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Abstract—The concept of monolithic stand-alone software
systems developed completely from scratch has become obsolete,
as modern systems nowadays leverage the abundant presence of
Application Programming Interfaces (APIs) developed by third
parties, which leads on the one hand to accelerated development,
but on the other hand introduces potentially fragile dependencies
on external resources. In this context, the design of any API
strongly influences how developers write code utilizing it. A
wrong design decision like a poorly chosen method name can lead
to a steeper learning curve, due to misunderstandings, misuse
and eventually bug-prone code in the client projects using the
API. It is not unfrequent to find APIs with poorly expressive or
misleading names, possibly lacking appropriate documentation.
Such issues can manifest in what have been defined in the literature
as Linguistic Antipatterns (LAs), i.e., inconsistencies among the
naming, documentation, and implementation of a code entity.
While previous studies showed the relevance of LAs for software
developers, their impact on (developers of) client projects using
APIs affected by LAs has not been investigated.

This paper fills this gap by presenting a large-scale study
conducted on 1.6k releases of popular Maven libraries, 14k open-
source Java projects using these libraries, and 4.4k questions
related to the investigated APIs asked on Stack Overflow. In
particular, we investigate whether developers of client projects
have higher chances of introducing bugs when using APIs affected
by LAs and if these trigger more questions on Stack Overflow as
compared to non-affected APIs.

Index Terms—Empirical Study; Application Programming
Interfaces (APIs); Linguistic Antipatterns;

I. INTRODUCTION

The usage of Application Programming Interfaces (APIs)
is an integral part of software development, and it strongly
influences how developers build their applications. For instance,
it has been shown that the stability of a software system highly
depends on the libraries it uses [1], or that placing a method
in the right API class can significantly speed up development,
even up to an order of magnitude [2].

The design of an API is particularly important, and previous
studies investigated what makes an API usable or maintainable
[3]–[5]. Books have been written about this topic [6], [7], and
developers can refer to guidelines or “best practices” prepared
for these purposes [8], [9]. The design of an API directly
affects its usage [10] and learning curve [11]. In such a context,
factors playing a role include, but are not limited to, naming,
encapsulation, object-oriented design, explicitness of pre/post-
conditions, and updated documentation. On this last point,
Robillard and Deline have identified API documentation as
the main source of learning obstacles for developers [12]. It
has also been shown that – despite many APIs being actively

maintained and updated –, these documents are also prone to
mistakes and inconsistencies, due to the high cost of keeping
them updated and in sync with changes [13], [14].

Duala-Ekoko and Robillard [15] have shown that developers
rely on the API names when the documentation is missing
or is incomplete. However, assigning good names to API
methods is not an easy task [16] and poorly chosen names
can lead to problems later. In this context Arnaoudova et al.
[17] formalized issues affecting the design and documentation
of code components, presenting a catalogue of 17 Linguistic
Antipatterns (LAs), representing inconsistencies among the
naming, documentation, and implementation of an entity. The
authors showed that LAs are perceived negatively by developers
since they hinder program comprehension. A recent study [18]
using Near Infrared Spectroscopy to observe the cognitive load
of 70 undergraduate and graduate students working with code
snippets found that the presence of LAs significantly increases
the cognitive load of developers.

Given the importance of comprehensibility and usability in
the context of APIs, we conjecture that APIs affected by LAs
can be problematic for client projects using them. To validate
our conjecture we performed a large-scale study to investigate:

The impact of LAs affecting APIs on the likelihood of
introducing bugs in the client projects using the API.
We analyze 1.6k releases of 75 popular Maven libraries
exposing a total of 1.6M unique API methods and 14k
client Java projects using them. We use the LA detection
tool by Arnaoudova et al. [17] to identify LAs affecting
the 1.6M APIs. For each client project Ci using a set of
APIs ACi

provided by the considered libraries, we mine
the commits in Ci introducing the first usage of each
API in ACi . Finally, using the SZZ algorithm [19], we
identify bug-inducing commits and compare the likelihood
of introducing a bug in the client project when using for
the first time an API affected/not-affected by LAs.

Whether developers tend to ask more questions on Stack
Overflow about APIs affected by LAs. This would be an
indication of higher difficulties experienced by developers
in comprehending and adequately using APIs affected by
LAs. We analyzed 4.4k Stack Overflow questions in which
one of the API methods provided by the 75 Maven libraries
is explicitly mentioned. We compare the proportion of
questions asked for APIs affected/not-affected by LAs.

We quantitatively and qualitatively analyze our data.
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While our statistical analysis suggests that when using an
API for the first time, developers of the client projects have
a 29% higher chance of introducing a bug if such an API is
affected by a LA, our qualitative investigation highlighting
no influence of LAs on the likelihood of introducing bugs in
the client project. Similarly, we found no evidence that LAs
affecting APIs trigger Stack Overflow questions. Our findings,
besides providing a different perspective on the impact of
LAs on code-related activities, also emphasize the need for
combining both quantitative and qualitative findings in this
type of observational studies.

Structure of the paper. Section II introduces the concept
of Linguistic Antipatterns and surveys the related literature.
III presents the study design, while our findings are discussed
in Section IV. The threats that could affect their validity are
presented in Section V. Section VI concludes the paper.

II. BACKGROUND

We first present the LAs introduced by Arnaoudova et al.
[17]. Then, we survey the related literature focusing on: (i)
studies investigating APIs usability, design, and documentation;
and (ii) techniques and tools to help developers in using APIs.

A. Source Code Linguistic Antipatterns

Arnaoudova et al. [17] presented a catalogue of 17 LAs
capturing inconsistencies among the naming, documentation,
and implementation of attributes and methods. The authors
showed that LAs are negatively perceived by developers who
highlighted their negative impact on code comprehension. They
also released a tool for detecting LAs in Java code1. We focus
on the 12 LAs related to methods, since we aim at investigating
their impact on (developers of) client projects using APIs
affected by LAs. These 12 antipatterns are classified into three
categories (A, B, and C) briefly described in the following.
For each category we report one example, while we refer the
interested reader to Table 1 in [17] for a complete description
of the LAs accompanied by real examples found in open source
projects. In the catalogue, each type of LA is identified with
an id (e.g., A.1 is the first LA belonging to the A category).
We use the same ids to ease the mapping between Table 1 in
[17] and our work.

Category A: do more than they say. This category includes
four LAs (A.1 - A.4) related to methods that do more
than what their signature and documentation indicate.
For example, A.1 “Get” - more than accessor identifies
getter methods which do actions other than returning the
corresponding attribute without documenting it [17].

Category B: say more than they do. Includes five LAs
(B.1 - B.6) related to methods doing less than what
their signature/documentation says. For instance, B.1
Not implemented condition affects methods in which the
comment suggests a conditional behavior not implemented
in the body [17].

1http://www.veneraarnaoudova.com/linguistic-anti-pattern-detector-lapd/

Category C: do the opposite than they say. This category
includes two LAs (C.1 and C.2) affecting methods
implementing behavior that is the opposite as compared
to the one suggested by their signature and comments. For
example, C.1 Method name and return type are opposite
identifies methods having a name that is in contradiction
with their return type (e.g., a method named disable
having ControlEnableState as return type) [17].

Arnaoudova et al. [17] defined such a catalogue and provided
a tool to automatically identify them. They also show that
developers perceive the defined LAs as poor coding practices
likely to negatively affect code comprehension.

B. On API Usability, Design, and Documentation

Several studies focused the attention on the API usability
and factors promoting/hindering it.

McLellan et al. [4] suggest the need for usability tests for
APIs in the same way in which usability tests are performed
in the context of user interface design. Myers and Stylos [3]
echo such a recommendation, indicating usability as one of
the key factors to optimize when designing an API, no less
important than its correctness.

Ko et al. [20] showed the difficulties experienced by
developers when dealing with APIs requiring the use of multiple
objects. Stylos and Myers [2], inspired by this finding, ran a
user study to investigate the role played by method placement
(i.e., which class the method belongs to) in the usability of APIs
requiring the use of multiple objects. Their findings show that
method placement plays an important role, strongly impacting
developers’ performance when dealing with APIs.

Ellis et al. [21] ran a user study to assess the impact on
the API usability of the factory design pattern as compared to
the adoption of simple class constructors. They observed that,
in many situations, adopting the factory pattern significantly
lowers the API usability.

Stylos and Clarke [22] investigated whether programmers
are more effective when using APIs requiring constructor
parameters as compared to parameterless default constructors.
Their findings highlight the strong preference (and higher
effectiveness) programmers have for APIs that do not require
constructor parameters.

Robillard [11] reported on the results of a survey conducted
with 83 developers and investigating the APIs learning obstacles
experienced by developers. Among the identified obstacles, the
ones relevant for our study are the issues related with the
documentation and with the API’s structural design. Indeed,
they are at the basis of the LAs definition.

Piccioni et al. [16] performed a study with 25 programmers
to investigate API usability. The study takes advantage of
a combination of interviews with the participants and sys-
tematic observation of their behavior during programming
tasks. Among the many interesting findings they report, one
is particularly important for our work which highlights the
difficulty of defining proper names when designing an API.

Indeed, the naming of methods is one of the main aspects
considered by Arnaudova et al. [17] in the definition of LAs.
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Duala-Ekoko and Robillard [15] conducted a controlled
experiment with 20 developers to understand the types of
questions they ask when facing unfamiliar APIs. Overall, the
authors collected over 20 hours of screen captured videos
spanning 40 implementation tasks. As part of their findings,
the authors report that developers have difficulties guessing an
API semantic from its name.

Acar et al. [23] studied whether the usability of APIs
provided by several cryptographic libraries impacts the ability
of developers to create secure code. Their study has been
conducted with 256 Python developers and shows that APIs
designed for simplicity (e.g., guiding the developers by re-
ducing the decision space) are not always enough since poor
documentation or the lack of code examples can still hinder
developers’ ability to cope with them. On the other side, good
documentation and examples can make developers comfortable
to work with complex APIs.

Robillard and Deline also emphasized the importance of
reference documentation when learning how to use an API [12].
They investigated API learning obstacles faced by developers
and their findings motivated several studies to understand the
essential elements needed to properly document APIs.

Maalej and Robillard [24] proposed a taxonomy of knowl-
edge types in API reference documentation by investigating
the documentation of two popular frameworks. Their taxonomy
overviews the types of information reported in APIs documen-
tation and can be used by developers to evaluate the content
of their documentation.

Watson et al. [25] reviewed the API documentation of 33
popular libraries to verify whether it includes the elements of
desirable API documentation defined in previous work. They
found that most of the analyzed documentations included most
(or all) the aspects of desirable API documentation, with a high
standard for writing quality. Uddin and Robillard [26] report
on the ten most common problems with API documentation,
with ambiguity, incompleteness, and incorrectness classified as
the three most severe problems.

Sohan et al. [27] presented a controlled user study to assess
the importance of usage examples in REST API documentation.
They found a substantial gap in the developers’ productivity
when such information is missing.

Finally, it is worth mentioning the many available “catalogues
of good practices” on how to design APIs. For instance, Joshua
[28] provides a set of guidelines to adopt when designing APIs
(e.g., APIs should be self-documenting, easy to use and hard to
misuse). Varga [5] defines a set of good practices to improve
the APIs maintainability. Michi [29] discusses APIs common
design shortcomings and suggests API design rules, e.g., “an
API should be minimal, without imposing undue inconvenience
on the caller”. In addition, several language-specific guidelines
to help developers with API design have been defined (e.g.,
see [8], [9]).

As compared to the discussed work, our study is the first one
investigating the impact of LAs on the (developers of) client
projects using the affected APIs. Thus, our study complements
the ones performed in the literature.

C. Assisting Developers With API Usage

Several techniques and tools have been proposed in the
literature to support developers in using APIs. Many of them
aim at creating code examples for an API of interest. In this
line of research falls MAPO, the tool proposed by Xie and
Pei [30] and extended by Zhong et al. [31]. MAPO can mine
abstract usage examples of a given API method. UP-Miner
[32] is a variation of MAPO that removes the redundancy in
the resulting example list.

Buse and Weimer [33] proposed to generate documented
abstract API usages by extracting and synthesizing code exam-
ples of a particular API data type. Moreno et al. [34] presented
MUSE, an approach to automatically generate concrete usage
examples of a given API mined from client projects using such
an API. Glassman et al. [35] developed a visualization tool
that mines API usage code examples regarding a given API
and summarizes them with the goal of assisting developers in
learning API usage.

A different type of work is the approach by Robillard and
Chhetri [36]. They present an automated approach developed as
an IDE plugin named Krec, to identify and retrieve the relevant
piece of information in API reference documentation. Krec is
able to categorize the text fragments in API documentation
as indispensable, valuable, or neither, based on their semantic
content.

Petrosyan et al. [37] proposed a text classifier-based approach
to automatically retrieve tutorial sections explaining how to use
a given API type, while Treude and Robillard [38] present an
automated approach to augment API type documentation with
a complementary relevant piece of information discussed on
Stack Overflow posts. They show their machine learning based
approach surpasses existing techniques, e.g., text summarization.
Furthermore, Azad et al. [39] present a technique to predict how
an API call a developer will use by identifying co-changing
API elements from the change history of open source projects
and Stack Overflow posts. Earlier, Dekel and Herbsleb [40]
developed an IDE plugin, called eMoose, which augments
API method invocation with usage directives extracted from
Javadoc to get developers aware of them.

III. STUDY DESIGN

The goal of the study is to investigate (i) the impact of LAs
affecting APIs on the likelihood of introducing bugs in the
client projects using the API, and (ii) whether developers are
more prone to ask questions on Stack Overflow when the APIs
are affected by LAs. The context is represented by 1.6k releases
of 75 Maven libraries, 14k client projects using those libraries,
and 4.4k Stack Overflow questions. The quality focus is on
APIs source code quality and comprehensibility that might be
negatively affected by the presence of LAs.

A. Research Questions

Our study addresses the following two research questions:
RQ1. What is the impact of the LAs affecting APIs on the

likelihood of introducing bugs in the client project? Here
with “client project” we refer to the project using the API.



We conjecture that the presence of LAs in the APIs can
create issues to the developers of the client projects that
might misinterpret the API and introduce bugs when using
it. Indeed, previous studies showed the negative impact
of LAs on the comprehensibility of the affected code
components [17]. Note that we do not limit our analysis
to the comparison of APIs affected and not-affected by
LAs, but we also investigate how each of the 12 different
method-related LAs defined by Arnaoudova et al. [17]
increases the likelihood of introducing bugs when using
APIs affected by it.

RQ2. Are APIs affected by LAs more likely to trigger dis-
cussion on Stack Overflow? This research question aims
at verifying whether LAs trigger more questions from
developers using the affected API methods. As for RQ1,
we also report the types of LAs triggering more questions.

B. Context Selection
To answer our research questions the first step is the selection

of the Java libraries to analyze, and their client projects. We
limit our study to Java since, as we stated in Section II, the
tool we use to detect LAs only supports Java code.

Due to the need of automatically identifying the client
projects of a given library, we decided to focus our study
on Maven libraries. Indeed, client projects interested in using
a Maven library simply define a pom.xml file to specify the
libraries they want to use. We selected all libraries belonging to
the four most popular Maven categories2: Testing Frameworks
(45 libraries and 1,103 releases), Logging Frameworks (38
and 997), Core Utilities (5 and 248), and JSON Libraries (67
and 1,369). The number of mined releases excludes non-final-
release versions such as beta, release candidate, etc. since
APIs might be not yet finalized in those versions.

Overall, we collected 3,708 release versions of selected
libraries and we mined GitHub to identify their client projects.
Using the GitHub search API, we first identified in GitHub
all Java projects having at least one pom.xml file, needed
to declare dependencies toward Maven libraries. This resulted
in the identification of 17,659 client projects, using 118,626
pom.xml files and declaring ∼1.1M dependencies in total.
We downloaded all the identified pom files and converted them
into a standard format. This is needed since it is possible to
use variables in pom files, or to declare dependencies using
version intervals or relative version schemas (e.g., declaring a
dependency towards the latest version of a library). Since
we need to know the exact version from which the client project
depends on, we used the mvn help:effective-pom
command to preprocess the pom files and obtain dependencies
with their absolute version numbers.

Finally, we excluded all pom.xml files not reporting any
dependency towards one of the 3,708 library releases subject
of our study. This left us with 14,743 client projects.

Once collected the ∼14k client projects, we excluded from
our study all library releases for which we did not identify any
client project.

2https://mvnrepository.com/open-source

TABLE I
MAVEN LIBRARIES AND CLIENT PROJECTS CONSIDERED

Category #Libraries #Releases #Client Projects
Testing Frameworks 25 268 13,169
Logging Frameworks 19 304 8,732
Core Utilities 5 175 7,343
JSON Libraries 26 545 6,703
Total 75 1,642 14,743

Indeed, client projects are needed to answer RQ1, and
we preferred to have a consistent dataset for both research
questions. This decreased the number of libraries considered
in our study to 75 for a total of 1,642 releases. Table I shows
the number of libraries and releases we consider for each of
the four popular Maven categories as well as the number of
client projects identified for them.

C. Data Extraction

This section describes the data extraction process we
followed to answer our research questions.

1) Parsing the libraries and the client projects, and iden-
tifying LAs: We downloaded the source code of the 1,642
library releases by using the mvn dependency:sources
command. Then, we used the Eclipse JDT Parser to parse
the code of each library to extract all the method declarations
creating a database of 1.6M public (i.e., API) and 800k private
methods. When only considering the latest release of each of the
considered libraries (used for RQ2 as well), these numbers drop
to 57k and 29k for public and private methods, respectively.
Besides that, during the parsing process we also extracted
precise type information related to the fully qualified class
name of the method parameters’ type, the return type, and
the class defining each method. This information is needed to
accurately (i) identify API invocations in the client projects
(needed for RQ1) and (ii) link Stack Overflow questions to
library APIs (needed for RQ2).

To identify the LAs affecting the APIs, we exploited the
tool by Arnaoudova et al. [17] and able to detect the linguistic
antipatterns described in Section II.

2) RQ1-specific data extraction: Similarly to what was done
for libraries, we used the Eclipse JDT Parser to parse the 14k
client projects and extract from them a total number of 96M
invocations together with their precise type information. In
particular, given the jar files of the libraries the client project
depends on, the parser is able to bind the invoked methods to
their original declaration and extract type information regarding
the parameters, return type and the class whose the method
belongs to. Having available the fully qualified class name
of the class defining the invoked method, it is possible to
differentiate between local and non-local invocations. We mark
as local invocations (and exclude them since irrelevant for our
study) all those related to methods declared in classes having
one of the client project’s packages in their fully qualified
name. From the remaining non-local invocations, we exclude
the ones related to methods belonging to classes from the
java.* packages.

https://mvnrepository.com/open-source


Finally, we compare all the remaining non-local invocations
with the APIs declared in the library versions the client project
depends on (excluding libraries not considered in our study).
Such a matching is precise thanks to the fact that we consider
the complete method signature, the fully qualified names of
the types of its parameters, its return type, and of the class
declaring it.

The collected method calls from the client projects to the
libraries are necessary but not sufficient for answering RQ1.
Indeed, our goal is to compare the likelihood of introducing
a bug in the client project when using for the first time an
API affected/not-affected by LAs. To this aim, we also need to
identify (i) the exact commit in which each API used by each
client project has been introduced for the first time in its code,
and (ii) the bug-introducing commits, meaning commits that
likely induced a bug-fixing activity. This way we can count
when the use of an API for the first time (affected/not-affected
by LAs) resulted in the introduction of bugs.

We used the git log -L ln,ln:Fpath command to
identify for each API invocation in the client projects the
commit in their change history in which they have been
introduced for the first time. In the command, ln indicates the
line number in which the method invocation is present in the
client’s code, and Fpath is the path of the client’s file containing
the invocation. The command traces back the commit history
of the source code at the given line, and we took the commit
where the API invocation was first added.

To identify bug-fixing activities performed during the change
history of the client projects, we used an approach proposed
by Fischer et al. [41], i.e., by mining regular expressions
containing issue IDs and the keyword “fix” in the commit
notes, e.g.,“fixed issue #ID” or “issue ID”. Then, we identify
commits that introduced bugs3 by using the SZZ algorithm [19],
which is based on the annotation/blame feature of versioning
systems. In summary, given a bug-fix commit, k, the approach
works as follows:

1) For each file fi, i = 1 . . .mk involved in the bug-fix k
(mk is the number of files changed in the bug-fix k), and
fixed in its revision rel-fixi,k, we extract the file revision
just before the bug fixing (rel-fixi,k − 1).

2) Starting from the revision rel-fixi,k − 1, for each source
line in fi changed to fix the bug k the blame feature of git
is used to identify the file revision where the last change
to that line occurred. This produces, for each file fi, a set
of ni,k fix-inducing revisions rel-bugi,j,k, j = 1 . . . ni,k.
Thus, more than one commit can be indicated by the SZZ
algorithm as responsible for inducing a bug.

Matching the commits in which APIs have been introduced
for the first time and those that introduced bugs will allow us
to answer RQ1 through the data analysis described later.

3The right terminology is “when the bug induced the fix" because of the
intrinsic limitations of the SZZ algorithm, which cannot precisely identify
whether a change actually introduced the bug.

3) RQ2-specific data extraction: We mine the official Stack
Overflow dump released in June 2017 to identify all questions
explicitly mentioning an API method from the latest release
of one of the 75 considered libraries. Such an analysis is
limited to the latest library releases since API versions are
rarely explicitly mentioned in the posts.

For this analysis, we implemented an approach to extract
the qualified names of methods referenced in the code blocks
of Stack Overflow questions. Existing approaches typically
look for class names of APIs mentioned in the text, code
block or href markup links of Stack Overflow [38], [42],
[43]. However, we need an approach which can link Stack
Overflow questions to exact API methods, also considering
their parameters.

First, we extract code blocks from Stack Overflow posts
tagged with the Java tag, we parse these code blocks with
the srcML infrastructure [44], and then we collect the method
signatures for method invocations with an algorithm which runs
on the AST of a code block provided by srcML. For parsing,
we have chosen srcML as a lightweight and robust parser,
which can tolerate the usually incomplete source fragments
on Stack Overflow but provides the necessary information for
our analysis. Here, we have to be prepared for sample code
snippets with often missing import statements or even class
or method declarations. In addition, developers tend to use
code blocks sometimes only for formatting purposes, e.g., to
emphasize numbers or sample commands sometimes written
in other languages. To avoid these, we filtered code blocks
shorter than 20 characters. After the extraction of code blocks,
our algorithm collects the type information (i.e., class name)
of declaration nodes in the AST and for method invocations on
local/instance variables, it pairs the method name and number
of arguments with the type information of the related variable.
If it cannot find the referenced variable, handles the reference
as a static reference. As a result, for each code block we have a
set of className,methodName,numberOfArguments
tuples describing all method invocations in the code block. The
extracted method references are stored in a database along with
the API method declarations and they are linked to each other.

We analyzed 1,269,994 questions in Stack Overflow having
a total number of 2,071,992 code blocks. After the parsing
step, the collection of class and method name pairs provided us
804,104 unique tuples and a total number of 3,308,072 method
references.

Knowing the Stack Overflow questions referencing each
specific API will allow us to answer RQ2 by verifying whether
APIs affected by LAs trigger more questions from developers.

D. Data Analysis

To answer RQ1, we compare the likelihood of introducing a
bug in the first commit introducing in the client projects APIs
affected and not-affected by LAs. In particular, we compute
the following four groups:

• ANBClean, the number of commits introducing for the
first time an API not affected by any LA that do not
induce a bug;



TABLE II
NUMBER OF LIBRARIES/RELEASES/METHODS AFFECTED BY LAS

LA id LA Name Overall public (APIs)
#Libraries #Releases #Methods #Libraries #Releases #Methods

A.1 “Get” - more than accessor 34 669 4,160 29 564 2,680
A.2 “Is” returns more than boolean 16 348 6,337 15 330 5,977
A.3 “Set” method returns 32 697 5,680 23 593 4,029
A.4 Expecting but not getting single instance 37 853 5,846 33 822 4,459
B.1 Not implemented condition 41 831 10,418 38 803 9,539
B.2 Validation method does not confirm 30 621 2,170 20 371 561
B.3 “Get” method does not return 17 424 1,147 13 293 781
B.4 Not answered question 10 282 1,463 6 118 1,148
B.5 Transform method does not return 12 136 624 9 112 276
B.6 Expecting but not getting a collection 27 634 2,491 25 586 2,080
C.1 Method name and return type are opposite 6 44 63 4 30 49
C.2 Method signature and comment are opposite 40 909 5,549 35 771 3,690

59 1,078 43,778 56 1,047 33,633

• ABClean, the number of commits introducing for the first
time an API not affected by any LA that induce a bug;

• ANBLA, the number of commits introducing for the first
time an API affected by a LA that do not induce a bug;

• ABLA, the number of commits introducing for the first
time an API affected by a LA that induce a bug;

Then, we use Fisher’s exact test [45] to test whether
the proportions of ABClean/ANBClean and ABLA/ANBLA

significantly differ. In addition, we use the Odds Ratio (OR)
[45] of the two proportions as effect size measure. An OR of
1 indicates that the condition or event under study (i.e., the
chances of inducing a bug) is equally likely in two compared
groups (e.g., clean vs LA). An OR greater than 1 indicates that
the condition or event is more likely in the first group (that,
in our analysis, will be LA). On the other hand, an OR lower
than 1 indicates that the condition or event is more likely in
the second group (Clean).

We also perform the same analysis when considering specific
types of LAs. Meaning that, for each of the LAi types we
detected in our dataset, we compute the groups ANBLAi

and
ABLAi

and again compare the proportion ABLAi
/ANBLAi

with that of the Clean group, with the goal of identifying
what the most “dangerous” LAs are (if any).

To answer RQ2, again we rely on the Fisher’s exact test
and on the odds ratio to verify whether developers tend to ask
more questions about APIs affected by LAs as compared to
clean APIs. We also compare the distributions representing
the number of Stack Overflow questions triggered by APIs
affected and not-affected by LAs. We use the Mann-Whitney
test to compare the two distributions [46] with results intended
as statistically significant at α = 0.05. We also estimate the
magnitude of the differences by using the Cliff’s Delta (d),
a non-parametric effect size measure [47]. We follow well-
established guidelines to interpret it: negligible for |d| < 0.10,
small for 0.10 ≤ |d| < 0.33, medium for 0.33 ≤ |d| < 0.474,
and large for |d| ≥ 0.474 [47].

Finally, we qualitatively analyze our findings in both research
questions.

IV. RESULTS

Before answering our research questions, we start by
describing our dataset from different perspectives in order
to give the reader a complete view of the subject APIs, client
projects, and LAs.

Out of 2.4M methods defined in the 1,642 Maven releases
we analyzed, 1.6M methods (66.0%) are public (i.e., API
methods). When only considering the latest release of the 75
subject libraries, the percentage of public methods is stable at
66.3%. Thus, although an API should be as minimal as possible
to avoid revealing unnecessary details [29], the studied Maven
libraries expose a high number of public methods.

We also inspected the presence of Javadoc documentation
in the 2.4M methods. We used the Eclipse JDT Parser to
detect comments using the Javadoc syntax (i.e., /** ... */)
right before a method declaration. We found that 22.5% of
methods have a Javadoc comment, with such a percentage
increasing to 46.2% when only focusing on public methods.
These percentages are quite stable when only considering the
latest release of each library (48.6% for public methods and
23.3% for all methods). While the higher Javadoc coverage
for public methods as compared to private methods is a quite
expected results (since these are the methods client projects are
supposed to use), we still found that more than half of public
methods are not documented through Javadoc. A possible
explanation for this finding could be that many public getter
and setter methods present in the studied libraries are not
documented since, in many cases, their code is self-explanatory.
We verified such an explanation by computing the number of
public getter and setter methods in the set of 2.4M methods
and by verifying how many of them are not documented.
Overall, we found 518k getters and setters (406k getters and
111k setters), 189k of which (148k getters and 41k setters)
documented (36%). Thus, excluding getters and setters from the
counting, we still have 49% of uncommented public methods,
do not substantially changing our finding.

Table II reports the LAs we found in our dataset. For each of
the twelve LAs we considered, we report: (i) its id (column “LA
id”) allowing its mapping to Table 1 in the work by Arnaoudova
et al. [17]; (ii) its name, providing a short description of the type



of issue it captures; (iii) the number of libraries and releases,
among the ones we studied (i.e., 75 libraries and 1,642 releases),
in which we found at least one method affected by it; and
(iv) the total number of methods affected by it. We report this
information both when considering all methods (“Overall” in
Table II) as well as when only focusing on public methods.

We found 43,778 methods out of 2.4M (1.8%) affected
by LAs, with such a percentage growing to 2.1% when only
focusing on public methods (33,633 out of 1.6M). What is
more interesting is that 64% of the studied releases have at least
one public method affected by a LA. Thus, knowing whether
the LAs increase the likelihood of introducing bugs in the
client projects and of triggering questions on Stack Overflow
is worth investigating.

Moving to the client projects and their relationship with
the libraries we found 96.8M method invocations in the
14,635 client projects: 53.9M (55.7%) are local invocations4,
28.1M (29.1%) are related to Java APIs, 2.2M (2.2%) concern
invocations to APIs belonging to the studied libraries, and the
remaining 12.6M (13.0%) target APIs from other libraries.

TABLE III
TOP-TEN RELEASES IN TERMS OF PERCENTAGE OF PUBLIC API METHODS

USED BY THEIR CLIENTS

Library Release (groupId:artifactId:version) #used #API %
net.minidev:json-smart:2.3 184 453 41%
org.hamcrest:hamcrest-core:1.3 89 252 35%
org.hamcrest:hamcrest-all:1.3 185 655 28%
com.googlecode.json-simple:json-simple:1.1.1 26 105 25%
junit:junit:4.12 344 1,369 25%
commons-lang:commons-lang:2.6 476 2,317 21%
org.slf4j:slf4j-api:1.7.25 87 439 20%
com.google.code.gson:gson:2.8.2 146 763 19%
com.unboundid.components:json:1.0.0 34 194 18%
com.esotericsoftware.minlog:minlog:1.2 4 31 13%

Interestingly, we found that client projects only use a very
limited subset of the public methods exposed by libraries.
Considering all releases, we found that only 2.4% of public
methods (38,246 out of 1,613,176) are used by at least one
client project. Such a percentage grows to 7.0% (3,986 out
of 57,369) when only focusing on public methods belonging
to the latest releases of the analyzed libraries. This finding
confirms what has been observed by Sawant and Bacchelli
[48], who reported that a considerably small portion of an API
is actually used by developers. Table III reports the top 10
library releases in terms of the percentage of their APIs used
by at least one client project.

Another interesting observation derived from our dataset
is that 83.9% of API methods used in client projects (the
same percentage holds when considering all releases as well
as when only focusing on the latest release) is accompanied by
a Javadoc documentation. Such a percentage is much higher
as compared to the percentage of all public methods having a
Javadoc comment (i.e., 51.0% in the best case scenario, when
not considering getters and setters).

4We discriminate between local and non-local invocations as described in
Section III-C2.

Although we did not dig further into this finding via
qualitative analysis, these numbers clearly show a correlation
between the presence of Javadoc comment in public methods
and their usage in client projects. The problem here is the
impossibility to define the direction of the causation. Indeed,
we do not know whether the client projects actually tend to
use documented APIs or, instead, are the developers of the
APIs that tend to only document APIs they expect to be used
by client projects. Such an investigation is part of our future
research agenda.

A. RQ1: What is the impact of the LAs affecting APIs on the
likelihood of introducing bugs in the client project?

As explained in Section III-D, we extracted for each client
project: (i) the commit in which each API it uses has been
added for the first time in its code, and (ii) its bug-introducing
commits, meaning the commits identified by the SZZ algorithm
as likely to have triggered a bug-fixing activity in the future.

Having this data, we computed the cardinality of the four sets
ABClean, ANBClean, ABLA, and ANBLA (see Section III-D
for their definition). When considering all the twelve types of
LAs, we obtained the following cardinalities: ABClean=1980,
ANBClean=54918, ABLA= 122, and ANBLA=2612, leading to
a statistically significant (p-value = 0.007) odds ratio of 1.29.
This means that when an API call is introduced in a client
project for the first time, the likelihood of introducing a bug is
29% higher if the API is affected by a linguistic antipattern.

TABLE IV
ODDS RATIO BY TYPE OF LA (SIGNIFICANT RESULTS ONLY)

id LA Name ABLA ANBLA Ratio p-value
B.1 Not implemented con-

dition
36 521 1.92 0.000

B.4 Not answered ques-
tion

13 187 1.93 0.031

B.5 Transform method
does not return

7 50 3.88 0.003

We also performed the same analysis for the 12 types of
LAs we considered, and report the results in Table IV for
the LAs for which we obtained a statistically significant odds
ratio. The first thing that leaps to the eyes is that all the LAs
substantially increasing the chance of introducing bugs belong
to the “B category” of LAs. These LAs are related to methods
that do less than what their signature/documentation says.

The B.1 - Not implemented condition LA affects methods
in which the comment suggests a conditional behavior that
is not implemented in the method’s body [17]. For example,
if the comment states “Returns true if the balance is higher
than 0, false otherwise” but that does not implement any if
statement to check the balance is affected by this LA. For B.1
the odds ratio is 1.92, indicating that developers have 92%
higher chance of introducing a bug when committing for the
first time usages of APIs affected by this LA as compared
to clean APIs. While the statistical analysis provides a quite
bold message, we manually analyzed all 36 commits in which,
according to our data, the B.1 LA induced a bug-fixing activity,
to verify what the role played by the LA actually was.



We found that in none of the 36 analyzed commits the
usage of the API affected by the LA was actually the
trigger for the future bug-fixing activity. This is due to the
fact that the LAs of type B.1 involved in the 36 commits,
while not false positives according to the B.1 definition, are
not harmful. Let us explain why with one representative
example, the case of the concat method implemented in
com.google.guava library. In the Javadoc comment of the
concat method it is documented a conditional behavior:
“@Throws NullPointerException if any of the pro-
vided iterators is null”, and such a behavior is not implemented
in the method body through a conditional statement verifying
whether the iterators provided as parameters are null. This
makes concat affected by the B.1 - Not implemented
condition LA. However, the concat method invokes the
checkNotNull method by passing to it the iterators. The
latter method is the one implementing the conditional statement
throwing a NullPointerException when needed. Clearly,
detecting these cases is far from trivial, since it requires
interprocedural code analysis, currently not supported by the
LA detection tool we used. In this specific case the bug was
introduced in the same commit in which an invocation to this
API was added in the client project, but the bug was not due
to a misuse of such API. Similar observations hold for the
other 35 commits.

The B.4 - Not answered question LA affects methods having
their name in the form of predicate (e.g., isValidURL) but
do not returning a boolean [17]. For B.4 the odds ratio is
1.93, indicating that developers have 93% higher chance of
introducing a bug when committing for the first time usages of
APIs affected by this LA as compared to clean APIs. Also in
this case our manual analysis did not highlight a direct effect
of the LA on the bug introduction. The detection tool perfectly
worked, and did not detect any false positive. The problem was
in the specific context in which the LAs were detected. Indeed,
all the B.4 instances involved in the bug-inducing commits were
detected in methods from classes assisting in the validation
of arguments. For example, the isTrue method from the
Assert class of the org.springframework library has its name
in the form of predicate but returns void. The reason is that, as
documented in the Javadoc, this method “asserts a boolean
expression, throwing an IllegalArgumentException if
the expression evaluates to false”. In such a context, while
the B.4 LA clearly affects the method, it is unlikely to be
harmful. All the bug-inducing commits we analyzed follows
such a pattern, and did not play a direct role in the introduction
of the bugs we analyzed.

Finally, the B.5 - Transform method does not return LA
is the one exhibiting the highest odds ratio (3.88), indicating
that developers have ∼4 times the chance of introducing bugs
when working with APIs affected by B.5 as compared to clean
APIs. This LA affects methods having a name suggesting the
transformation of an object but not returning anything (as
opposed to the expected transformed object) [17]. In this case,
our qualitative analysis showed that all the bug-introducing
commits were related to the usage, from different client projects,

of the toJson method from the com.google.code.gson. This
method actually returns void in the library releases involved in
the bug-inducing commits, thus being classified as affected by
the B.5 LA. However, toJson takes as one of its parameters
a writer that, as documented in the Javadoc, represents the
“Writer to which the Json representation needs to be written”.
In other words, while the transformation of the object to JSON
does not result in a new object to be returned, the output of this
transformation is written somewhere and well documented in
the method. Also in this case, the LA did not look responsible
for the bug introduction in the analyzed cases.

Summary for RQ1: Our statistical analysis indicated that
when introducing for the first time APIs affected by LAs in the
code base, developers have 29% higher chance of introducing
bugs as compared to when using clean APIs. Such an effect is
mostly due to three types of LAs, namely B.1 - Not implemented
condition, B.4 - Not answered question, and B.5 - Transform
method does not return. However, in our qualitative analysis
we did not find any strong evidence of their negative impact
on the likelihood of introducing bugs.

B. RQ2: Are APIs affected by LAs more likely to trigger
discussion on Stack Overflow?

We had to face a number of challenges when linking
APIs to Stack Overflow questions. We found classes with
the same names in multiple libraries and/or in the Java
API. When looking for Stack Overflow questions mentioning
these classes but do not reporting a package import in
the code block (as it is very frequent in Stack Overflow
posts), it is not possible to identify precisely which class
of which library is referenced at that location. For example,
the dbunit library has an InputStream class in the
org.dbunit.util.Base64 package. Moreover, this class
has a read method without parameters just like the read
method of java.io.InputStream. We found 616 ques-
tions with a code block using the InputStream.read()
method but without a reference to the library or the package
name the method belongs to. Thus, it is impossible to determine
whether the dbunit library or the Java API was referenced
in these questions. For this reason, we filter out from the set
of APIs to link to the Stack Overflow questions (i) all classes
appearing with the same name as another class in the Java API
and/or in another library; and (ii) all methods which appear
with the same name and arguments in another class of another
library. We found that 200 classes of the libraries appear with
the same name in the Java 9 API (Java Platform, SE, and
JDK) and 136 classes in the Java EE 7 API. We also found
7,291 methods appearing with the same name, declaring class
and number of parameters in multiple libraries. In the end, we
have 34,260 public methods of 5,261 classes in our dataset
to investigate how LAs trigger discussions on Stack Overflow.
Remember that in this investigation we only focus on the APIs
present in the last release of the 75 subject libraries.

These API methods were referenced in 4,464 questions on
Stack Overflow including 135 questions related to LAs.



TABLE V
ODDS RATIO OF METHODS DISCUSSED IN STACK OVERFLOW QUESTIONS

WITH/WITHOUT LINGUISTIC ANTIPATTERNS

SOLA/NoSOLA = 39/716 = 0.0544 (a)
SOClean/NoSOClean = 891/33,406 = 0.0266 (b)
OddsRatio = (a)/(b) = 2.05

To address RQ2, we calculate the odds ratio of methods
(not)mentioned in Stack Overflow questions and methods
(not)affected by LAs. Table V shows the different method sets
needed to calculate the odds ratio. As done in RQ1, LA is the
set of methods affected by Linguistic Antipatterns, while Clean
are methods not affected. SO are methods mentioned at least
in one Stack Overflow question, and NoSO are methods not
mentioned at all. As a result, the odds ratio is 2.05 indicating
that methods affected by LAs are twice more likely to trigger
questions on Stack Overflow than clean methods.

When comparing the distribution of the number of Stack
Overflow questions related to methods affected and not affected
by LAs with the Mann-Whitney, the p-value turns out to be
0.249 which, at a α = 0.05, indicates no significant difference
(and a negligible effect size of -0.06).

TABLE VI
LINGUISTIC ANTIPATTERNS FOUND IN METHODS WITH RELATED

QUESTIONS ON SO

LA id LA name #Quest.
A.1 “Get” - more than accessor 21
A.2 “Is” returns more than boolean 4
A.3 “Set” method returns 3
A.4 Expecting but not getting single instance 10
B.1 Not implemented condition 20
B.4 Not answered question 10
B.7 Method does not return the corresponding attribute 32
C.1 Method name and return type are opposite 1
C.2 Method signature and comment are opposite 34

We also investigated which LAs affect the APIs discussed
in Stack Overflow questions. Table VI shows the number of
different LAs found in methods which were also mentioned
in Stack Overflow questions. The major part of the warnings
is related to the A1, B7, C2 and B1 categories. Note that in
Table VI we report the total number of questions asked for
the methods affected by LAs (i.e., 135), while in the analysis
with odds ratio we considered the number of methods affected
by LAs and linked to at least one Stack Overflow question
(i.e., 39). Lastly, the detailed list of libraries having methods
affected by LAs and discussed on SO can be seen in Table VII.

We manually investigated all these 135 questions. Our
approach to identifying methods in code blocks of Stack
Overflow questions spotted the library and the correct method
of the API for 106 questions. For the rest, five questions are
not available online anymore on Stack Overflow (we relied on
the last release of the Stack Overflow database dump from June
2017), and in the remaining 24 cases it found a method with
the same name, parameters and a declaring class of another
library. This means that the approach was successful in 82%
of the methods manually inspected.

TABLE VII
LIBRARIES HAVING METHODS AFFECTED BY LAS AND DISCUSSED ON SO

GroupId ArtifactId Methods Questions
com.google.guava guava 5 27
org.codehaus.plexus plexus-utils 3 19
org.springframework spring-core 6 19
log4j log4j 4 17
xmlunit xmlunit 1 15
junit junit 3 13
commons-lang commons-lang 1 5
org.apache.logging.log4j log4-core 3 5
com.fasterxml.jackson.core jackson-databind 2 3
org.apache.logging.log4j log4j-api 2 3
com.pivotallabs robolectric 2 2
org.springframework spring-test 2 2
org.testng testng 1 2
com.fasterxml.jackson.core jackson-core 1 1
com.google.code.gson gson 1 1
com.jayway.restassured rest-assured 1 1
org.httpunit httpunit 1 1

We also checked whether the questions were indeed closely
related to the API methods. We found 50 cases closely
related to the usage of the method in the API, while in
other cases the method was part of the sample code, but
the questions were about some other code components or
were not related to how the API should be used. For instance,
the Stopwatch.stop() method of com.google.guava
appeared in 14 questions discussing some performance issues.
The code samples in these questions measured time with
Stopwatch, but they were not related to the usage of
Stopwatch.

Regarding the discussion of a problem related to the LAs,
we found only three cases where the problem mentioned in the
question could indeed originate from a problem related to the
LA affecting the method. Even for these cases, this was not
explicitly mentioned. An example can be seen in Figure 1. The
Assume.assumeTrue method of junit has the following
LA: “C.2: Method comments and signature use antonyms:
false versus true. Signature: Assume.assumeTrue(boolean b):
void”. The reason for the LA is the documentation of the
method, which says the following: “If called with an expression
evaluating to false, the test will halt and be ignored”. More
interestingly, the assumeFalse has the following comment:
The inverse of assumeTrue(boolean).” Although, the problem
in the question is not explicitly related to the antonym in
the documentation. Indeed, the documentation misses the
information.

Summary for RQ2: We did not find clear evidence that the
existence of LAs admittedly triggers questions on Stack Over-
flow. We notice, however, that just like the example in Figure 1,
some LAs are probably more prone to misunderstandings.

V. THREATS TO VALIDITY

Threats to construct validity concern the relation between
the theory and the observation, and in this work are mainly due
to the measurements we performed. This is the most important
kind of threat for our study, and is related to:



Fig. 1. An example SO question related to the usage of
Assume.assumeTrue(boolean), a junit method with a LA because of
an antonym in the documentation.

• RQ1: Approximations due to identifying bug-fixing com-
mits using regular expressions [41]. We used the approach
proposed by Fischer et al. [41] mining regular expressions
in commit notes to identify bug-fixing commits, thus
possibly identifying false positive and missing false
negative commits.

• RQ1: Approximations due to identifying bug-inducing com-
mits using the SZZ algorithm [19]. We used heuristics to
limit the number of false positives, for example excluding
blank lines from the set of bug-inducing changes. However,
we are aware of possible imprecisions introduced by the
SZZ algorithm especially due to tangled commits [49]
comprising a bug-fixing activity as well as other changes
(e.g., some refactoring operations).

• RQ1 and RQ2: Accuracy of the LA detection tool. To
detect LAs we used the tools developed by Arnaoudova
et al. [17]. Given the magnitude of our study, manually
validating the output of the tool was clearly not an option.
However, from the study reported in the original original
paper introducing the tool we used [50], we know that the
tool’s precision for the twelve considered LAs is ∼77%.
Moreover, our qualitative analysis helped in identifying
some borderline LA instances impacting our findings.

• RQ2: Imprecisions in identifying Stack Overflow questions
related to the investigated APIs. Our approach to link
Stack Overflow questions to methods of APIs relied on
the extraction of method signatures from code blocks.
This approach can miss cases when a method signature
cannot be extracted from the code block or when it can
be extracted, but the same signature appears in multiple
APIs. This introduces imprecision in identifying questions.
To estimate this imprecision, we manually investigated a
sample set of 135 Stack Overflow questions which were
related to methods with LAs. We observed a precision
of 82%. However, due to a large number of questions
tagged with Java, we could not estimate the recall of our
approach, and we may miss questions related to APIs.

Threats to internal validity concern external factors we did
not consider that could affect the variables and the relations
being investigated. This type of threats strongly affect the
findings of both our research questions. For what concerns
RQ1, the bug introductions for commits related to APIs affected

by LAs might be due to several factors totally unrelated to
the presence of LAs, and similar observations hold for RQ2.
For this reason, we addressed internal validity by qualitatively
analyzing our results.

Threats to conclusion validity concern the relation between
the treatment and the outcome. Although this is mainly an
observational study, wherever possible we used an appropriate
support of statistical procedures, integrated with effect size
measures, and qualitative analysis.

Threats to external validity concern the generalization of
results. In RQ1 we studied a total of 1,642 releases from 75
popular libraries and their 14,743 client projects, thus ensuring
a good generalizability of our results for what concerns Java
libraries and client projects. In RQ2 we limited our study to
the latest release of each of the 75 considered libraries due to
the need of linking Stack Overflow questions to API methods.
For both research questions, larger replications of our study
possibly performed by also including languages different than
Java can help to confirm or contradict our findings.

VI. CONCLUSION AND FUTURE WORK

We investigated the impact of Linguistic Antipatterns (LAs)
affecting APIs on the developers of client projects using such
APIs. We studied whether (i) developers are more likely to
introduce bugs when using for the first time APIs affected by
LAs as compared to clean APIs, and (ii) developers tend to
ask more questions when working with APIs affected by LAs
as compared to clean APIs.

While our statistical analysis indicated some effect of
LAs on the likelihood of introducing bugs and of triggering
Stack Overflow questions, our qualitative analysis did not
allow us to explain such a phenomenon. Clearly, this does
not contradict the strong empirical evidence showing the
negative impact of LAs on code comprehensibility [17], [18],
nor the fact that LAs are considered as bad programming
practices by software developers [17]. However, our findings
call for additional investigation about the impact on LAs on
code-related activities, maybe conducted through controlled
experiments better allowing to isolate the effect of the studied
variable.
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