
A Static Concept Location Technique for Data-Intensive

Systems: �Where Was This SQL Query Executed?�

Csaba Nagy, Anthony Cleve
PReCISE Research Center, University of Namur, Belgium

{csaba.nagy, anthony.cleve}@unamur.be

1 Introduction

An evolving software system is incrementally modi�ed, changed by its developers during the
development and maintenance phases [1]. Before the developers start working on a change they
need to identify which parts of the source code implement the feature, and should be touched �rst
during the change. In practice, what they do is a concept location task (also known as feature
identi�cation/location) which is �the process that identi�es where a software system implements

a speci�c concept� [2].
There are many existing approaches to support developers in concept location tasks starting

from simple pattern matching (so-called `grep' techniques) to more sophisticated methods like IR-
based techniques or dependency analyzes [3]. However, none of the existing approaches consider
when there is a database in the architecture, which adds further source artifacts or dependencies.

Here, we investigate a concept location approach for data-intensive systems, as applications
with at least one database server in their architecture which is intensively used by its clients.
Speci�cally, we introduce a static technique to identify the location(s) in the source code where
a given SQL query was potentially sent to the database server.

2 Motivation

Identifying the location in the source code where a given SQL query was sent to the database is
a regular debugging task of data-intensive systems. Typical scenarios are when queries need to
be optimized for performance, or when they cause failures (e.g. a syntactic error or a deadlock
issue). Complexity of the system or the use of ORM technologies can even complicate this tasks.

With dynamic analysis, it is possible to trace the query on the database side or on the client
side too. At the database this is usually just a logging con�guration, while on the client side
they usually exploit that SQL queries are sent to the server via certain API calls which can be
wrapped or hooked to catch the query.

However, dynamic analysis cannot help us in some situations. Suppose, that the user of the
application experiences performance issues at the database; he identi�es the query which causes
the performance drop back in the log �les of the database and sends us a bug report. Since the
problem occurred at the database and was reported by it (client was not directly a�ected), we
do not have a stack trace in the bug report. How can we spot out then, where the query was
prepared in the source code? We must reproduce everything exactly as the user did which might
be even impossible if we depend on the data stored in the database (perhaps we cannot even ask
it for privacy reasons). In such situations, a static approach could provide us a great help in the
concept location task.

1



3 Approach

Our approach, to identify the location in the source code where a given SQL query was sent to
the database server, can be divided into three main steps (see Figure 1):

1. We extract the embedded SQLs from the source �les with a technique which substitutes
unrecognized code fragments with special identi�ers [4]. The output of this step is a set of
embedded SQLs which are prepared in the client code and potentially sent to the database.

2. We parse the extracted queries with a robust parser (which is able to handle the unrecog-
nized code fragments). In the same step, we parse the database schema as well, and the
queries that we are actually looking for. The output of the parser is an ASG (Abstract
Syntax Graph) containing all the SQL statements.

3. We run a sort of tree-matching algorithm on the ASG to identify subtrees (queries) match-
ing the trees of those statements that we are looking for. The output is a set of source
code positions where the queries were potentially sent to the database server.

Source 
files

Queries
Extracted

Database 
Schema

SQL ASG
Query 

Extraction

Query 
Matching

Source 
locations

SQL 
Parsing

Queries
Searched

Figure 1: Overview of the approach

4 Current Results and Future Plans

We implemented our approach for systems written in Java and accessing the database through
JDBC and/or Hibernate. To validate our approach, we test the implementation on the open
source OSCAR EMR Clinical Management System. OSCAR accesses the database through
JDBC and Hibernate and as a system with about 400 kLOC working with more than 400 tables,
it is perfect to demonstrate the possibilities of our approach. Currently, we are in implementa-
tion/testing phases and able to extract JDBC queries, parse them supporting MySQL dialect
and match the extracted queries to the concrete ones. We plan to extend our approach to handle
Hibernate as well, where a key challenge is that a query can be speci�ed as an HQL or Criteria
query too, which is then compiled to the query language of the database server.

References

[1] V. Rajlich and P. Gosavi, �Incremental change in object-oriented programming,� IEEE Softw., vol. 21,
no. 4, pp. 62�69, Jul. 2004.

[2] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A. Sergeyev, �Static techniques for concept loca-
tion in object-oriented code,� in Proc. of the 13th International Workshop on Program Comprehension
(IWPC'05). IEEE Computer Society, 2005, pp. 33�42.

[3] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, �Feature location in source code: a taxonomy
and survey,� Journal of Software: Evolution and Process, vol. 25, no. 1, pp. 53�95, 2013.

[4] L. Meurice, J. Bermudez, J. Weber, and A. Cleve, �Establishing referential integrity in legacy infor-
mation systems - reality bites!� in Proc. of 30th Interntional Conference on Software Maintenance
and Evolution (ICSME). Victoria, BC, Canada: IEEE Computer Society, Oct. 2014.


