
Mining Stack Overflow for Discovering Error
Patterns in SQL Queries

Csaba Nagy and Anthony Cleve
PReCISE Research Center, University of Namur, Belgium

{csaba.nagy,anthony.cleve}@unamur.be

Abstract—Constructing complex queries in SQL sometimes
necessitates the use of language constructs and the invocation
of internal functions which inexperienced developers find hard
to comprehend or which are unknown to them. In the worst case,
bad usage of these constructs might lead to errors, to ineffective
queries, or hamper developers in their tasks.

This paper presents a mining technique for Stack Overflow to
identify error-prone patterns in SQL queries. Identifying such
patterns can help developers to avoid the use of error-prone
constructs, or if they have to use such constructs, the Stack
Overflow posts can help them to properly utilize the language.
Hence, our purpose is to provide the initial steps towards a
recommendation system that supports developers in constructing
SQL queries.

Our current implementation supports the MySQL dialect,
and Stack Overflow has over 300,000 questions tagged with the
MySQL flag in its database. It provides a huge knowledge base
where developers can ask questions about real problems. Our
initial results indicate that our technique is indeed able to identify
patterns among them.

Index Terms—SQL, Mining Stack Overflow, Error Patterns,
Code Clones, Recommendation Systems

I. INTRODUCTION

Stack Overflow (SO) is the main Q&A website of Stack Ex-
change Network, where software developers can discuss com-
puter programming-related questions. It was publicly launched
in 20081 and since then it has become one of the most popular
Q&A sites. Today, as of June 2015, the site has 4.4 million
users who asked 9.6 million questions with an answer rate of
74%. Its daily traffic is over 8 million visits2. The popularity of
Stack Overflow means that it now has a large knowledge base
of several programming topics and it also attracts researchers.

In this paper, we introduce an approach to mine error
patterns in SQL queries extracted from SO posts. Our goal
is to organize questions into groups based on the identified
patterns, so a recommendation system can use these patterns
to search whether a query contains language constructs that
repeatedly appear on SO and directly point to questions with
similar constructs.

Existing mining techniques for Stack Overflow usually
analyze the textual content [1], [2]. There are some approaches
for Java that can be utilized to exploit island parsing and use
extra information gathered from the code blocks to support
recommendation systems [3]. These techniques extend the
analysis of textual content with extra information obtained

1http://www.joelonsoftware.com/items/2008/09/15.html
2http://stackexchange.com/sites?view=list\#traffic

from e.g., variable names, API usage and stack traces. The
initial success of these techniques encouraged us to take a
closer look at SQL code blocks in SO questions.

SQL is a declarative programming language and differs
from procedural languages in many aspects. It treats sets as its
fundamental data structure and it permits the construction of
a complex query in one single statement by using different
language constructs or by invoking native functions of the
underlying database management system. The nature of the
language requires a special way of thinking and this may
be hard to learn for less experienced developers. Moreover,
complex structures might lead to error-prone, ineffective state-
ments that should be avoided. Today there are around 300,000
questions on the site tagged with the MySQL tag, while C++
has 375,000 and Java has 874,000.

Our technique focuses on the code blocks of the questions
and tries to identify common patterns among the SQL state-
ments within these blocks. We parse the extracted queries with
a robust parser and run a pattern detection algorithm on the
resulting abstract syntax tree (AST) of the parser. The output
is a set of patterns which regularly appears in questions and
their related groups of posts.

To evaluate our technique and its usefulness in practice, we
sought answers to the following research questions:

• RQ1: Is it possible with our approach to identify common
language constructs (patterns) among SQL statements in
Stack Overflow questions?

• RQ2: Do these constructs indicate the usage of SQL that
might be error-prone, inefficient or hard to comprehend?

• RQ3: Can we improve the pattern detection by consider-
ing duplicates of SO questions?

II. RELATED WORK

In the past few years, several studies have been conducted
on mining Stack Overflow. The popularity of the topic led to
SO being the target of the mining challenge of MSR in 20133

and 20154.
The closest to our approach is described in the study by

Ponzanelli et al., who proposed an island parsing technique
to construct a heterogeneous abstract syntax tree (H-AST)
for analyzing SO discussions about Java [3]. Their H-AST
include Java constructs, stack traces, XML/HTML documents
and JSON fragments. They also implemented a recommender

3http://2013.msrconf.org/challenge.php
4http://2015.msrconf.org/challenge.php



system as an Eclipse plugin (Prompter), which generates Stack
Overflow queries from code context in the IDE. Prompter
exploits textual similarity, and code or API usage similarity.
It is an advanced version of their first prototype tool Seahawk
[4], which analyzed the textual content.

Beyer et al. also tried to identify common development
issues, but they adapted a manual approach [5]. Barua et al.
and Lineras-Vásquez employed automatic approaches to study
trends and common problems that developers have [1], [2].
They relied on LDA to analyze the textual content of the posts.

The target of error pattern mining is not limited to SO.
E.g., Thummalapenta et al. mined error patterns from source
code [6], while Livshits et al. mined common error patterns in
revision histories [7]. There are also several methods available
for mining API usages [8], [9], [10] and using the information
gathered by recommender systems [11], [12]. A comparison
of source code mining techniques was presented by Khatoon
et al. [13].

Our approach is different from the existing approaches as
(1) we target SQL code fragments in Stack Overflow questions
and (2) SQL, as a declarative language differs in nature from
the languages targeted by existing approaches. The novelty of
our mining technique also comes from the application of AST-
based clone detection to code fragments in the questions.

III. BACKGROUND

Stack Overflow may be regarded as a forum for computer
programming questions. A user can ask a question from the
community and mark one answer as accepted out of all the
answers given by the experts. Users can vote as well, resulting
in better quality answers with higher scores that are more
likely to be accepted, while poor answers will get less attention
and may be removed later. Questions with more upvotes
represent better-explained problems and are more likely to be
important for the community.

Questions can be tagged in order to keep them organized.
For instance, a question about a MySQL query in PHP can
be marked with the php and mysql tags so it appears for the
users who are interested in these topics. A sample question of
a typical optimization problem can be seen in Figure 1.

Although SO does not tolerate people repeatedly asking the
same question and recommends that its users check if the same
question has already been asked, users do not always realize
that their problem might have been raised before. Moreover,
it can be hard for an inexperienced developer to recognize
that a problem is a specific instance of a more general one
(which was probably asked before on the site). Members with a
good reputation can mark a question as a duplicate of another,
but the question may have some answers before it gets the
attention of the moderators. Hence, the same problem can
appear several times on the site.

The fact that users tend to ask similar questions inspired
books in this area, e.g., as Bill Karwin says in his SO profile5,
“I’ve written a book, SQL Antipatterns: Avoiding the Pitfalls

5http://stackoverflow.com/users/20860/bill-karwin

Figure 1. A sample Stack Overflow question with a mysql tag. There are over
200 questions on SO of the optimization problem of (NOT) IN subqueries.

of Database Programming from Pragmatic Bookshelf, based
on the most common SQL problems I’ve answered on Stack
Overflow and other forums, mailing lists, and newsgroups over
the past 15 years”.

For us, a question represents a coding issue and it poten-
tially contains some problematic SQL code fragments, while
answers hopefully contain solutions for this issue. Recommen-
dation systems usually rely on this fact and help developers,
e.g., by searching keywords from the coding context in the
questions, and bringing the features of SO closer to the devel-
oper in their IDE [14], [4]. Our plan with a recommendation
system is to carry on in this direction and to recognize if a
pattern (which came up on SO) appears in a query (which
might be embedded in the application code) and display the
related posts.

By problematic code fragments we do not necessarily mean
code with certain errors (e.g. syntactical). Questions on SO
can describe different kinds of problems and according to
the Android study of Beyer et al. [5] ‘Error?’ or ‘What is
the problem?’ type questions represent 40% of the questions,
while the rest are those like ‘How to?’, ‘Is it possible?’,
‘Why?’. Code blocks in these questions are problematic in
the sense that the user who asked about them encountered
some issues or difficulties with them, e.g. a performance issue
that can be seen in Figure 1.

IV. PATTERN DETECTION IN SQL STATEMENTS

Figure 2 gives an overview of the main steps of our
approach, which we will now elaborate on.

A. Processing the Stack Overflow Dump

The data dump of Stack Overflow is published by Stack
Exchange in XML format6, and it contains all the relevant data
needed for our analysis. The dump is divided into ‘smaller’
XML files. The one that describes the posts was about 29 Gb
on Sept 14, 2014 and it contained over 25M posts (questions
and answers). Below, we will rely on the data gathered from
this dump.

6http://archive.org/details/stackexchange – user contributions of SO are li-
censed under cc-by-sa 3.0; see http://creativecommons.org/licenses/by-sa/3.0/



Stack Overflow Posts

SQL Posts

Process Dump,

Filter SQL (MySQL) tags

SQL Queries

Extract code blocks,

pre-filtering SQLs

1

2

Parse SQL queries

SQL AST

3

Pattern 

Detection

4

Post groups,

SQL patterns

Figure 2. The main steps of the approach: first we process the dump of Stack
Overflow posts and filter questions tagged with the mysql tag (1), then we
extract code blocks containing SQL statements (2), which we then parse in
the next step to produce an AST (3) for pattern detection (4).

Not all the posts are necessarily relevant to us, so first we
filter them so as to just work with those posts that were marked
with the mysql tag. (Our parser is currently only able to handle
the MySQL dialect, but additional dialects could be considered
here as well.) For this filtering, we load the XML, identify the
questions with the mysql tag, and keep only these questions
and their related posts (answers). After applying this filtering
approach, we got a 1.1 Gb XML file, with 271,117 questions
and 500,607 answers in it.

B. Extracting Code Blocks, Pre-filtering SQLs

Bodies of Stack Overflow questions are written in Mark-
down and code blocks are placed between the <code> and
</code> tags. So for this step, we simply extract these code
blocks. Notice, however, that users sometimes use the code
blocks for formatting purposes (see the block of the sample
data in Figure 1). In order to just work with the blocks that
are relevant to us, we apply some additional filtering. We keep
only those which contain SQL keywords (we check to see if
select, insert, update, delete, create, alter, and so on appear
in the block). Ideally, we should have only SQL blocks later,
but some non-SQL fragments are likely to get through the
filtering phase, which is acceptable here, as our parser drops
them anyway if it cannot process them. For the example in
Figure 1, it means that we just keep the last code block with
the select statement and the filter will drop the first one which
is only used to present some sample data.

Besides this pre-filtering of SQL code blocks, we apply
character encoding transformations. The XML is in ‘utf-8’
encoding, and posts widely use the Unicode character set
which can cause problems later on for the parser if unhandled
characters appear outside of string literals, for instance.

C. Parsing SQL Queries

After extracting the SQL queries, the next step is to parse
them and construct their ASTs. For this purpose, we use

our robust SQL parser introduced in our previous paper [15],
where we implemented a concept location approach to identify
SQL queries in Java applications. The pattern detection prob-
lem is different from the concept location problem, where we
had to match just one concrete query to others extracted from
a Java source code base.

Our parsing approach can be viewed as an island-parsing
technique, but with a slightly different goal. An island parser
typically parses some recognizable structures (the islands) in
a text and does not care about the rest (the water). In our case,
we parse only the code blocks of the questions and we seek to
build a complete AST for statements in these blocks. However,
these blocks sometimes contain some non-SQL text, which
makes some parts of the code unrecognizable for the parser.
For instance, imagine typos in the text (e.g. ‘form’ instead
of ‘from’) or a typical situation when someone types ‘. . . ’
instead of a complete field list of a select statement. These
unrecognizable code parts represent the water in our case.
Hence, we have huge islands with some water in between.
As our main goal is to find patterns in the structures of the
queries, we wish to keep the original query structure, so we
insert special nodes as placeholders to the AST in the place
of the unrecognized code parts.

SELECT t1.a, count(*) FROM t1, ... GROUP BY t1.a

Figure 3. A SQL query containing a code fragment (‘...’) that would
normally cause a syntactic error.

Figure 3 shows a sample query extracted from SO which
contains an unrecognized code fragment (‘...’) and Figure 4
shows its corresponding AST.

SELECT

Identifier

name: t1.a

SetFunctionCall

name: COUNT

Columns Columns

Star

Parameters

Identifier

name: t1.a

From

Join

kind: comma

Identifier

name: t1
Unrecognized

Left Right

GroupBy

Figure 4. AST of the sample query in Figure 3.

D. Pattern Detection
To detect patterns in SQL statements, we implemented an

AST-based clone detection algorithm based on the approach
introduced by Baxter et al. [16]. Their clone detection algo-
rithm first puts the AST nodes into buckets based on a hash
function and identifies matching subtrees in each bucket with
the help of a similarity function. As they say, “This allows
the straightforward detection of exact sub-tree clones. If we
hash sub-trees to B buckets, then only those trees in the same
bucket need be compared, cutting the number of comparisons
by a factor of B.” [16]

The main difference between our approach and theirs is
that we need to handle the placeholders of unrecognized code
fragments in the AST. Hence, our tree matching must be more
permissive. The main steps of our clone detection algorithm
are as follows:



1) Preparation: For each ti AST node, we calculate the size
of its subtree (as the number of nodes in it) and check
see if it contains unrecognized fragments.

2) Buckets: We put all the nodes in buckets whose subtree
is larger than mintree or contains an unrecognized code
fragment.

3) Tree matching: For each bucket Bk we identify matching
subtrees.

4) Keep only maximum clones: For each clone pair (ti, tj),
if the parents of ti and tj are clones, we remove (ti, tj)
from the clone list (and keep the parents).

5) Create clone classes: if (ti, tj), and (ti, tz) or (tj , tz) are
clones, we put ti, tj and tz into the same clone class.

The preparation step is necessary to filter subtrees which
do not reach a minimum number of nodes that we consider
for pattern detection. We also need this minimum (mintree)
for performance reasons and to keep larger patterns in focus
instead of smaller ones (e.g., simple function calls). This step
requires one preorder traversal of the AST.

To group nodes in buckets, we use the node kind of the
AST node. This way, we have separate buckets for different
kinds of nodes and we can eliminate unnecessary comparisons
between any two subtrees with different types of root nodes.
Notice that this could be improved by generating hashes that
combine the node kinds and the attributes of the nodes.

The tree-matching algorithm is the core of the algorithm
and it consists of the following steps:

1) For each (ti, tj) where ti and tj are trees in bucket Bk,
invoke match(ti, tj):

a) return True, if ti and tj are the same nodes, or one of
them is a node representing unrecognized fragments.

b) return False, if the attributes of ti and tj are different,
except for node kinds where we ignore attributes
(identifiers or literals).

c) for all subtree edges e(ti, tie) call match(tie , tje)
where tie is the child of ti following the edge e and
tje is the child of tj following the corresponding edge.
Return True if (and only if) all the children match.

In the next step, we remove clone pairs whose parents are
also clones, so we keep only maximum clones; and lastly, we
organize the clone pairs into clone classes. One clone class
will represent a pattern at the end of the process.

V. EVALUATION

We evaluated our approach on the database export of SO
from Sept 14, 2014. As an outcome of applying the first filter-
ing steps, we extracted 271,117 questions, which were marked
with the mysql tag. From these questions, we extracted 565,001
code blocks which contained keywords of SQL statements.
Our parser was able to process 239,461 SQL statements out
of these code blocks. Notice that the code blocks may (and
usually do) contain non-SQL code such as Java or PHP code,
so based on these results we could not make an estimate on the
success rate of the parser. We manually investigated a random
sample of 100 code blocks where the parser failed to produce
the AST for the statements, and we found that 66 contained

PHP code, 10 Java, 1 C++, 1 stored procedure, 5 syntactically
incorrect SQLs, and in 17 cases there was sample data or other
non-SQL text in the code block. The results show, however,
that we managed to extract 0.88 statements on average for SO
questions of MySQL.

Due to space limitations, here we present a brief summary
of the results and we have made all the data (extracted posts,
queries and patterns) available as an online appendix7.

RQ1: Can our approach identify common language constructs
(patterns) among SQL statements in Stack Overflow questions?

We executed our pattern detection algorithm with a mini-
mum threshold of 10 nodes and identified a total number of
33,988 patterns after considering all the different node kinds
in the AST. Table I lists some statistics (number of patterns
originating from the node kind; average/max no. of pattern
instances, tree size, and no. of questions) concerning the
patterns of some selected node types (see the online appendix
for more detailed statistics).

Table I
STATISTICS ON THE PATTERNS OF SELECTED NODE KINDS

Node Kind No. of Instances Tree Size SO Questions
Patterns Avg Max Avg Max Avg Max

BinaryExpression 615 10.09 3681 17.80 247 8.10 3096
BinaryQuery 524 13.07 378 27.14 388 8.26 198
CaseExpression 375 5.05 70 15.37 60 2.67 31
Delete 198 3.67 30 19.31 55 3.46 30
FunctionCall 40 4.10 17 16.08 46 2.48 12
Insert 1206 5.87 274 21.62 339 4.15 194
Join 3866 16.42 10080 24.79 395 14.96 8953
NativeFunctionCall 1339 5.13 157 17.16 169 3.05 113
Select 7898 4.16 206 24.28 1182 3.99 205
SelectExpression 3824 7.00 618 21.89 353 5.86 545
SetFunctionCall 324 10.24 243 14.22 81 4.98 106
UnaryExpression 1707 7.08 289 17.65 165 5.29 243
Update 882 4.89 508 18.84 109 4.40 370

As an answer, the approach is able to identify patterns
among the SQLs embedded in questions. The large number
of patterns may be beneficial for a recommendation system,
as it is more likely that it will be able to point the user to
related problems. But it might also be a problem if it points
to patterns which do not indicate error-prone usage of SQL.
Hence, we need to take a closer look at these patterns by
addressing RQ2.

RQ2: Do these constructs indicate usage of SQL that might
be error-prone, inefficient or hard to comprehend?

To answer RQ2, we manually investigated the patterns.
Namely, by sorting the list of patterns by the number of
instances, we see that the most problematic node kinds are the
joins. Just a simple inner join with two aliased tables appears
in 8,953 SO questions, and without aliases it appears in 6,231
posts. Joining tables is definitely not a bad usage of SQL, but it
is one of the first steps to constructing complex queries, which
might be harder to understand for inexperienced developers.

The pattern with the biggest number of AST nodes has
1,182 nodes and appears in 2 questions89 by the same author,

7http://perso.unamur.be/~cnagy/icsme2015-era/
8http://stackoverflow.com/questions/6847738/slow-query-with-in-operator
9http://stackoverflow.com/questions/6862743/need-to-extend-my-query



where the developer has a slow query with an IN operator
listing lots of literals. The questions were not marked as
duplicates, although they could have been, and our algorithm
identified them.
SELECT @rownum := @rownum + 1 AS rank, student_id, gpa

FROM students

Figure 5. Reoccurring pattern of using variables to solve ranking of selected
records in MySQL

There are several patterns that could be spotted by experts
as well. Figure 3 shows an example of using variables to
have a ranking value for each row. Since MySQL has no
ranking functionality this is a common way of overcoming this
drawback, but use of variables like this requires caution as “the
order of evaluation for expressions involving user variables is
undefined”10.

In general, after a manual investigation, it should not be
concluded that the patterns are error-prone. Nevertheless, some
of them may indicate incorrect usage of SQL and outliers
clearly demonstrate this. It is probably advisable to further
filter these results or to combine the technique with other
approaches, such as the analysis of the textual content.

RQ3: Can we improve the pattern detection by considering
duplicates of SO questions?

Considering only patterns where at least one question has a
duplicate, results in a set of 1,360 patterns here. This filtering
might be reasonable as we get a list of patterns which appear
among questions that were already marked as duplicates on
the site. It seems to confirm our view that these language
constructs appear in problems regularly asked by developers.

VI. RESEARCH OPPORTUNITIES

Our approach for identifying common patterns in SQL
queries of Stack Overflow posts is an initial step towards
a recommendation system and we evaluated it with this
purpose in mind, but the results already open several research
challenges and opportunities.

Among others, the current result set of patterns remains
too large to expose general error-patterns, such as the SQL
AntiPatterns of Karwin [17]. However, our parsing and match-
ing algorithms constitute a sound basis in this direction.
Extending our approach with ranking heuristics for instance
might provide a list of error-prone patterns that could then be
sorted into categories by SQL experts.

Other studies have tried to model how questions and
answers are accepted on SO and how developers vote on
questions. Our pattern detection technique could also be used
to support such a model by identifying similarities among
upvoted/downvoted posts or among accepted/unaccepted an-
swers. What is more, it could pinpoint duplicated questions if
desired.

Also, currently we just analyze the code fragments of the
questions. Combining this with the analysis of the textual
content (both in the questions and in the answers) would open
up many other possibilities.

10https://dev.mysql.com/doc/refman/5.7/en/user-variables.html

VII. CONCLUSIONS
The huge knowledge base of Stack Overflow contains

similar questions that address the same issues and not just
among those questions that were marked as duplicates. Some
of these similarities can be found manually. E.g., one can
search on SO for the problem in Figure 1 as ‘"NOT IN"
optimize [mysql]’ and one will get over 200 posts,
while the ineffective use of subqueries with NOT IN can be
usually optimized with the proper use of a join or with the
‘exists strategy’11.

Our initial results indicate that our automatic technique for
analyzing the SQL statements of the code blocks in questions
really can identify patterns, and these patterns may be helpful
for recommendation systems. We note, however, that to limit
the analysis to just the code structure might produce noise, so
a combined approach where the textual content is taken into
account is advisable here.

REFERENCES

[1] A. Barua, S. Thomas, and A. Hassan, “What are developers talking
about? An analysis of topics and trends in Stack Overflow,” Empirical
Software Engineering, vol. 19, no. 3, pp. 619–654, 2014.

[2] M. Linares-Vasquez, B. Dit, and D. Poshyvanyk, “An exploratory
analysis of mobile development issues using Stack Overflow,” in Proc.
of MSR 2013, May 2013, pp. 93–96.

[3] L. Ponzanelli, A. Mocci, and M. Lanza, “StORMeD: Stack Overflow
Ready Made Data,” in Proc. of MSR 2015. ACM, 2015.

[4] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Seahawk: Stack Overflow
in the IDE,” in Proc. of ICSE 2013. IEEE, 2013, pp. 1295–1298.

[5] S. Beyer and M. Pinzger, “A manual categorization of Android app
development issues on Stack Overflow,” in Proc. of ICSME 2014, Sept
2014, pp. 531–535.

[6] S. Thummalapenta and T. Xie, “Alattin: Mining alternative patterns for
defect detection,” Automated Software Engg., vol. 18, no. 3-4, pp. 293–
323, Dec. 2011.

[7] B. Livshits and T. Zimmermann, “Dynamine: Finding common error
patterns by mining software revision histories,” SIGSOFT Softw. Eng.
Notes, vol. 30, no. 5, pp. 296–305, Sep. 2005.

[8] Y. Lamba, M. Khattar, and A. Sureka, “Pravaaha: Mining Android
applications for discovering API call usage patterns and trends,” in Proc.
of the 8th India Software Engineering Conference (ISEC2015). ACM,
2015, pp. 10–19.

[9] T. Xie and J. Pei, “MAPO: Mining API usages from open source
repositories,” in Proc. of MSR 2006. ACM, 2006, pp. 54–57.

[10] H. Kagdi, M. L. Collard, and J. I. Maletic, “An approach to mining call-
usage patternswith syntactic context,” in Proc. of the 22nd IEEE/ACM
Int’l Conf. on Automated Software Engineering (ASE2007). ACM,
2007, pp. 457–460.

[11] M. Bruch, T. Schäfer, and M. Mezini, “On evaluating recommender
systems for API usages,” in Proc. of RSSE 2008. ACM, 2008, pp.
16–20.

[12] J. Cordeiro, B. Antunes, and P. Gomes, “Context-based recommendation
to support problem solving in software development,” in Proc. of RSSE
2012. IEEE, 2012, pp. 85–89.

[13] S. Khatoon, G. Li, and A. Mahmood, “Comparison and evaluation of
source code mining tools and techniques: A qualitative approach,” Intell.
Data Anal., vol. 17, no. 3, pp. 459–484, May 2013.

[14] A. Bacchelli, L. Ponzanelli, and M. Lanza, “Harnessing Stack Overflow
for the IDE,” in Proc. of RSSE 2012. IEEE, 2012, pp. 26–30.

[15] C. Nagy, L. Meurice, and A. Cleve, “Where was this SQL query
executed? A static concept location approach,” in Proc. of SANER 2015,
March 2015, pp. 580–584.

[16] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Proc. of ICSM 1998. IEEE
Comp. Soc., 1998, pp. 368–377.

[17] B. Karwin, SQL Antipatterns: Avoiding the Pitfalls of Database Pro-
gramming, 1st ed. Pragmatic Bookshelf, 2010.

11https://dev.mysql.com/doc/refman/5.6/en/subquery-optimization.html


