
Detecting and Preventing Program Inconsistencies
Under Database Schema Evolution

Loup Meurice
PReCISE Research Center

University of Namur, Belgium
loup.meurice@unamur.be

Csaba Nagy
PReCISE Research Center

University of Namur, Belgium
ncsaba@inf.u-szeged.hu

Anthony Cleve
PReCISE Research Center

University of Namur, Belgium
anthony.cleve@unamur.be

Abstract—Nowadays, data-intensive applications tend to access
their underlying database in an increasingly dynamic way. The
queries that they send to the database server are usually built
at runtime, through String concatenation, or Object-Relational-
Mapping (ORM) frameworks. This level of dynamicity signifi-
cantly complicates the task of adapting application programs to
database schema changes. Failing to correctly adapt programs to
an evolving database schema results in program inconsistencies,
which in turn may cause program failures. In this paper, we
present a tool-supported approach, that allows developers to (1)
analyze how the source code and database schema co-evolved
in the past and (2) simulate a database schema change and
automatically determine the set of source code locations that
would be impacted by this change. Developers are then provided
with recommendations about what they should modify at those
source code locations in order to avoid inconsistencies. The
approach has been designed to deal with Java systems that use
dynamic data access frameworks such as JDBC, Hibernate and
JPA. We motivate and evaluate the proposed approach, based on
three real-life systems of different size and nature.

I. INTRODUCTION

Maintaining and evolving large software systems is be-
coming increasingly complex in the case of data-intensive
software systems. These systems manipulate a huge amount
of data usually stored in a relational database, by means of
possibly complex and dynamic interactions between the appli-
cation programs and the database. When the database schema
evolves, developers often need to adapt the source code of the
applications that accesses the changed schema elements. This
adaptation process is usually achieved manually.

Furthermore, nowadays, a large variety of frameworks and
libraries can be used to access the database. In particular,
Object-relational mapping (ORM) technologies provide a high
level of abstraction upon a relational database that allows
developers to use the programming language they are comfort-
able with instead of using SQL statements and stored proce-
dures. As a consequence, the interactions between the program
source code and the database may become more dynamic, and
thus more complex to understand. In this context, manually
recovering the database access locations in the source code
and precisely identifying the database elements accessed at
those locations may prove complicated due to higher levels
of abstraction and dynamicity. Thus, assessing the impact of
a database schema change on the source code is becoming
increasingly complex and error-prone for developers.

This paper addresses this particular problem. It presents
a tool-supported approach to detect and prevent program
inconsistencies under database schema changes. The approach
analyzes the evolution history of the system in order to identify
program inconsistencies due to past database schema changes.
By means of a what-if analysis, our approach also allows
developers to simulate future database schema modifications
and to determine how such modifications would affect the
application code. In order to ensure that the programs consis-
tency is preserved under those schema changes, our approach
makes recommendations to developers about where and how
they should propagate the schema changes to the source code.

The remainder of this paper is structured as follows. Sec-
tion II presents different Java database access technologies and
elaborates on the difficulty to maintain a system in presence
of such (possibly co-existing) technologies. In Section III, we
focus on the history analysis – and we motivate the need
for a what-if analysis approach – by analyzing how database
schemas and programs co-evolved in three large open-source
Java systems. We present our what-if analysis approach in
Section IV. We then evaluate the accuracy of our approach
by applying it to those three systems in Section IV-B. In Sec-
tion V, we discuss the current limitations of our approach. A
related work discussion is given in Section VI. In Section VII
we conclude the paper and anticipate future directions.

II. JAVA DATABASE ACCESS TECHNOLOGIES

Fig. 1. Overview of the interaction between source code and relational
database.

This paper focuses on the analysis of large Java systems.
The choice for Java is because it is the most popular program-
ming language today according to different sources such as
the TIOBE Programming Community index [1]. In addition
to this, a large-scale empirical analysis, carried out in [7],

revealed that a wide range of frameworks and APIs are used by
Java projects to access relational databases. These technologies
operate on different levels of abstraction. For example, a
developer can simply choose to embed character strings that
represent SQL statements in the source code. The SQL queries
are sent to the database through a connector such as JDBC,
which provides a low abstraction level of SQL-based database
access. Interaction with the database can also be achieved
using an ORM library. Such a library offers a higher level
of abstraction based on the mapping defined between Java
classes and database tables. Figure 1 illustrates such a multi-
technological architecture. Our approach currently focuses on
three of the most popular Java technologies (according to [7]),
namely JDBC, Hibernate, and JPA. Below we briefly describe
each of them together with their different database access
mechanisms.

a) JDBC: The JDBC API is the industry standard
for database-independent connectivity between the Java
programming language and relational databases. It pro-
vides a call-level API for SQL-based database access,
and offers developers a set of methods for querying the
database, for instance, Statement.execute(String),
PreparedStatSement.executeQuery(String), or
Statement.executeUpdate(String). Figure 2 de-
picts a code fragment using JDBC to execute a SQL query.

1 S t r i n g s q l = ” s e l e c t * from AppCustomers where i d = ? ” ;
2 P r e p a r e d S t a t e m e n t s t = con . p r e p a r e S t a t e m e n t (s q l) ;
3 s t . s e t I n t (1 , c u s t i d) ;
4 R e s u l t S e t r s = s t . e x e c u t e Q u e r y () ;

Fig. 2. Example of the execution of a SQL query (line 4) using JDBC.

b) Hibernate ORM: Hibernate is an object-relational
mapping library for Java, providing a framework for mapping
an object-oriented domain model to a traditional relational
database. Its primary feature is to map Java classes to database
tables (and Java data types to SQL data types). Hibernate pro-
vides also an SQL inspired language called Hibernate Query
Language (HQL) which allows to write SQL-like queries
using the mappings defined before. In addition, Hibernate also
provides a way to perform CRUD operations (Create, Read,
Update, and Delete) on the instances of the mapped entity
classes. Figure 3 shows an example of Hibernate code.

1 p u b l i c L i s t<Customer> f i n d A l l C u s t o m e r s () {
2 re turn e x e c u t e Q u e r y (” s e l e c t c from Customer c ”) ;
3 }
4 p u b l i c L i s t e x e c u t e Q u e r y (S t r i n g h q l){
5 re turn s e s s i o n . c r e a t e Q u e r y (h q l) . l i s t () ;
6 }
7 p u b l i c Customer f i n d C u s t o m e r (I n t e g e r i d){
8 re turn (Customer) s e s s i o n . g e t (Customer . c l a s s , i d) ;
9 }

Fig. 3. Example of the execution of a HQL query (line 5) and a CRUD
operation (line 8).

c) Java Persistence API: JPA is a Java API specification
to describe the management of relational data in applications.

Just like Hibernate, JPA provides a higher level of abstraction
based on the mapping between Java classes and database tables
permitting operations on objects, attributes and relationships
instead of tables and columns. It provides developers with
several ways to access the database. One of them is the Java
Persistence Query Language (JPQL), a platform-independent
object-oriented query language which is defined as part of the
JPA API specification. JPQL is used to make queries against
entities stored in a relational database. Similarly to HQL, it
is inspired by SQL, but operates on JPA entity objects rather
than directly on database tables. JPA also provides a way to
perform CRUD operations on the instances of mapped entity
classes. Figure 4 shows an example of JPA code.

1 p u b l i c Customer ge tCus tomerByOrder (Order o r d e r){
2 I n t e g e r c u s t i d = o r d e r . g e t C u s t o m e r I d () ;
3 S t r i n g j p q l = ”SELECT c FROM Customer c WHERE c . c u s t I d

= : i d ” ;
4 re turn (Customer) e n t i t y M g r . c r e a t e Q u e r y (j p q l) .

s e t P a r a m e t e r (” i d ” , c u s t i d) . g e t S i n g l e R e s u l t () ;
5 }
6 p u b l i c vo id s a v e O r d e r (Order o r d e r){
7 e n t i t y M g r . g e t T r a n s a c t i o n () . b e g i n () ;
8 e n t i t y M g r . p e r s i s t (o r d e r) ;
9 e n t i t y M g r . g e t T r a n s a c t i o n () . commit () ;

10 e n t i t y M g r . c l o s e () ;
11 }

Fig. 4. Example of the execution of a JPQL query (line 4) and a CRUD
operation (line 8).

The use of an ORM bringing a higher level of abstraction
or the co-existence of several database access technologies in
the same Java system may cause some difficulties to maintain
the source code. In particular, when developers apply some
changes to the database schema, adapting the source code
to those changes may be a complex task due to the system
heterogeneity and/or the (implicit) mapping between the Java
code elements and the database schema elements.

III. HISTORY ANALYSIS FOR INCONSISTENCY DETECTION

In this section, we present the motivation of our approach
through analyzing the past of large systems and in particu-
lar, the behavior of developers when adapting programs to
database schema changes. We study how source code and
database schema co-evolve to estimate the related effort and
difficulties arising when manually adapting the source code
to database schema changes. This history analysis will help
developers to understand how source code and database co-
evolve over time. Moreover, analyzing the co-evolution history
may help developers to detect program inconsistencies due
to awkward past database schema changes which were not
correctly propagated to the code, and to understand how the
system has come thus far. By this exploratory analysis, we
aim to establish the necessity and the potential benefit of a
tool-supported approach helping developers to achieve future
database-program co-evolution tasks.

For achieving this, we will analyze the history of three large
real-life systems and in particular how developers adapted
the source code to database schema changes. We decided to

target 4 types of database schema changes: deleting a table,
renaming a table, deleting a column and renaming a column.
We selected those types of changes since (1) they belong to the
categories of changes observed in practice by several authors
[3], [4], [15], [26], [29], and (2) because those types of changes
could potentially break the program source code. Adding a
new table, or adding a new index, for instance, while also
frequently used in practice [4], do not have an immediate
impact on program source code. The four types of changes
we consider may potentially make existing program queries
fail, in case the source code is not properly adapted.

A. Subject Systems

We considered three open-source Java systems of signifi-
cant size: OpenMRS, Broadleaf Commerce and OSCAR. We
selected those three systems because they have all a significant
history and code size, and use different database technologies.
OpenMRS (www.openmrs.org) is a collaborative open-source
project to develop software to support the delivery of health-
care in developing countries (mainly in Africa). It was con-
ceived as a general-purpose EMR system that could support
the full range of medical treatments. It has been developed
since 2006. OpenMRS uses a MySQL database accessed via
Hibernate and dynamic SQL (JDBC).
Broadleaf Commerce (www.broadleafcommerce.org) is an
open-source, e-commerce framework written in Java on top
of the Spring framework. It facilitates the development of
enterprise-class, commerce-driven sites by providing a robust
data model, services, and specialized tooling that take care of
most of the 'heavy lifting' work. Broadleaf has been developed
since 2008. It uses a relational database accessed via JPA.
OSCAR (www.oscar-emr.com) is an open-source ERM infor-
mation system that is widely used in the healthcare industry
in Canada. Its primary purpose is to maintain electronic
patient records and interfaces of a variety of other information
systems used in the healthcare industry. OSCAR has been
developed since 2002. OSCAR combines different ways to
access the database like JDBC, Hibernate and JPA. Table I
gives some characteristics of OpenMRS, Broadleaf Commerce
and OSCAR.

TABLE I
SIZE METRICS OF THE SYSTEMS - CREATION DATE, NUMBER OF VERSIONS

COMMITTED IN THE VERSIONING REPOSITORY, NUMBER OF CODE LINES
AND DATABASE SCHEMA SIZE.

System Start Date Versions KLOC Tables Columns

OpenMRS 05/2006 > 9100 > 300 88 951
Broadleaf 12/2008 > 7700 > 250 179 965
OSCAR 11/2002 > 21000 > 2000 512 15680

B. Historical Dataset Extraction

For each of the three systems, we extracted their corre-
sponding historical dataset. The historical dataset is the result
of a process exploiting the system’s history, i.e., the versioning
repository. To extract the historical dataset, it is not required to
exploit the whole system’s history; indeed, the user can decide

Versioning
System

Database
Schema

Source
Code

Database
Accesses

Historical
Dataset

Database Schema Extraction
(Meurice et al.)

Database Access Extraction
(Meurice et al.)

ORM Mapping Extraction

ORM
Mappings

Fig. 5. Overview of our historical dataset extracted by exploiting the
versioning system to mine the database schema, database accesses and ORM
mappings of n system versions. This process builds on our previous work.
The grey modules represent novel components.

to concentrate on a limited set of versions. The extraction of
the historical dataset consists of 3 main steps as illustrated
by Figure 5. The first one (Database Schema Extraction)
relies on an approach introduced in our previous work [15]:
for each selected version, we first extract the corresponding
database schema from the versioning repository. Then, by
comparing each database schema version, we compute the
historical database schema. Through this analysis step, we
gain knowledge of the whole database history; we know when
and how tables and columns were created/modified/deleted.

The second step (Database Access Extraction) uses the tool
support we developed in another previous work dedicated to
database access recovery in Java source code [16]. We use
this static analysis approach to automatically locate and extract
all the database accesses that use JDBC, Hibernate and JPA.
For each detected database access (and for each version), we
extract the exact code locations where the access is executed
as well as the tables/columns manipulated by the access.

The third analysis step (ORM Mapping Extraction) aims to
detect and extract all the ORM mappings defined between a
class (resp. attribute) and a table (resp. column). For achieving
this, we implemented a module aiming to parse the Java code
and the XML files in which the JPA/Hibernate mappings are
defined. For each version, we determine where and how each
table/column is mapped to the Java code elements.

The historical dataset that we obtain is organized according
to the Entity-Relationship (ER) data model depicted in Fig-
ure 6. The central element of this model is the Version of the
system. The historical dataset consists of the set of committed
versions. A version is committed by a particular developer at
a particular date and is identified by a hash value. The model
is composed of 4 main different parts:

1) The source code history (green components). This part
represents the history of the source code objects. A Java
File may contain several Classes, Methods and Attributes.
Each code object may exist in several versions and, for
each version, the object has a particular position in the code
(CodeObjectPosition) expressed as a couple of coordinates:
a begin line and column, and an end line and column.

www.openmrs.org
www.broadleafcommerce.org
www.oscar-emr.com

1-1

0-N

tableVersion

0-N

0-N

CodeObjectPosition
beginLine
beginCol
endLine
endCol

1-1 0-NprogramPath

0-N

0-Nposition
beginLine
beginCol
endLine
endCol

1-1

0-N

op

1-1

0-N

mappingVersion

0-N

0-N

mapped

1-10-N has
1-1 0-Nfile

0-N

1-1entity

0-N

0-N

columnType
minCard
maxCard
type
length
decimalNumber
defaultValue[0-1]

1-1 0-Nclass

0-N

1-1call

0-N

1-1attribute

1-1

0-Nattr

0-N

0-Naccessed

P

P

P
P

Version
hash
date
developer
id: hash

TableMapping

Table
name
id: name

Query
query
isNativeSQL

MethodCall

Method
signature
id: class.Class
signature Mapping

hib[0-1]
jpa[0-1]
exact-1:hib

jpa

File
filePath
id: filePath

DatabaseObject

DatabaseAccess
jdbc[0-1]
hib[0-1]
jpa[0-1]
exact-1:jdbc

hib
jpa

CRUDOperation
operation

ColumnMapping

Column
name
id: has.Table
name

CodeObject

Class
classPath
isInterface
id: file.File
classPath

Attribute
name
id: name

Fig. 6. ER data model of a historical dataset.

2) The database schema history (red components). The
database schema evolves over time and may have a different
set of schema objects (DatabaseObjects). Only schema ob-
jects of type Table and Column are considered in the model.
The database tables and columns may be present in several
versions. Depending on the version, a column may have a
different type (columnType).

3) The ORM mapping history (grey components). By means
of an ORM (e.g., Hibernate/JPA), developers can define a
Mapping between an entity class and a table (TableMapping)
or between an attribute and a column (ColumnMapping). An
ORM mapping may exist in several versions.

4) The database access history (blue components). This
part represents the history of the database accesses, i.e.,
of the source code locations that provide an access to the
database. Those database accesses (DatabaseAccess) use a
particular technology (e.g., JDBC, Hibernate or JPA) to query
the database and are located at a particular position in the
source code. Moreover, the creation and the execution of a
database access are not always performed at the same source
code location but can be achieved through successive calls to
several methods. Therefore the program path (programPath)
of each database access is also represented. Such a program
path is the minimal set of method calls (MethodCall) needed
to create and execute a database access. We represent two
different kinds of accesses: Query and CRUDOperation.
While the query (e.g., SQL, HQL, JPQL) is embedded in the
code and allows a direct access in the form of a query string, a
CRUD operation is an operation performed on the instances of
the mapped entity classes. For each database access, the set of

accessed database objects is recorded. A database access may,
in turn, exist in several versions.

Let us illustrate those notions using Figure 3, that shows
a sample of Java code accessing the database by means
of Hibernate in a given version of the system. In that
example, one can identify the presence of two database
accesses: line 8 retrieves the customer corresponding to a
given id, whereas line 2 executes an HQL query selecting
all the customers recorded in the system. The first access
makes use of Customer, a mapped entity Class located in
File /src/pojo/Customer.java, to query the database.
Customer is mapped (Mapping) to the AppCustomers
Table. Line 8 is a Hibernate DatabaseAccess and more
precisely a CRUDOperation (of type Read). The Program-
Path of the read access has a length of 1 and is a Method-
Call to findCustomer Method at line 8 (position). The
second database access is an HQL Query accessing the
AppCustomers Table and has a ProgramPath of length
2: a MethodCall to the findAllCustomers Method at
line 2 and a second call to the executeQuery Method at
line 5.

For each of the three systems, we thus extracted the corre-
sponding historical dataset from the respective version control
repositories. First, we picked the respective initial commits
and then we went on through the next versions and selected
those that were at least 15 days far from the last selected
version and contained several hundreds of modified lines. As
a result, we have a snapshot of the state of each system every
two weeks of its development. We respectively selected 164,
118 and 242 versions for OpenMRS, Broadleaf and OSCAR,

and preprocessed their respective historical dataset including
all the selected versions. Each dataset follows the data model
of Figure 6.

C. Analyzing the co-evolution history of three large systems

Analyzing how database schemas and programs co-evolve in
Broadleaf, OpenMRS and OSCAR will help us to understand
how they co-evolve over time and to establish the usefulness
and the potential benefit of our what-if analysis approach
which can support developers to achieve co-evolution tasks
(presented in Section IV). For that, we analyze the historical
datasets of the three systems in order to evaluate the effort
required in the past (without our what-if analysis approach) for
adapting the applications source code in reaction to database
schema changes. As previously explained, we focused on 4
types of database schema changes performed in the systems
history, namely deleting a table, renaming a table, deleting a
column and renaming a column. We rely below on several
co-evolution metrics to estimate the time and effort required
to propagate database schema changes to the programs source
code.

1) Deleting a table/column: For evaluating the impact of a
table deletion (TD) and a column deletion (CD) on the source
code, we analyzed the database schema history of each system
to identify the set of tables and columns which have been
deleted. We only considered the tables/columns which have
been permanently removed from the schema; some deletions
may sometimes be done by distraction and are directly recov-
ered once identified. Tables II and III summarize the different
measures we use for evaluating the co-evolution effort needed
to deal with a table and column deletion at the source code
level, respectively. The first column of both tables expresses
the number of table/column deletions detected in each system.
The second represents the number of deletions which are
still currently unsolved, i.e., for which there still exist some
accesses to the deleted table/column in the source code or for
which an ORM mapping linking an entity class/attribute to
the deleted table/column still exists. The third column shows
the geometric average time (expressed in number of versions)
needed to adapt the code (no more ORM mapping or access
to the table/column). We use the geometric average in order
to avoid to be affected by extreme values. The third column
also includes the longest/maximal period of time to solve a
table/column deletion in the source code (also expressed in
number of versions). The minimal number of versions to solve
a table/column deletion in the best case is one version: thus
removing the table/column from the schema counts as one.
This arbitrary choice is justified by the use of the geometric
average, for which values must be different from 0. The last
column indicates, for the tables/columns that were accessed
before their deletion, the average and maximum numbers of
related source code locations, i.e., the number of accesses or
mappings that would potentially be impacted as a propagation
of each table/column deletion.

The three systems present quite different figures. Deleting
a table or a column in OpenMRS and OSCAR seems to be

TABLE II
CO-EVOLUTION METRICS RELATED TO TABLE DELETIONS.

System #Table #Unsolved Propagation Time #Accesses
Deletions avg∼max avg∼max

OpenMRS 11 1 1.6 ∼ 134 7.5 ∼ 9
Broadleaf 86 0 1.1 ∼ 6 2.8 ∼ 14
OSCAR 33 5 1.4 ∼ 90 2.9 ∼ 9

TABLE III
CO-EVOLUTION METRICS RELATED TO COLUMN DELETIONS.

System #Column #Unsolved Propagation Time #Accesses
Deletions avg∼max avg∼max

OpenMRS 32 4 1.6 ∼ 134 2.2 ∼ 4
Broadleaf 154 0 1.1 ∼ 2 4 ∼ 15
OSCAR 170 0 1.1 ∼ 24 1.6 ∼ 132

costly and tedious. By observing the database schema, one can
notice developers rarely remove database objects. The general
trend suggests that developers add new schema objects (much)
more often than they remove existing objects. However, a
table/column deletion does not come at no cost in terms of
program adaptation.

For OpenMRS, if the deleted table was accessed, up to
9 source code locations could be impacted, 7.5 locations on
average. For a deleted column, up to 4 code locations could be
impacted, 2.2 locations on average. Moreover, some deletions
remain unsolved and there still exist some code locations
accessing the deleted table/column. For instance, the deletion
of the FORM_RESOURCE table has never been propagated to
the source code up to now. The deletion happened in October
2011 but the developers omitted to delete an old Hibernate
mapping still currently existing1. Through this older mapping,
OpenMRS still offers an interface to access the removed table.
We observed the same trend for some column deletions too2.

Moreover, by analyzing the geometric average and maximal
time necessary to solve a table/column deletion, we observe
that removing a table/column is far from being trivial; on
average, almost 2 versions are needed (1 version = 15 days),
while the most costly deletion took 134 versions3. Another in-
teresting point in OpenMRS is that it seems that all developers
are not always aware of a table/column deletion. We found
several deletions which had not been considered by some
developers who have continued to create new accesses to the
removed tables/columns. Those accesses have been dropped
only after 76 versions on average and some of them are still
present in the source code at the time of writing this paper.

OSCAR developers also seem to face some difficulties with
table/column deletions. Some table deletions have never been
propagated to the source code up to now. There still exist
some ORM mappings and code locations allowing developers
to access the deleted table. While the average time to propagate

1You can find in [32] the proof of the existence of that mapping in April
2015. The database schema of that version can be found in [33].

2The VOIDED column has been removed from the USERS table in
September 2011 and is still currently accessed [36] via a JDBC query.

3The REPORT table and all its columns were deleted in May 2008.
However, OpenMRS still accessed it until August 2010 [34] and defined a
Hibernate mapping until April 2014 [35].

https://github.com/openmrs/openmrs-core/blob/1372f1ba11c612f7497ec53864229e3db792b83f/api/src/main/resources/org/openmrs/api/db/hibernate/FormResource.hbm.xml#L19
https://github.com/openmrs/openmrs-core/blob/1372f1ba11c612f7497ec53864229e3db792b83f/api/src/main/resources/liquibase-schema-only.xml
https://github.com/openmrs/openmrs-core/blob/1372f1ba11c612f7497ec53864229e3db792b83f/web/src/main/java/org/openmrs/web/filter/update/UpdateFilter.java#L372
https://github.com/openmrs/openmrs-core/blob/f0e8c166e16242924c82651f31e8826b14019b2c/src/api/org/openmrs/api/db/hibernate/HibernateAdministrationDAO.java#L94
https://github.com/openmrs/openmrs-core/blob/c7a8971ff92a125d63a94c872cce4fe39e6e6f9b/api/src/main/resources/org/openmrs/reporting/db/hibernate/Report.hbm.xml#L7

the table/column deletions seems quite short (1,4 and 1,1
version), the maximal values (90 and 24 versions) illustrate
again that the propagation process is far from being trivial.
Furthermore, we also found 6 table deletions which had not
been considered by some developers who have continued to
create new accesses to the removed tables. Those accesses
have been dropped only after 34 versions on average.

Broadleaf developers seem to better propagate table/column
deletions than OpenMRS and OSCAR developers. They have
had more deletions to achieve, but with less impacted source
locations on average. On average, it only took them 1.1 version
to adapt the source code to a deletion. However, by observing
the maximal values, one notices that the propagation process
is not always straightforward. In contrast to OpenMRS and
OSCAR, all developers seem to be aware of each deletion
since we did not observe the creation of post-mortem accesses.

2) Renaming a table/column: For evaluating the impact of
a table renaming (TR) and a column renaming (CR), we only
focused on those tables/columns which have been renamed on
purpose. Tables IV and V shows the co-evolution metrics we
used for each system (respectively for the table and column
renamings). The first column shows the number of renamed
tables/columns in each system. Like for the deletions, we cal-
culated the average and maximal number of versions necessary
for the renamed table/column to be solved, i.e., there is no
more access and ORM mapping to the renamed table/column
(columns 2 and 3). During a table/column renaming phase,
the developers try to co-evolve the code in order to adapt the
outdated database accesses to the new table/column name.

TABLE IV
CO-EVOLUTION METRICS RELATED TO TABLE RENAMINGS.

System Renaming Solution Time #Accesses
avg∼max avg∼max

OpenMRS 1 1 ∼ 1 0 ∼ 0
Broadleaf 14 2.6 ∼ 6 3.3 ∼ 8
OSCAR 7 1.9 ∼ 89 1.6 ∼ 132

TABLE V
CO-EVOLUTION METRICS RELATED TO COLUMN RENAMINGS.

System Renaming Solution Time #Accesses
avg∼max avg∼max

OpenMRS 10 1 ∼ 1 0 ∼ 0
Broadleaf 16 1.1 ∼ 2 1.7 ∼ 3
OSCAR 321 1.2 ∼ 38 1.7 ∼ 389

As a matter of fact, OpenMRS does not constitute a suitable
system to study the impact of a table/column renaming on
the code. Indeed, only one table and ten columns have been
renamed in the past and have been immediately solved. The
renamed table/columns were not part of a Hibernate mapping
and were never accessed in the source code. The programs
started to access it a few versions after its renaming.

In OSCAR, 7 tables have been renamed, with an average of
1.6 impacted locations per table renaming (despite one extreme

value of 132 locations). However, OSCAR developers have
considerably more renamed the columns, with 321 column
renamings. On average, 1.7 locations are impacted by a
column renaming, despite an extreme value of 389 locations.
However, one can notice that renaming is a tedious and costly
refactoring that may have unintentional impact on the code
for a longer period; some table and column renamings took
several years to be fully propagated to the code4.

In Broadleaf, 14 tables have been renamed, which signif-
icantly impacted the code (up to 8 impacted locations per
table renaming). This impact is mainly due to the developers’
strategy to rename the Java entity class mapped to the renamed
table in order to better fit with the new name. Therefore,
changing the current JPA annotation is not enough to deal
with a table renaming and modifying each access is thus
necessary. On average, 2.6 versions are required to remove
the JPA mapping/accesses to the renamed tables. Furthermore
the most costly renaming took 6 versions to be propagated to
the source code.
Broadleaf’s developers also rename active columns, as shown
by the number of accesses to the renamed columns. Most
columns were accessed before their renaming, and the propa-
gation of the renamings to the code was immediate. However,
such a quick reaction can be easily explained. All related
accesses rely on JPA, therefore editing the JPA annotation is
sufficient to propagate the column renaming5.

In summary, we proposed a first approach allowing us
to analyze the co-evolution history of OpenMRS, Broadleaf
and OSCAR. We made several interesting observations; we
noticed that source code adaptation is not always a trivial
task. We observed that a schema change may require several
months before the source code is adapted and sometimes, those
schema changes cause outdated database accesses which are
never adapted and which could break the code. Even worse, in
some cases, developers keep creating new accesses to removed
or renamed schema objects. It allowed us to point out query
fails related to awkward past changes.

IV. WHAT-IF ANALYSIS FOR CONSISTENCY
PRESERVATION

Through the history analysis of those systems, we moti-
vated the need for an automated what-if analysis approach
helping developers to simulate hypothetical database schema
evolutions and determine their impact on the source code. The
objectives of our what-if analysis approach are (1) to facilitate
database-program co-evolution by determining the source code
locations impacted by a database schema change and (2) to
ensure that the system consistency is preserved over time under
(successive) schema changes.

4The FORMCOUNSELLORASSESSMENT table was renamed in December
2006 but was still accessed in September 2010 [39].

5We illustrate an example of a JPA annotation modification to deal
with the renaming of a column. The DATE column has been renamed as
DATE_RECORDED in April 2013. You can find the JPA annotation before
[37] and after [38] the renaming.

https://github.com/scoophealth/oscar/blob/d1957a102bcf83b5729530d278153aca77b7782f/web/WEB-INF/classes/src/oscar/form/FrmCounsellorAssessmentRecord.java#L65
https://github.com/BroadleafCommerce/BroadleafCommerce/blob/2eb5cdfc0e57b0b957b04a5473fc0d0d47da375b/core/broadleaf-framework/src/main/java/org/broadleafcommerce/core/payment/domain/PaymentInfoDetailImpl.java#L66
https://github.com/BroadleafCommerce/BroadleafCommerce/blob/504875e7dfc135376934d0933dab05557d8d8f93/core/broadleaf-framework/src/main/java/org/broadleafcommerce/core/payment/domain/PaymentInfoDetailImpl.java#L77

input

input

Recommendations

output

Hypothetical Database
Schema Change

Source
Code

Database
Schema

What-If Analysis

Database
Elements

Database
Accesses

ORM
Mappings

Dataset

ORM Mappings
+

Database Accesses
Extraction

Fig. 7. Overview of our what-if analysis approach.

A. Approach

Our approach allows developers to simulate a database
schema change and provides them with related recommen-
dations on how to adapt the application’s source code to that
change. It tackles the issue of adapting the source code when
the database schema has been modified. The objective of our
approach is to propose an answer to the question ”where and
how should I change the code if I apply this particular database
schema change?”.

Figure 7 summarizes our approach. It takes 2 inputs, namely
(1) a given version of the system code (e.g., the current
system’s version), and (2) a hypothetical database schema
change (e.g., I wish to delete table t.). We compute the
former in order to obtain a dataset with a structure close to
the ER model (Figure 6), including information related to
the database accesses and ORM mappings but without the
notion of versions (since the process is applied to a single
version). The result of our what-if analysis approach is a list of
recommendations made to developers for adapting the code to
that change (e.g., You need to remove the Hibernate mapping
defined between table t and Java class c at this location.). Each
recommendation invites the developer to modify a particular
source code location which would be impacted by the future
database schema change.

Let o be the database object to modify in the schema, Ao,
the set of code locations accessing o and Mo, the set of ORM
mappings referencing o. Ao is defined as Ao = Ae

o ∪ Ai
o;

where Ae
o and Ai

o represent the sets of code locations that,
respectively, explicitly and implicitly6 access o.

Once all those sets are computed, we know the code
locations potentially impacted by a future modification of o.
Depending on the type of the operation to perform on o, the
impact on the code is different. This is why we propose a
strategy to deal with 5 types of database schema changes:
deleting/renaming a table, deleting/renaming a column and
changing the type of a column. We selected those types of
changes since (1) they belong to the categories of changes
observed in practice by several authors [3], [4], [15], [26],
[29], and (2) because those types of changes potentially have
an impact on program source code. Adding a new table,

6The ID column is explicitly accessed by the following SQL query, while
all the other columns of CUSTOMER are implicitly accessed: select *
from CUSTOMER where ID = 0.

or adding a new index, for instance, while also frequently
used in practice [4], do not have an immediate impact on
program source code. The 5 types of changes we consider
may potentially make existing program queries fail, in case
the source code is not properly adapted.

Each strategy is summarized in Table VII. A strategy is
composed of recommendations or warnings provided to the
user. A recommendation indicates a mandatory modification to
apply to a particular source code location; otherwise it would
be broken by the database schema change. A warning invites
the developer to pay attention to a particular source code
location which might require a modification; the developer
should thus manually inspect the detected code location to
verify if any modifications are actually required.

Let us illustrate the use of our strategy table through a
concrete example. The developers of a system foresee a
future database schema change but first they want to estimate
the cost of that change by assessing the impact on the code
with our what-if analysis approach. They wish to rename
the CUST table (as CUSTOMER) as well as alter the
type of the POSTAL CODE column (integer to string).
Figure 8 depicts a piece of the source code before (left)
and after (right) applying the recommendations made by
our approach. The latter automatically computes ACUST ,
MCUST , APOSTAL CODE and MPOSTAL CODE (see
Table VI). The developers cope with two database schema
changes:

1) Renaming the CUST table: (1) the JPA annotation (line
2) is renamed (ID = III) and (2) the SQL query (line 20) is
adapted to the new table name (ID = IV)

2) Changing the type of the POSTAL CODE column:
(1) the JPA attribute (line 9) type is modified (ID = VI), (2)
the equality condition c.postalCode = code of the SQL
query (line 27) is modified by the adding of apostrophes to fit
with the new string type (ID = VII) and finally, by inspecting
the code locations (recommended by our approach), the
developers could have spotted the affected locations (lines
15, 16, 22 and 26) and corrected them (ID = V).

B. Evaluation

In this section, we assess the accuracy of our what-if
analysis approach. This evaluation aims to measure (1) correct

TABLE VI
THE CODE LOCATIONS ACCESSING THE CUST TABLE AND THE POSTAL_CODE COLUMN DETECTED BY OUR WHAT-IF ANALYSIS APPROACH.

o = CUST o = POSTAL CODE
Mo • [L2]@Table(name= "CUST") • [L9]@Column(name= "POSTAL_CODE")

Ae
o • [L20]SELECT * FROM cust WHERE customer_id = id • [L27]from Customer c where c.postalCode = code

• [L27]from Customer c where c.postalCode = code

Ai
o • [L20]SELECT * FROM cust WHERE customer_id = id

TABLE VII
STRATEGIES (RECOMMENDATIONS AND WARNINGS) FOR FACING A DATABASE SCHEMA CHANGE.

Operation Strategy Type ID
Deleting table • Deleting all the ORM mappings of Mo Recommendation I

• Modifying/Deleting all the accesses of Ae
o Recommendation II

Renaming table • Modifying the table in each mapping of Mo. For instance, a JPA mapping will be modified by changing the table
name in the annotation.

Recommendation III

• Modifying the SQL queries of Ae
o. Indeed, while the Hibernate/JPA accesses are not impacted, the SQL queries

have to be adapted to the new table name.
Recommendation IV

Deleting column • Deleting all the ORM mappings of Mo Recommendation I
• Modifying/Deleting all the explicit accesses of Ae

o. Recommendation II
• Inspecting the code locations of Ae

o and Ai
o. The value of an accessed column may be explicitly used in the code.

In such a case, our what-if analysis approach proposes the developer to further inspect the code locations accessing
o to ensure that the value of the deleted column is not used later in the code.

Warning V

Renaming column • Modifying the column in each mapping of Mo Recommendation III
• Modifying all the SQL queries of Ae

o Recommendation IV
• Inspecting the code locations executing an access of Ae

o and Ai
o. The approach proposes the developer to further

inspect the code locations accessing o to ensure that the value of the renamed column is not used later in the code.
Warning V

Changing column type • Changing the type of all mapped attributes in Mo Warning VI
• Inspecting the accesses of Ae

o to ensure that the column value is not used in an equality condition or in an
assignment statement. If needed, modify this condition/assignment to comply with the new type.

Warning VII

• Inspecting the code locations executing an access of Ae
o and Ai

o. The approach proposed the developer to further
inspect the code locations accessing o to ensure that the value of the column, if used in the code, is stored in a
well-typed variable.

Warning V

1 @Ent i ty
2 @Table(name = ”CUST”)
3 pub l i c c l ass Customer{
4 @Id
5 @GeneratedVal ue(gener at or = ” A ddressI d ”)
6 @Column(name = ”CUSTOMER ID”)
7 p r ot ect ed Long i d ;
8

9 @Column(name = ”POSTAL CODE” , nu l l ab l e = f a l se)
10 p r ot ect ed i n t postal Code ;
11 . . .
12 }
13

14 pub l i c c l ass CustomerDAO {
15 pub l i c i n t getPostal CodeByCust I d (Long i d) {
16 i n t postal Code ;
17 . . .
18 Stat ement st = conn . cr eat eSt at ement () ;
19 Resul t Set r s = st . executeQuery (
20 ” SELECT * FROM cust WHERE customer i d=” + i d) ;
21 i f (r s . nex t ())
22 postal Code = r s . get I n t (” post al code”) ;
23 . . .
24 r et ur n postal Code ;
25 }
26 pub l i c L i st< Customer> get Post al Cust s (i n t code) {
27 St r i ng hql = ” f rom Customer c where c . postal Code = ” +

code ;
28 L i st< Customer> l i s t = sessi on . cr eat eQuer y (hql) . l i s t () ;
29 r et ur n l i s t ;
30 }
31 }

1 @Ent i ty
2 @Table(name = ”CUSTOMER”) / / ID= I I I
3 pub l i c c l ass Customer{
4 @Id
5 @GeneratedVal ue(gener at or = ” A ddressI d ”)
6 @Column(name = ”CUSTOMER ID”)
7 p r ot ect ed Long i d ;
8

9 @Column(name = ”POSTAL CODE” , nu l l ab l e = f a l se)
10 p r ot ect ed St r i ng postal Code ; / / ID=VI
11 . . .
12 }
13

14 pub l i c c l ass CustomerDAO {
15 pub l i c St r i ng / * ID=V* / getPostal CodeByCust I d (Long i d) {
16 St r i ng postal Code ; / / ID=V
17 . . .
18 Stat ement st = conn . cr eat eSt at ement () ;
19 Resul t Set r s = st . executeQuery (
20 ” SELECT * FROM customer WHERE customer i d=” + i d) ; / / ID=IV
21 i f (r s . nex t ())
22 postal Code = r s . get St r i ng (” post al code”) ; / / ID=V
23 . . .
24 r et ur n postal Code ;
25 }
26 pub l i c L i st< Customer> get Post al Cust s (/ * ID=V* / St r i ng code) {
27 St r i ng hql = ” f rom Customer c where c . postal Code = ’ ” +

code + ” ’ ” ; / / ID=V I I
28 L i st< Customer> l i s t = sessi on . cr eat eQuery (hql) . l i s t () ;
29 r et ur n l i s t ;
30 }
31 }

Fig. 8. Java code before (left) and after (right) the co-evolution with the help of our what-if analysis approach.

recommendations, (2) wrong recommendations and (3) missing
recommendations. For calculating those metrics, we rely on
the history of Broadleaf, OpenMRS and OSCAR. Among the
whole set of database schema changes that we observed in the
life of those systems (855 changes), we first selected a subset
of changes that would be sufficiently relevant to assess: we
only considered the database schema changes performed on
a database object (table/column) which was still active and
used in the applications’ code before the schema modification
(i.e., database object concerned by an ORM mapping or
accessed somewhere in the code). Moreover, we decided not
to include the column type changes in the evaluation; the
strategy defined in Table VII to deal with the column type
changes is exclusively composed of warnings and therefore,
we excluded them. By applying those selection conditions, we
obtained a subset of 323 database schema changes. We then
randomly selected 130 changes, which represent about 40%
(130/323) of all schema changes with potential impact on the
code. Table VIII shows the distribution of those changes.

TABLE VIII
DISTRIBUTION OF THE 130 SELECTED DATABASE SCHEMA CHANGES.

TR TD CR CD

Broadleaf 12 17 12 52
OpenMRS 0 2 0 5
OSCAR 5 9 7 9

Total 17 28 19 66

For each of those 130 changes, we applied our what-if
analysis approach to the system version before the schema
change and obtained a set of recommendations/warnings. We
then manually calculated the number of:

1) Correct recommendations: the recommendations which
were (and/or should have been) actually followed by the
developers after the schema change.

2) Wrong recommendations: the recommendations which
were not (and/or should not have been) actually followed by
the developers after the schema change.

3) Missing recommendations: the modifications actually
applied to the code which constitute a correct propagation
of the schema change, but were not recommended by our
approach. For detecting those missing recommendations, we
manually analyzed the code locations directly linked to the
modified database objects (e.g., the accesses, ORM mappings).

While a warning proposed by our approach represents an
advice for the developers to manually inspect if any changes
are required, it might constitute a soft warning and could be
ignored by the developers. Therefore, we do not consider an
ignored warning as a wrong recommendation. However, we
consider an actually followed warning as a correct one.

Table IX presents the results of our manual evaluation.
Out of 130 schema changes, our what-if analysis approach
proposed 204 recommendations: 99% are correct recommen-
dations, while only 1% constitute wrong recommendations.
Those wrong recommendations come from the deletions of

TABLE IX
RATES OF CORRECT, WRONG AND MISSING RECOMMENDATIONS.

TR TD CR CD Total Perc.

Correct recommendations 17 90 24 71 202 99%
Wrong recommendations 0 0 0 2 2 1%

Missing recommendations 2 0 1 3 6 5%

two columns. Actually, these columns were not removed but
moved to another table. Since our approach considered those
changes as deletions, it generated two wrong recommendations
pertaining to the deletion of the linked ORM mappings. In the
future, we expect to extend our what-if analysis in order to
deal with column move operations. Among the 130 schema
changes, only 5% of them (6/130) missed a recommendation.
Indeed, some ORM mappings are not detected by our code
analyzer and are missed in the resulting recommendations.

Replication. All our evaluation results are available via
our companion website at https://staff.info.unamur.be/lme/
QRS2016/evaluation/. In particular, the reader can inspect each
of the 130 assessed schema changes and verify the validity
of our evaluation. For each schema change, one summarizes
the recommendations made by our what-if analysis tool. Each
recommendation is systematically checked against the actual
source code modifications. Direct links to the related source
code locations before and after the propagation of the schema
changes are provided, so that the validity of our manual
classification (correct/wrong/missing) can be cross-checked.
An interactive demo of our what-if analysis approach is
also available via our companion website available at https:
//staff.info.unamur.be/lme/QRS2016/play. For recent versions
of OpenMRS, Broadleaf and OSCAR, the user can select a
database schema object and simulate a schema change opera-
tion. The website returns related recommendations, including
links to the impacted source code locations on GitHub.

V. LIMITATIONS

In this section, we discuss the current limitations of our co-
evolution history analysis and our what-if analysis approach,
some of them potentially affecting our evaluation results.

A. Database Access Extraction

In our co-evolution history analysis (Section III) and what-if
analysis (Section IV), we use the tool support we developed
in our previous work [16] to extract the database accesses
from the Java source code. With this tool support, we are able
to identify which portion of the source code accesses which
portion of the database. Unless that tool dedicated to Java
systems is compatible with JDBC, Hibernate and JPA, it also
suffers from some limitations. Indeed, the access extraction
step is a static analysis which constructs an abstract syntax
tree and uses a visitor to navigate through the different Java
nodes and expressions. By navigating through the tree, the
tool recovers all the possible string values of each detected
JBDC/Hibernate/JPA queries. However our static analyzer has
also some limitations, as discussed in [16], which may affect
our results:

https://staff.info.unamur.be/lme/QRS2016/evaluation/
https://staff.info.unamur.be/lme/QRS2016/evaluation/
https://staff.info.unamur.be/lme/QRS2016/play
https://staff.info.unamur.be/lme/QRS2016/play

1) Non-existent queries: our database access extractor is
designed to rebuild all the possible string values for the SQL
query. Thus, it considers all the possible program paths. Since
it is currently unable to resolve a boolean condition (a dynamic
analysis would be preferable), these cases generate some noise
(false positive queries). Figure 9 illustrates an example of false
positive queries from OpenMRS. Since our what-if analysis
approach is based on the recovered SQL queries, it may in
turn generate some wrong recommendations. Note that we did
not encounter this problem by evaluating the past 130 database
schema changes.

1 S t r i n g h q l = ” ” ;
2 i f (i sNameF ie ld)
3 h q l += ” s e l e c t c o n c e p t ” ;
4 h q l += ” from Concept a s c o n c e p t ” ;
5 i f (i sNameF ie ld)
6 h q l += ” where c o n c e p t . shortName = ’0 ’ ” ;
7 Query que ry = s e s s i o n . c r e a t e Q u e r y (h q l) ;
8 re turn (L i s t<Concept>) que ry . l i s t () ;

Fig. 9. Example of the execution of a HQL query (line 8) and the
extraction of false positive queries due to 2 identical boolean conditions. 4
possible HQL queries are extracted by our analyzer: (1) from Concept
as concept, (2) select concept from Concept as concept,
(3) from Concept as concept where concept.shortName =
’0’ and (4) select concept from Concept as concept where
concept.shortName = ’0’; (2) and (3) are both false positive queries.

2) Missing queries: some queries cannot be fully recov-
ered by our analyzer due to its static nature. In [16], we
discuss such a limitation and give as illustration the use of
StringBuilder/StringBuffer Java objects to create a string query
which are not dealt by our analyzer. Similarly, executed SQL
queries sometimes include input values given by the applica-
tion users. This is the case in highly dynamic applications.
Thus, the static recovery of the associated SQL queries may
be incomplete or missing.

However, despite its limitations, our static analyzer reached
good results in the evaluation conducted in [16]: we could
extract queries for 71.5%-99% of database accesses with
87.9%-100% of valid queries.

B. Deletion or Renaming?

Another limitation which might slightly affect the results of
our co-evolution history analysis is the detection of table/col-
umn renamings and deletions. When we compute the historical
database schema (first step of the historical dataset extraction
described in Section III-B), we compare successive database
schema versions. However, during the historical databaset
schema extraction of OSCAR, Broadleaf and OpenMRS, we
could not make use of SQL migration scripts between succes-
sive database versions. The unavailability of such migration
scripts makes the detection of table/column renamings more
complicated. Indeed, if table A is renamed as table B, there
is no direct way to detect it and then by default our analyzer
would consider that table A has been dropped while table
B has been created without keeping a link between both
tables. In order to mitigate this risk, we reused our automated

support for implicit renaming detection presented in [15].
This support uses linear programming (LP), a specific case of
mathematical programming allowing one to achieve the best
outcome in a given mathematical model. We obtained a list of
potential table and column renamings that we then manually
validated/rejected. However, this technique may have missed
some renamings and in our co-evolution history analysis, we
might still consider that table A was dropped and table B
was independently added. Nevertheless, we believe that this
silence could have only slightly affected the conclusions of
our historical analysis.

C. Database Schema Changes

In our what-if analysis approach, we decided to target 5
types of database schema changes: deleting a table, renaming
a table, deleting a column, renaming a column and changing
the type of a column. As explained, we focused on those
types of changes since they seem to be the database schema
changes the most likely to make existing queries fail, in
case the source code is not properly adapted. However, other
database schema changes could be considered in the future.
For instance, creating or updating a foreign key can cause
program inconsistencies if the referential integrity constraint
is not satisfied by an executed query. In the future, we
plan to extend the scope of our approach to other types
of database schema changes (adding/updating foreign keys,
merging/splitting tables, moving columns, etc.).

D. Dead Code

During the history analysis of Broadleaf, OpenMRS and
OSCAR, we observed some schema changes causing outdated
database accesses and which are never fixed; some code
locations still allow developers to access removed or renamed
schema objects. However, in our analysis, we did not system-
atically verify if such code locations actually represented dead
code or were still reachable during the execution. However, we
argue that even dead code accessing outdated schema objects
has to be cleaned/fixed to make the program consistent. In the
future, we plan to distinguish active and dead code locations
when generating recommendations.

VI. RELATED WORK

While the database schema evolution literature is very
large [22], researchers have only recently started to pay more
attention to the analysis of the co-evolution of database schema
and application code [6], [7], [11], [12], [21].

It has been already shown that the evolution history of
the source code can provide valuable data for history-based
recommenders. For instance, Ying et al. [30] and Zimmermann
et al. [31] have independently developed different approaches
that use association rule mining on CVS data to recommend
source code that is potentially relevant to a given fragment
of source code. Potential uses of the schema evolution history
were shown by Sjøberg [26] already in 1993. He studied the
schema evolution history of a large-scale medical application
and showed that even a small change to the schema may have

major consequences for the rest of the application code. Curino
et al. [4] presented a study on the structural evolution of the
Wikipedia database, with the aim to extract both a micro-
classification and a macro-classification of schema changes.
Vassiliadis et al. [29] studied the evolution of individual
database tables over time in 8 different software systems. They
also tried to determine whether the well-known Lehman’s laws
of software evolution also hold for database schema evolution.
Their results [27] show that the essence of the Lehmans laws
holds in this context, but that specific mechanics significantly
differ when it comes to schema evolution.

Some researchers have also studied the evolution of
database schema in combination with source code evolution.
Goeminne et al. [6] empirically analyzed the evolution of the
usage of SQL, Hibernate and JPA in a large and complex open
source information system implemented in Java. Interestingly,
they found that the practice of using embedded SQL is still
common today. In a more recent work [7], they carried
out a coarse-grained historical analysis of the usage of Java
relational database technologies on 3,707 open source projects.
They investigated the frequent co-occurrences of database
access technologies and observed that some combinations
of technologies appeared to complement and reinforce one
another. Their results further motivate the need for a what-if
analysis approach able to deal with multiple access technolo-
gies. Qiu et al. [21] empirically analyzed the co-evolution
of relational database schemas and code in ten open-source
database applications from various domains. They studied
specific change types inside the database schema and estimated
the impact of such changes on PHP code. Karahasanoić [11]
studied how the maintenance of application consistency can be
supported by identifying and visualizing the impact of changes
in evolving object-oriented systems, including changes orig-
inating from a database schema. However, he focused on
object-oriented databases rather than relational databases. Lin
et al. [12] investigated how application programs and database
management systems in popular open source systems (Mozilla,
Monotone) cope with database schema changes and database
format changes. They introduced the term ‘collateral’ evolu-
tion and observed that it can lead to potential problems when
the evolution of an application is separated from the evolution
of its persistent data, or from the database.

Using what-if analysis [8] for changes that occur in the
schema/structure of the database was proposed by Papaste-
fanatos et al. [18]–[20]. They presented Hecataeus, a frame-
work that allows the user to anticipate hypothetical database
schema evolution events and to examine their impact over a set
of queries and views provided as input by the user. Unlike our
approach, Hecataeus does not assess the impact at the source
code level and does not consider the presence of different
database access technologies.

Our approach is also closely related to impact analysis
approaches for database schema changes, as we identify parts
of the source code impacted by database schema modifications.
In this domain, Maule et al. [14] proposed an impact analysis
approach for schema changes. They studied a commercial

object-oriented content management system and statically an-
alyzed the impact set of relational database schema changes
on the source code. They implemented their approach for
the ADO.NET (C#) technology. Liu et al. [13] proposed an
approach to extract the attribute dependency graph out of
a database application from its source code by using static
analysis. Their purpose was to aid maintenance processes,
particularly impact analysis. They implemented their approach
for PHP-based applications. Gardikiotis and Malevris [5]
introduced a two-folded impact analysis based on slicing
techniques to identify the source code statements affected by
schema changes and the affected test suites concerning the
testing of these applications. In contrast to these approaches,
our goal is not only to calculate a complete impact set, but
to use this information to provide developers with program
adaptation recommendations. Our approach was designed for
Java and it can handle database accesses through JDBC,
Hibernate and JPA. It can also analyze heterogeneous systems,
where several of those database access technologies co-exist
within the same version.

Several previous papers identify, extract and analyze
database usage in application programs. The purpose of these
approaches ranges from error checking [9], [28], SQL fault
localization [2], to fault diagnosis [10].

Finally, recent approaches and studies have focused on the
evolution of NoSQL databases. In [24], the authors describe
a framework controlling schema evolution in NoSQL appli-
cations. Scherzinger et al. [25] present a model checking
approach to reveal scalability bottlenecks in NoSQL schemas.
Ringlstetter et al. [23] analyzed how developers evolve NoSQL
document stores by means of evolution annotations. They
discovered that those annotations are actually used for other
tasks than schema evolution.

As shown in Figure 7, this paper builds on our previous
work. We introduced DAHLIA [15], a tool to analyze and
visualize the evolution of a database schema. We used this
tool for conducting a case study on the OSCAR system [3].
Later on, we presented an approach [16] allowing developers
to automatically identify the source code locations accessing
given database tables and columns; we used that approach in
an ERA track paper [17], to locate the source code origin
of a (buggy) SQL query executed at the database side. This
technique analyzes a single version of the system, without
considering its history.

VII. CONCLUSIONS

We presented a tool-supported approach supporting devel-
opers in co-evolving databases and programs in a consistent
manner. The approach, particularly designed for data-intensive
Java systems, aims to identify inconsistencies due to database
schema changes by analyzing the system evolution history,
and to prevent inconsistencies to arise by providing developers
with change propagation recommendations.

We motivated the need for our approach by analyzing
the co-evolution history of the three open source systems.
We observed that the task of manually propagating database

schema changes to the programs source code is not always
trivial. We saw, among others, that some database schema
changes may require several versions to be fully propagated
to the source code. We could even find schema changes that
have never been (fully) propagated.

To overcome such problems to occur, we propose a what-if
analysis approach, that takes as input a given version of the
system and an hypothetical database schema change. Based
on these inputs, it gives developers recommendations on how
to propagate the input schema change to the programs. The
recommendations include the exact source code locations that
would be impacted by the schema change. The approach
is able to deal with multiple (co-existing) database access
technologies, namely JDBC, Hibernate and JPA.

We evaluated the accuracy of the returned recommenda-
tions by systematically checking them against the actual co-
evolution history of three Java open-source systems. The
results of this manual evaluation are very promising. The
what-if approach reached 99% of correct recommendations
when applied to a randomly selected, yet significant subset of
schema changes.

As future work, we intend to extend the scope of our what-
if analysis approach, by considering a larger set of database
schema changes. In particular, we target schema changes that
would require the adaptation of the program behaviour, such
as adding uniqueness or referential constraints. Second, we
plan to contribute to (partially) automate the schema change
propagation process itself, via source code transformation
techniques. Last but not least, we aim to generalize our work
to other programming languages and database platforms.

REFERENCES

[1] Tiobe programming community index. http://www.tiobe.com/index.php/
content/paperinfo/tpci/index.html. Accessed: 2015-11-01.

[2] S. R. Clark, J. Cobb, G. M. Kapfhammer, J. A. Jones, and M. J. Harrold.
Localizing SQL faults in database applications. In Proc. of ASE ’11,
pages 213–222. IEEE Comp. Soc., 2011.

[3] A. Cleve, M. Gobert, L. Meurice, J. Maes, and J. Weber. Understanding
database schema evolution: A case study. Science of Computer Pro-
gramming, 97:113–121, 2015.

[4] C. A. Curino, H. J. Moon, L. Tanca, and C. Zaniolo. Schema evolution
in Wikipedia - toward a web information system benchmark. In Proc.
of ICEIS, pages 323–332, 2008.

[5] S.. Gardikiotis and N. Malevris. A two-folded impact analysis of schema
changes on database applications. International Journal of Automation
and Computing, 6(2):109–123, 2009.

[6] M. Goeminne, A. Decan, and T. Mens. Co-evolving code-related and
database-related changes in a data-intensive software system. In CSMR-
WCRE ’14, pages 353–357, 2014.

[7] M. Goeminne and T. Mens. Towards a survival analysis of database
framework usage in Java projects. In Int’l Conf. Software Maintenance
and Evolution (ICSME), 2015.

[8] M. Golfarelli, S. Rizzi, and A. Proli. Designing what-if analysis:
Towards a methodology. In Proc. of DOLAP ’06, DOLAP ’06, pages
51–58. ACM, 2006.

[9] C. Gould, Z. Su, and P. Devanbu. Static checking of dynamically
generated queries in database applications. In Proc. of ICSE ’04, pages
645–654. IEEE Comp. Soc., 2004.

[10] M. A. Javid and S. M. Embury. Diagnosing faults in embedded queries
in database applications. In Proc. of EDBT/ICDT’12 Workshops, pages
239–244. ACM, 2012.

[11] A. Karahasanović. Supporting Application Consistency in Evolving
Object-Oriented Systems by Impact Analysis and Visualisation. PhD
thesis, University of Oslo, 2002.

[12] D.-Y. Lin and I. Neamtiu. Collateral evolution of applications and
databases. In Joint International and Annual ERCIM Workshops on
Principles of Software Evolution (IWPSE) and Software Evolution (Evol)
Workshops, pages 31–40. ACM, 2009.

[13] K. Liu, H. B. K. Tan, and X. Chen. Aiding maintenance of database
applications through extracting attribute dependency graph. J. Database
Manage., 24(1):20–35, January 2013.

[14] A. Maule, W. Emmerich, and D. S. Rosenblum. Impact analysis of
database schema changes. In Proc. of ICSE 2008, pages 451–460, 2008.

[15] L. Meurice and A. Cleve. DAHLIA: A visual analyzer of database
schema evolution. In CSMR-WCRE ’14, pages 464–468, 2014.

[16] L. Meurice, C. Nagy, and A. Cleve. Static analysis of dynamic database
usage in java systems. In Proc. of CAiSE ’16, LNCS. Springer, 2016.
to appear. https://staff.info.unamur.be/lme/CAISE16/MeuriceEtAl.pdf.

[17] C. Nagy, L. Meurice, and A. Cleve. Where was this SQL query
executed?: A static concept location approach. In Proc. of SANER 2015,
ERA Track. IEEE Comp. Soc., 2015.

[18] G. Papastefanatos, F. Anagnostou, Y. Vassiliou, and P. Vassiliadis.
Hecataeus: A what-if analysis tool for database schema evolution. In
Proc of CSMR ’08, pages 326–328, April 2008.

[19] G. Papastefanatos, P. Vassiliadis, A. Simitsis, and Y. Vassiliou. What-
if analysis for data warehouse evolution. In IlYeal Song, Johann
Eder, and ThoManh Nguyen, editors, Data Warehousing and Knowledge
Discovery, volume 4654 of LNCS, pages 23–33. Springer, 2007.

[20] G. Papastefanatos, P. Vassiliadis, A. Simitsis, and Y. Vassiliou.
Hecataeus: Regulating schema evolution. In Proc of ICDE 2010, pages
1181–1184, March 2010.

[21] D. Qiu, B. Li, and Z. Su. An empirical analysis of the co-evolution of
schema and code in database applications. In Joint European Software
Engineering Conf. and ACM SIGSOFT Int. Symp. on Foundations of
Software Engineering. ACM , 2013.

[22] E. Rahm and P. A. Bernstein. An online bibliography on schema
evolution. SIGMOD Rec., 35(4):30–31, December 2006.

[23] A. Ringlstetter, S. Scherzinger, and T. F. Bissyandé. Data model
evolution using object-nosql mappers: Folklore or state-of-the-art? In
Proceedings of the 2Nd International Workshop on BIG Data Software
Engineering, BIGDSE ’16, pages 33–36, New York, NY, USA, 2016.
ACM.

[24] S. Scherzinger, T. Cerqueus, and E. C. d. Almeida. Controvol: A frame-
work for controlled schema evolution in nosql application development.
In 2015 IEEE 31st International Conference on Data Engineering, pages
1464–1467, April 2015.

[25] S. Scherzinger, E. De Almeida Cunha, F. Ickert, and M. Del Fabro Di-
donet. On the necessity of model checking nosql database schemas when
building saas applications. In Proceedings of the 2013 International
Workshop on Testing the Cloud, TTC 2013, pages 1–6, New York, NY,
USA, 2013. ACM.

[26] D. Sjøberg. Quantifying schema evolution. Information and Software
Technology, 35(1):35 – 44, 1993.

[27] I. Skoulis, P. Vassiliadis, and A. Zarras. Open-source databases: Within,
outside, or beyond lehmans laws of software evolution? In CAISE ’14,
volume 8484 of LNCS, pages 379–393. Springer, 2014.

[28] M. Sonoda, T. Matsuda, D. Koizumi, and S. Hirasawa. On automatic
detection of SQL injection attacks by the feature extraction of the single
character. In Proc. of SIN ’11, pages 81–86. ACM, 2011.

[29] P. Vassiliadis, A. V. Zarras, and I. Skoulis. How is life for a table in an
evolving relational schema? birth, death and everything in between. In
Proc. of ER 2015, pages 453–466, 2015.

[30] Annie T. T. Ying, Gail C. Murphy, Raymond Ng, and Mark C. Chu-
Carroll. Predicting source code changes by mining change history. IEEE
Trans. Softw. Eng., 30(9):574–586, September 2004.

[31] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl. Mining version
histories to guide software changes. IEEE Transactions on Software
Engineering, 31(6):429–445, June 2005.

[32] http://bit.ly/1XzyuWu.
[33] http://bit.ly/24aa3DQ.
[34] http://bit.ly/1OhJYqu.
[35] http://bit.ly/1Q39but.
[36] http://bit.ly/1Q39ipQ.
[37] http://bit.ly/1VpsZIF.
[38] http://bit.ly/1oMgEE3.
[39] http://bit.ly/1RkAn7w.

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://staff.info.unamur.be/lme/CAISE16/MeuriceEtAl.pdf
http://bit.ly/1XzyuWu
http://bit.ly/24aa3DQ
http://bit.ly/1OhJYqu
http://bit.ly/1Q39but
http://bit.ly/1Q39ipQ
http://bit.ly/1VpsZIF
http://bit.ly/1oMgEE3
http://bit.ly/1RkAn7w

