compare the two bounded model check-
ing strategies, the result is surprising: the restarting strategy solves the model
checking problem for every parameter faster than the continuing strategy. We
investigated the reason for this. It can be seen in Figure 2 that for asynchronous
systems (like FMS) the state space representation grows steeply up to a given
value, but after that it starts decreasing (resembling a bell curve). The contin-
uing strategy uses these intermediate state space representations as the initial
state, which is a large computational overhead compared to starting the iteration
from the initial state. By beginning model checking from scratch (i.e., using the
restarting strategy) we can exploit the efficiency of saturation for building the
state space representation. By starting to modify an intermediate representation
(i.e., using the continuing strategy) the algorithm has to do more computations,
especially if the intermediate representation is larger than the final one.

6 Conclusion and future work

We have presented in this paper an advanced bounded model checking approach
based on the saturation algorithm. Our work exploits the efficiency of saturation

272

and enables us to verify complex, or even infinite-state models. Our approach
also extends the set of asynchronous systems that can be analysed with the help
of symbolic methods. We have proved the efficiency of the new approach with
measurements.

We intend to develop our solution further. We will investigate the use of
forward model checking [6] instead of the classical backward fixed point compu-
tation, as we believe this can further improve the performance of our algorithm.
We also plan to use the constrained saturation algorithm in a different way, in
order to avoid redundant computations more efficiently.

References

1. Ciardo, G., Marmorstein, R., Siminiceanu, R.: Saturation unbound. In: TACAS
2003. pp. 379–393. Springer (2003)

2. Ciardo, G., Siminiceanu, R.: Structural symbolic CTL model checking of asyn-
chronous systems. In: Computer Aided Verification (CAV’03), LNCS 2725. pp.
40–53. Springer-Verlag (2003)

3. Ciardo, G., Yu, A.: Saturation-based symbolic reachability analysis using conjunc-
tive and disjunctive partitioning. Correct Hardware Design and Verification Meth-
ods 3725, 146–161 (2005)

4. Clarke, E., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)
5. Henzinger, T., Kupferman, O., Qadeer, S.: From pre-historic to post-modern sym-

bolic model checking. In: Computer Aided Verification. pp. 195–206 (1998)
6. Iwashita, H., Nakata, T.: Forward model checking techniques oriented to buggy

designs. ICCAD-97 pp. 400–404 (1997)
7. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the

IEEE 77(4), 541–580 (1989)
8. Penjam, J. (ed.): Proc. of the 12th Symposium on Programming Languages and

Software Tools, SPLST’11. Tallinn, Estonia (2011)
9. Vörös, A., Bartha, T., Darvas, D., Szabó, T., Jámbor, A., Horváth, Á.: Parallel

saturation based model checking. In: ISPDC11. IEEE Computer Society (2011)
10. Vörös, A., Darvas, D., Bartha, T.: Bounded Saturation Based CTL Model Check-

ing. In: Penjam [8], pp. 149–160
11. Yu, A., Ciardo, G., Lüttgen, G.: Decision-diagram-based techniques for bounded

reachability checking of asynchronous systems. Int. J. Softw. Tools Technol. Transf.
11, 117–131 (2009)

12. Zhao, Y., Ciardo, G.: Symbolic CTL model checking of asynchronous systems using
constrained saturation. pp. 368–381. ATVA ’09, Springer-Verlag, Berlin, Heidelberg

Acknowledgement

This work was partially supported by the ARTEMIS JU and the Hungarian
National Development Agency (NFÜ) in framework of the R3-COP project.
The authors would like to thank Prof. Gianfranco Ciardo for his valuable advice
and suggestions.

273

Extensions to the CEGAR Approach on Petri
Nets?

Ákos Hajdu1, András Vörös1, Tamás Bartha2, and Zoltán Mártonka1

1 Dept. of Measurement and Information Systems
Budapest University of Technology and Economics, Budapest, Hungary

vori@mit.bme.hu
2 Computer and Automation Research Institute

MTA SZTAKI,
Budapest, Hungary

Abstract. Formal verification is becoming more prevalent and often
compulsory in the safety-critical system and software development pro-
cesses. Reachability analysis can provide information about safety and in-
variant properties of the developed system. However, checking the reach-
ability is a computationally hard problem, especially in the case of asyn-
chronous or infinite state systems. Petri nets are widely used for the mod-
eling and verification of such systems. In this paper we examine a recently
published approach for the reachability checking of Petri net markings.
We give proofs concerning the completeness and the correctness proper-
ties of the algorithm, and we introduce algorithmic improvements. We
also extend the algorithm to handle new classes of problems: submarking
coverability and reachability of Petri nets with inhibitor arcs.

1 Introduction

The development of complex, distributed systems, and safety-critical systems
in particular, require mathematically precise verification techniques in order to
prove the suitability and faultlessness of the design. Formal modeling and anal-
ysis methods provide such tools. However, one of the major drawbacks of formal
methods is their computation and memory-intensive nature: even for relatively
simple distributed, asynchronous systems the state space and the set of possible
behaviors can become unmanageably large and complex, or even infinite.

This problem also appears in one of the most popular modeling formalisms,
Petri nets. Petri nets have a simple structure, which makes it possible to use
strong structural analysis techniques based on the so-called state equation. As
structural analysis is independent of the initial state, it can handle even infi-
nite state problems. Unfortunately, its pertinence to practical problems, such

? This work was partially supported by the European Union and the European Social
Fund through the project FuturICT.hu (grant no. TAMOP-4.2.2.C-11/1/KONV-
2012-0013) of VIKING Zrt Balatonfured.

274

as reachability analysis, has been limited. Recently, a new algorithm [12] us-
ing Counter-Example Guided Abstraction Refinement (CEGAR) extended the
applicability of state equation based reachability analysis.

Our paper improves this new algorithm in several important ways. The au-
thors of the original CEGAR algorithm have not published proofs for the com-
pleteness of their algorithm and the correctness of a heuristic used in the algo-
rithm. In this paper we analyze the correctness and completeness of their work
as well as our extensions. We prove the lack of correctness in certain situations
by a counterexample, and provide corrections to overcome this problem. We
also prove that the algorithm is incomplete, due to its iteration strategy. We
describe algorithmic improvements that extend the set of decidable problems,
and that effectively reduce the search space. We extend the applicability of the
approach even further: we provide solutions to handle Petri nets with inhibitor
arcs, and the so-called submarking coverability problem. At the end of our paper
we demonstrate the efficiency of our improvements by measurements.

2 Background

In this section we introduce the background of our work. First, we present Petri
nets (Section 2.1) as the modeling formalism used in our work. Section 2.2 in-
troduces the counterexample guided abstraction refinement method and its ap-
plication for the Petri net reachability problem.

2.1 Petri nets

Petri nets are graphical models for concurrent and asynchronous systems, pro-
viding both structural and dynamical analysis. A discrete ordinary Petri net is a
tuple PN = (P, T,E,W), where P is the set of places, T is the set of transitions,
with P 6= T 6= ∅ and P ∩ T = ∅, E ⊆ (P × T) ∪ (T × P) is the set of arcs and
W : E → Z+ is the weight function assigning weights w−(pj , ti) to the edge
(pj , ti) ∈ E and w+(pj , ti) to the edge (ti, pj) ∈ E [9].

A marking of a Petri net is a mapping m : P → N. A place p contains k
tokens in a marking m if m(p) = k. The initial marking is denoted by m0.

Dynamic behavior. A transition ti ∈ T is enabled in a marking m, if m(pj) ≥
w−(pj , ti) holds for each pj ∈ P with (pj , ti) ∈ E. An enabled transition ti can
fire, consuming w−(pj , ti) tokens from places pj ∈ P if (pj , ti) ∈ E and producing
w+(pj , ti) tokens on places pj ∈ P if (ti, pj) ∈ E. The firing of a transition ti in
a marking m is denoted by m[ti〉m′ where m′ is the marking after firing ti.

A word σ ∈ T ∗ is a firing sequence. A firing sequence is realizable in a
marking m and leads to m′, m[σ〉m′, if either m = m′ and σ is an empty word,
or there exists a w ∈ T ∗ realizable firing sequence, a ti ∈ T , and an m′′ such that
m[w〉m′′[ti〉m′. The Parikh image of a firing sequence σ is a vector ℘(σ) : T → N,
where ℘(σ)(ti) is the number of the occurrences of ti in σ.

275

Petri nets can be extended with inhibitor arcs to become a tuple PNI =
(PN, I), where I ⊆ (P × T) is the set of inhibitor arcs. There is an extra
condition for a transition ti ∈ T with inhibitor arcs to be enabled: for each
pj ∈ P , if (pj , ti) ∈ I, then m(pj) = 0 must hold. A Petri net extended with
inhibitor arcs is Turing complete.

Reachability problem. A marking m′ is reachable from m if there exists
a realizable firing sequence σ ∈ T ∗, for which m[σ〉m′ holds. The set of all
reachable markings from the initial marking m0 of a Petri net PN is denoted by
R(PN,m0). The aim of the reachability problem is to check if m′ ∈ R(PN,m0)
holds for a given marking m′.

We define a predicate as a linear inequality on markings of the form Am ≥ b,
where A is a matrix and b is a vector of coefficients [6]. The aim of the submarking
coverability problem is to find a reachable marking m′ ∈ R(PN,m0) for which a
given predicate Am′ ≥ b holds.

The reachability problem is decidable [8], but it is at least EXPSPACE-hard
[7]. Using inhibitor arcs, the reachability problem in general is undecidable [3].

State equation. The incidence matrix of a Petri net is a matrix C|P |×|T |,
where C(i, j) = w+(pi, tj)− w−(pi, tj). Let m and m′ be markings of the Petri
net, then the state equation takes the form m + Cx = m′. Any vector x ∈ N|T |
fulfilling the state equation is called a solution. Note that for any realizable
firing sequence σ leading from m to m′, the Parikh image of the firing sequence
fulfills the equation m + C℘(σ) = m′. On the other hand, not all solutions of
the state equation are Parikh images of a realizable firing sequence. Therefore,
the existence of a solution for the state equation is a necessary but not sufficient
criterion for the reachability. A solution x is called realizable if there exists a
realizable firing sequence σ, with ℘(σ) = x.

T-invariants. A vector x ∈ N|T | is called a T-invariant if Cx = 0 holds. A real-
izable T-invariant represents the possibility of a cyclic behavior in the modeled
system, since its complete occurrence does not change the marking. However,
during firing the transitions of the T-invariant, some intermediate markings can
be interesting for us later.

Solution space. Each solution x of the state equation m + Cx = m′, can be
written as the sum of a base vector and the linear combination of T-invariants
[12], which can formally be written as x = b+

∑
i niyi, where b is the base vector

and ni is the coefficient of the T-invariant yi.

2.2 The CEGAR approach

The counterexample guided abstraction refinement (CEGAR) is a general ap-
proach for analyzing systems with large or infinite state space. The CEGAR

276

method works on an abstraction of the original model, which has fewer restric-
tions. During the iteration steps, the CEGAR method refines the abstraction
using the information from the explored part of the state space. When applying
CEGAR on the Petri net reachability problem [12], the initial abstraction is the
state equation. Solving the state equation is an integer linear programming prob-
lem [5], for which the ILP solver tool can yield one solution, minimizing a target
function of the variables. Since the algorithm seeks the shortest firing sequences
leading to the target marking, it minimizes the function f(x) =

∑
t∈T x(t). When

solving the ILP problem, the following situations are possible:

– If the state equation is infeasible, the necessary criterion does not hold, thus
the target marking is not reachable.

– If the state equation has a realizable solution, the target marking is reachable.
– If the state equation has an unrealizable solution, it is a counterexample and

the abstraction has to be refined.

The purpose of the abstraction refinement is to exclude counterexamples from
the solution space, without losing any realizable solution. For this purpose, the
CEGAR approach uses linear inequalities over transitions, called constraints.

Constraints. Two types of constraints were defined by Wimmel and Wolf [12]:

– Jump constraints have the form |ti| < n, where n ∈ N, ti ∈ T and |ti|
represents the firing count of the transition ti. Jump constraints can be used
to switch between base vectors, exploiting their pairwise incomparability.

– Increment constraints have the form
∑k

i=1 ni|ti| ≥ n, where ni ∈ Z, n ∈ N,
and ti ∈ T . Increment constraints can be used to reach non-base solutions.

Partial solutions. For a given Petri net PN = (P, T,E,W) and a reachability
problem m′ ∈ R(PN,m0), a partial solution is a tuple (C, x, σ, r), where:

– C is the set of jump and increment constraints, together with the state equa-
tion they define the ILP problem

– x is the minimal solution satisfying the state equation and the constraints
in C,

– σ ∈ T ∗ is a maximal realizable firing sequence, with ℘(σ) ≤ x, i.e., each
transition can fire as many times as it is included in the solution vector x,

– r = x− ℘(σ) is the remainder vector.

Generating partial solutions. Partial solutions can be produced from a so-
lution vector x (and a constraint set C) by firing as many transitions as possible.
For this purpose, the algorithm uses a “brute force” method. The algorithm
builds a tree with markings as nodes and occurrences of transitions as edges.
The root of the tree is the initial marking m0, and there is an edge labeled by
t between nodes m1 and m2 if m1[t〉m2 holds. On each path leading from the

277

root of the tree to a leaf, each transition ti can occur at most x(ti) times. Each
path to a leaf represents a maximal firing sequence, thus a new partial solution.
Even though the tree can be traversed only storing one path in the memory at a
time using depth first search, the size of the tree can grow exponentially. Some
optimizations are presented later in this section to reduce the size of the tree.

A partial solution is called a full solution if r = 0 holds, thus, ℘(σ) = x,
which means that σ realizes the solution vector x. For each realizable solution
x of the solution space there exists a full solution [12]. This full solution can be
reached by continuously expanding the minimal solution of the state equation
with constraints.

Consider now a partial solution ps = (C, x, σ, r) which is not a full solution,
i.e., r 6= 0. This means that some transitions could not fire enough times. There
are three possible situations in this case:

1. x may be realizable by another firing sequence σ′, thus a full solution ps′ =
(C, x, σ′, r) exists.

2. By adding jump constraints, greater, but pairwise incomparable solutions
can be obtained.

3. For transitions t ∈ T with r(t) > 0 increment constraints can be added to
increase the token count on the input places of t, while the final marking
m′ must be unchanged. This can be achieved by adding new T-invariants to
the solution. These T-invariants can “borrow” tokens for transitions in the
remainder vector.

Generating jump constraints. Each base vector of the solution space can be
reached by continuously adding jump constraints to the minimal solution [12].
In order to reach non-base solutions, increment constraints are needed, but they
might conflict with previous jump constraints. Jump constraints are only needed
to obtain a different base solution vector. However, after the computation of the
base solution, jump constraints can be transformed into equivalent increment
constraints ([12]).

Generating increment constraints. Let ps = (C, x, σ, r) be a partial solution
with r > 0. This means that some transitions (in r) could not fire enough times.
The algorithm uses a heuristic to find the places and number of tokens needed
to enable these transitions. If a set of places actually needs n (n > 0) tokens, the
heuristic estimates a number from 1 to n. If the estimate is too low, this method
can be applied again, converging to the actual number of required tokens. The
heuristic consists of the following three steps:

1. First, the algorithm builds a dependency graph [10] to get the transitions
and places that are of interest. These are transitions that could not fire, and
places which disable these transitions. Each source SCC3 of the dependency
graph has to be investigated, because it cannot get tokens from another
components. Therefore, an increment constraint is needed.

3 Strongly connected component

278

2. The second step is to calculate the minimal number of missing tokens for
each source SCC. There are two sets of transitions, Ti ⊆ T and Xi ⊆ T . If
one transition in Ti becomes fireable, it may enable all the other transitions
of the SCC, while transitions in Xi cannot activate each other, therefore
their token shortage must be fulfilled at once.

3. The third step is to construct an increment constraint c for each source SCC
from the information about the places and their token requirements. These
constraints will force transitions (with r(t) = 0) to produce tokens in the
given places. Since the final marking is left unchanged, a T-invariant is added
to the solution vector.

When applying the new constraint c, three situations are possible depending
on the T-invariants in the Petri net:

– If the state equation and the set of constraints become infeasible, this partial
solution cannot be extended to a full solution, therefore it can be skipped.

– If the ILP solver can produce a solution x+ y (with y being a T-invariant),
new partial solutions can be found. If none of them help getting closer to the
full solution, the algorithm can get into an infinite loop, but no full solution is
lost. A method to avoid this non-termination phenomenon will be discussed
below.

– If there is a new partial solution ps′ where some transitions in the remainder
vector could fire, this method can be continued.

Theorem 1. (Reachability of solutions) [12] If the reachability problem has a
solution, a realizable solution of the state equation can be reached by continuously
adding constraints, transforming jumps before increments.

Optimizations. Wimmel and Wolf [12] presented also some methods for opti-
mization. The following are important for our work:

– Stubborn set The stubborn set method [10] investigates conflicts, concur-
rency and dependencies between transitions, and reduces the search space
by filtering the transitions: stubborn set method usually leads to a search
tree with lower degree.

– Subtree omission When a transition has to fire more than once (x(t) > 1),
the stubborn set method does not provide efficient reduction. The same
marking is often reached by firing sequences which only differ in the order of
transitions. During the abstraction refinement, only the final marking of the
firing sequence is important. If a marking m′ is reached by firing the same
transitions as in a previous path, but in a different order, the subtree after
m′ was already processed. Therefore, it is no longer of interest.

– Filtering T-invariants After adding a T-invariant y to the partial solu-
tion ps = (C, x, σ, r), all the transitions of y may fire without enabling any
transition in r, yielding a partial solution ps′ = (C′, x + y, σ′, r). The final
marking and remainder vector of ps′ is the same as in ps, therefore the same
T-invariant y is added to the solution vector again, which can prevent the

279

algorithm from terminating. However, during firing the transitions of y, the
algorithm could get closer to enabling a transition in r. These intermediate
markings should be detected, and be used as new partial solutions.

3 Theoretical results

In this section we present our theoretical results with regard to the correctness
and completeness of the original algorithm.

3.1 Correctness

Although Theorem 1 states that a realizable solution can be reached using con-
straints, we found out that in some special cases the heuristic used for generating
increment constraints can overestimate the required number of tokens for prov-
ing reachability. We prove the incorrectness by a counterexample, for which the
original algorithm [12] gives an incorrect answer.

Consider the Petri net in Figure 1 with the reachability problem (0, 1, 0, 0, 1,
0, 0, 2) ∈ R(PN, (1, 0, 0, 0, 0, 0, 0, 2)), i.e., we want to move the token from p0 to
p1 and p4. The example was constructed so that the target marking is reach-
able by the firing sequence σm = (t1, t2, t0, t5, t6, t3, t7, t4), realizing the solution
vector xm = (1, 1, 1, 1, 1, 1, 1, 1).

p0 t0

2

p1

p2

p3

p4

p5

p6

p7 t1

t2

t3

t4

t5

t6

t7

22
2

2

2 2 2

3 3

Fig. 1. Counterexample for correctness.

The CEGAR algorithm does the following steps. First, it finds the mini-
mal solution vector x = (1, 0, 1, 1, 1, 0, 0, 0), i.e., it tries to fire the transitions
t0, t2, t3, t4. From these transitions only t0 is enabled, therefore the only par-
tial solution is ps = (∅, x, σ = (t0), r = (0, 0, 1, 1, 1, 0, 0, 0)). At this point the
algorithm looks for an increment constraint. The dependency graph contains
transitions t2, t3, t4 (since they could not fire) and places p0, p2, p3 (because they
disable the previous transitions). The only source SCC is the set containing one

280

place p0 with zero tokens (because t0 has consumed one token from there). The
algorithm estimates that three tokens are needed in place p0, where only transi-
tion t1 can produce tokens. Therefore, the T-invariant t1, t5, t6, t7 is added twice
to the solution vector. This invariant is constructed so that for each of its firing,
a token has to be produced in places p2, p3, p4, which token can no longer be
removed. In the target marking only one token can be present on these places,
therefore the algorithm cannot find the solution for the reachability problem.

Notice that the problem is the over-estimation of tokens required at p0. With-
out forcing t0 to fire, the algorithm could get a better estimation. This would
imply that the invariant t1, t5, t6, t7 is added only once to the solution vector,
producing the realizable solution xm. The problem is that the algorithm always
tries to find maximal firing sequences, though some transitions would not be
practical to fire (t0 in the example above). Due to this, the estimated number of
tokens needed in the final marking of the firing sequence may not be correct.

Solution. Our improved algorithm counts the maximal number of tokens in
each place during the firing sequence of the partial solutions into a vector mmax.
If the final marking is not the maximal regarding a SCC, the algorithm might
have over-estimated the required number of tokens. This can be detected by
ordering the intermediate markings. Formally: an over-estimation can occur if a
place p exists in a SCC, for which mmax(p) > m′(p) holds, where m′ is the final
marking of the firing sequence.

3.2 Completeness

To our best knowledge, the completeness of the algorithm has neither been
proved nor disproved yet. When we examined the iteration strategy of the
abstraction loop, we found a whole subclass of nets, which cannot be solved
with this strategy. As an example, consider the Petri net in Figure 2 with
the reachability problem (1, 1, 0, 0) ∈ R(PN, (0, 1, 0, 0)), i.e., we want to pro-
duce a token in p0. We constructed the net so that the firing sequence σ =
(t1, t4, t2, t3, t3, t0, t1, t2, t5) solves the problem. The main concept of this exam-
ple is that we lend an extra token on p1 indirectly using the T-invariant t4, t5.

p0

p1

p2

p3

t0

t1

t2

t3

t4

t5

2

2

Fig. 2. Counterexample of completeness.

281

When applying the algorithm on this problem, the minimal solution vector
is x0 = (1, 0, 0, 0, 0, 0), i.e., firing t0. Since t0 is not enabled, the only partial
solution is ps0 = (∅, x0, σ0 = (), r0 = (1, 0, 0, 0, 0, 0)). The algorithm finds that
an additional token is required in p1, and only t3 can satisfy this need. With
an increment constraint c1 : |t3| ≥ 1, the T-invariant t1, t2, t3 is added to the
new solution vector x1 = (1, 1, 1, 1, 0, 0), giving us one partial solution ps1 =
(c1, x1, σ1 = (t1, t2, t3), r1 = r0). Firing the T-invariant t1, t2, t3 does not help
getting closer to enabling t0, since no extra token can be “borrowed” from the
previous T-invariant. The iteration strategy of the original algorithm does not
recognize the fact that an extra token could be produced in p3 (using t4) and
then moved in p1, therefore it can not decide reachability.

4 Algorithmic contributions

In this section we present our algorithmic contributions. In Section 4.1 we show
some classes of problems for which the original algorithm cannot decide reach-
ability, and our improved algorithm solves these problems. In Section 4.2 we
present two extensions of the algorithm, solving submarking coverability prob-
lems and handling Petri nets with inhibitor arcs.

4.1 Improvements

In the previous section we proved that the algorithm is not complete, but during
our work we found some opportunities to extend the set of decidable problems.
Moreover, we developed a new termination criterion which we prove to be correct,
i.e., no realizable solution is lost using this criterion.

Total ordering of intermediate markings. When a partial solution ps =
(C, x, σ, r) is skipped using the T-invariant filtering optimization, the original
algorithm checks if it was closer to firing a transition t in the remainder during
the firing sequence σ. This is done by “counting the minimal number of missing
tokens for firing t in the intermediate markings occurring”[12]. We found out
that this criterion is not general enough: in some cases the total number of
missing tokens may not be less, but they are missing from different places, where
additional tokens can be produced. In our new approach, we use the following
definition:

Definition 1. An intermediate marking mi is considered better than the final
marking m′, if there is a transition t ∈ T, r(t) > 0 and place p with (p, t) ∈ E
for which the following criterion holds:

m′(p) < w−(p, t) ∧ mi(p) > m′(p). (1)

The left inequality in the expression means that in the final marking t is disabled
by the insufficient amount of tokens in p. This condition is important, because

282

we do not want to have more tokens on places, that already have enough to
enable t. The right inequality means that p has more tokens in the intermediate
marking mi compared to the final marking m′.

Theorem 2. Definition 1 is a total ordering of the intermediate markings oc-
curring in the firing sequence of a partial solution.

Proof. We first show that Definition 1 includes the original ordering of the inter-
mediate markings. When the original criterion holds, the total number of missing
tokens for enabling t at the marking mi is less than at m′. This means that at
least one place p must exist, which disables t, but mi(p) > m′(p), therefore (1)
must hold. Furthermore, Definition 1 also recognizes markings which are pair-
wise incomparable, because if there is at least one place p with lesser tokens
missing, (1) holds.

Corollary 1. The total ordering of intermediate markings extends the set of
decidable problems.

Definition 1 is more general than the original criterion, hence it does not
reduce the set of decidable problems. On the other hand, we give an exam-
ple when the original criteria prevents the algorithm from finding the solution.
Consider the Petri net in Figure 3 with the reachability problem (1, 0, 0, 1) ∈
R(PN, (0, 1, 0, 1)), i.e., moving one token from p1 to p0. The minimal solution
vector is x0 = (1, 0, 0, 0, 0), i.e., firing t0, which is disabled by p2, therefore
the only partial solution is ps0 = (∅, x, σ0 = (), r0 = (1, 0, 0, 0, 0)). The algo-
rithm looks for increment constraints and finds that only t1 can produce to-
kens on p2. Consequently, the T-invariant t1, t2 is added to the solution vector
x1 = (1, 1, 1, 0, 0). There is one partial solution ps1 = ({|t1| ≥ 1}, x1, σ1 =
(t1, t2), r1 = (1, 0, 0, 0, 0)) for x1, where the T-invariant is fired, but t0 still could
not fire. This partial solution is skipped by the T-invariant filtering optimization,
and in all of the intermediate markings of σ1, totally one token is missing from
the input places of t0. By using the original criterion, the algorithm terminates,
leaving the problem as undecided. By using Definition 1 after firing t1, less to-
kens are missing from p2 than in the final marking. Continuing from here, t0 is
disabled by p1, where t3 can produce tokens, therefore the T-invariant t3, t4 is
added to the new solution vector x2 = (1, 1, 1, 1, 1). A full solution is found for
x2 by the realizable firing sequence σ2 = (t1, t3, t0, t2, t4).

T-invariant filtering and subtree omission. Using T-invariant filtering and
subtree omission optimizations together can prevent the algorithm from finding
full solutions. The order of transitions in the firing sequence of a partial solution
does not matter, except in one case. When a partial solution is skipped, the algo-
rithm checks for intermediate markings where it was closer to firing a transition
in the remainder vector. By using subtree omission, intermediate markings can
get lost.

As an example consider the Petri net in Figure 4 with the reachability prob-
lem (1, 0, 0, 0, 3) ∈ R(PN, (0, 0, 0, 0, 3)), i.e., we want to produce a token on p0.

283

p3 t3

p1

p0

p2

t4

t1
t0

t2

Fig. 3. Example net depicting the usefulness of the total ordering

A possible solution is the vector xm = (1, 1, 1, 2, 2, 3, 3) realized by the firing
sequence σm = (t6, t6, t6, t4, t4, t2, t0, t1, t3, t3, t5, t5, t5).

p4 p3
t5

t6

p2
t3

t4

p1
t1

t2

t0

p0

Fig. 4. An example where the order of transitions matter.

Here we present only the interesting points during the execution of the al-
gorithm. As a minimal solution, the algorithm tries to fire t0, but it is disabled
by the places p1, p2, p3. The algorithm searches for increment constraints. All
the three places are in different SCCs, so the algorithm first tries to enable t0
by borrowing one token for all three places. By the T-invariant t1, t2, . . . , t6 a
token is carried through places p1, p2, p3, which does not enable t0, but there are
intermediate markings where the enabling of t0 is closer. Continuing from any of
these intermediate markings, another token is borrowed on the places p1, p2, p3,
but t0 is not yet enabled. Here comes the different order of transitions into view:

– If the two tokens are carried through places p1, p2, p3 together, there are
intermediate markings that are closer to firing t0, because previously two
tokens were missing, now only one. Continuing from these markings a third
token is borrowed on places p1, p2, p3, enabling t0 and yielding a full solution.

– If the two tokens are carried through places p1, p2, p3 separately (i.e., a token
is carried through the places, while the other is left in p4, and this procedure
is repeated), there are no intermediate markings of interest, because two

284

tokens are still missing to enable t0. In this case the algorithm will not find
the full solution.

The order of transitions is non-deterministic, thus it is unknown which or-
der will be omitted. Therefore, in our approach we reproduce all the possible
firing sequences without subtree omission when a partial solution is skipped,
and check for intermediate markings in the full tree. Although this may yield a
computational overhead in some cases, we might lose full solutions otherwise.

New termination criterion. We have developed a new termination criterion,
which can efficiently cut the search space without losing any full solutions. When
generating increment constraints for a partial solution ps, as a first step the
algorithm finds the set of places P ′ ⊆ P where tokens are needed. Then it
estimates the number of tokens required (n). At this point, our new criterion
checks if there exists a marking m′ for which the following inequalities hold:

∑

pi∈P ′

m′(pi) ≥ n

∀pj ∈ P : m′(pj) ≥ 0.
(2)

The first inequality ensures that at least n tokens are present on the places
of P ′ while the others guarantee that the number of tokens on each place is non-
negative. These inequalities define a submarking coverability problem. Using the
ILP solver, we can check if the modified form of the state equation (which we
discuss in Section 4.2) holds for this problem. If the state equation does not hold,
it is a proof that no such marking exists where we have the required number of
tokens on the places of P ′. Thus, ps can be omitted without losing full solutions.

This approach can also extend the set of decidable problems compared to
the former approach. Consider the Petri net on Figure 5 with the reachability
problem (1, 1, 0) ∈ R(PN, (1, 0, 0)), i.e., firing t0 to produce a token on p1. The
algorithm would add the T-invariant t1, t2 again and again to enable t0. Using
T-invariant filtering we cannot decide whether there is no full solution or we
lost it. Using our new approach we can prove that no marking exist where two
tokens are present on p0, therefore no full solution exists.

p1
p0

p2 t1

t0
t2

2

2

Fig. 5. Example net for the new filtering criterion

285

4.2 Extensions

We extended the algorithm to handle new types of problems. In this section we
present two further extensions: the CEGAR algorithm for solving submarking
coverability problems and checking reachability in Petri nets with inhibitor arcs.

Submarking coverability problem. In Section 2 we introduced predicates
in the form Am′ ≥ b, where A is a matrix and b is a vector of coefficients. In
order to use the state equation, this condition on places must be transformed to
a condition on transitions.

At first we substitute m′ in the predicate Am′ ≥ b with the state equation
m0 + Cx = m′, which results inequalities of the form (AC)x ≥ b − Am0. This
set of inequalities can be solved as an ILP problem for transitions. The extended
algorithm uses this modified form of the state equation, and expands it with
additional (jump or increment) constraints.

Petri nets with inhibitor arcs. The main problem with inhibitor arcs is
that they do not appear in any form in the state equation which is used as
an abstraction. Therefore, a solution vector produced by the ILP solver may
not be realizable because inhibitor arcs disable some transitions. In this case
tokens must be removed from some places. Our strategy is to add transitions to
the solution vector, that consume tokens from the places connected by inhibitor
arcs. Increment constraints are suitable for this purpose, but they have to be
generated in a different way:

1. The first step is to construct a dependency graph similar to the original one.
The graph consists of transitions that could not fire due to inhibitor arcs and
places disabling these transitions. The arcs of the graph have an opposite
meaning: an arc from a place to a transition means that the place disables the
transition, while the other direction means that firing the transition would
decrease the number of tokens on the place. Each source SCC of the graph is
interesting, because tokens cannot be consumed from them by another SCC.

2. The second step is to estimate the minimal tokens to be removed from each
source SCC. There are two sets of transitions as well, Ti ⊆ T and Xi ⊆ T .
If one transition in Ti becomes fireable, it may enable all the others in the
SCC, while the needs of transitions in Xi must be fulfilled at once.

3. The third step is to construct an increment constraint c for each source SCC
from the information of the set of places and the number of tokens to be
removed. This yields firing additional transitions (with r(t) = 0) to consume
tokens from these places.

When a partial solution is not a full solution, and there are transitions dis-
abled by inhibitor arcs, the previous algorithm is used to generate increment
constraint. If there are transitions disabled by normal arcs as well, both the
original algorithm and the modified version must be used, taking the union of
the generated constraints.

Inhibitor arcs also affect some of the optimization methods:

286

– Stubborn sets currently do not support inhibitor arcs.
– Using T-invariant filtering, an intermediate marking is now of interest when

it has less tokens on a place which is connected by inhibitor arc to a transition
that cannot fire.

– Our new termination criterion is extended to check whether a reachable
marking exists where the required number of tokens are removed.

5 Evaluation

We have implemented our algorithm in the PetriDotNet [1] framework. Ta-
ble 1 contains run-time results, where TO refers to an unacceptable run-time
(> 600 seconds). The measured models are published in [4], [11], [12]. In Ta-
ble 1(a) we have compared our solution to the original algorithm, which is im-
plemented in the SARA tool [2] (the numbers in the model names represent the
parameters). We have also measured a highly asynchronous consumer-producer
model (CP NR in the table).

Table 1. Measurement results for well-known benchmark problems

(a) Comparison to the original

Our
Model SARA algorithm

CP NR 10 0,2 s 0,5 s
CP NR 25 111 s 2 s
CP NR 50 TO 16s
Kanban 1000 0,2 s 1 s
FMS 1500 0,5 s 5 s
MAPK 0,2 s 1 s

(b) Comparison to saturation

Our
Model Saturation algorithm

Kanban 1000 TO 1 s
SlottedRing 50 4 s 433 s
DPhil 50 0,5 s 45 s
FMS 1500 TO 5 s

Our implementation is developed in the C# programming language, while
the original is in C. This causes a constant speed penalty for our algorithm.
Moreover, our algorithm examines more partial solutions, which also yields com-
putational overhead. However, the algorithmic improvements we introduced in
this paper significantly reduce the computational effort for certain models (see
the consumer-producer model). In addition, our algorithm can in many cases
decide a problem that the original one cannot.

We have also compared our algorithm to the well-known saturation-based
model checking algorithm [4], implemented in our framework [11]. See the results
in Table 1(b). The lesson learned is that if the ILP solver can produce results
efficiently (Kanban and FMS models), the CEGAR solution is faster by an order
of magnitude than the saturation algorithm. When the size of the model makes
the linear programming task difficult, it dominates the run-time, and saturation
wins the comparison.

287

6 Conclusions

The theoretical results presented in this paper are twofold. On one hand, we
proved the incompleteness of the iteration strategy of the original CEGAR ap-
proach by constructing a counterexample. We also constructed a counterexample
that proved the incorrectness of a heuristic used in the original algorithm. We
corrected this deficiency by improving the algorithm to detect such situations.
On the other hand, our algorithmic improvements reduce the search space, and
enable the algorithm to solve the reachability problem for certain, previously
unsupported classes of Petri nets. In addition, we extended the algorithm to
solve two new classes of problems, namely submarking coverability and handling
Petri nets with inhibitor arcs. We demonstrated the efficiency of our improve-
ments with measurements.

References

1. Homepage of the PetriDotNet framework., http://petridotnet.inf.mit.bme.

hu/, [Online; accessed 10-May-2013]
2. Homepage of the Sara model checker., http://service-technology.org/tools/

index.html, [Online; accessed 06-Apr-2013]
3. Chrzastowski-Wachtel, P.: Testing undecidability of the reachability in Petri nets

with the help of 10th hilbert problem. In: Donatelli, S., Kleijn, J. (eds.) Application
and Theory of Petri Nets 1999, Lecture Notes in Computer Science, vol. 1639, pp.
690–690. Springer (1999)

4. Ciardo, G., Marmorstein, R., Siminiceanu, R.: Saturation unbound. In: Proc. Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). pp. 379–
393. Springer (2003)

5. Dantzig, G.B., Thapa, M.N.: Linear programming 1: introduction. Springer-Verlag
New York, Inc., Secaucus, NJ, USA (1997)

6. Esparza, J., Melzer, S., Sifakis, J.: Verification of safety properties using integer
programming: Beyond the state equation (1997)

7. Lipton, R.: The Reachability Problem Requires Exponential Space. Research re-
port, Yale University, Dept. of Computer Science (1976)

8. Mayr, E.W.: An algorithm for the general Petri net reachability problem. In: Pro-
ceedings of the Thirteenth Annual ACM Symposium on Theory of Computing. pp.
238–246. STOC ’81, ACM, New York, NY, USA (1981)

9. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (April 1989)

10. Valmari, A., Hansen, H.: Can stubborn sets be optimal? In: Lilius, J., Penczek, W.
(eds.) Applications and Theory of Petri Nets, Lecture Notes in Computer Science,
vol. 6128, pp. 43–62. Springer (2010)

11. Vörös, A., Bartha, T., Darvas, D., Szabó, T., Jámbor, A., Horváth, Á.: Parallel
saturation based model checking. In: ISPDC. IEEE Computer Society, Cluj Napoca
(2011)

12. Wimmel, H., Wolf, K.: Applying CEGAR to the Petri net state equation. In:
Abdulla, P.A., Leino, K.R.M. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems, 17th International Conference, TACAS 2010 Proceedings.
Lecture Notes in Computer Science, vol. 6605, pp. 224–238. Springer (2011)

288

