
SQLInspect: A Static Analyzer to Inspect Database Usage in
Java Applications

Csaba Nagy
University of Namur, Belgium

Università della Svizzera italiana (USI), Switzerland
csaba.nagy@unamur.be

Anthony Cleve∗
University of Namur, Belgium
anthony.cleve@unamur.be

ABSTRACT
We present SQLInspect, a tool intended to assist developers who
deal with SQL code embedded in Java applications. It is integrated
into Eclipse as a plug-in that is able to extract SQL queries from
Java code through static string analysis. It parses the extracted
queries and performs various analyses on them. As a result, one
can readily explore the source code which accesses a given part
of the database, or which is responsible for the construction of a
given SQL query. SQL-related metrics and common coding mistakes
are also used to spot inefficiently or defectively performing SQL
statements and to identify poorly designed classes, like those that
construct many queries via complex control-flow paths. SQLInspect
is a novel tool that relies on recent query extraction approaches. It
currently supports Java applications working with JDBC and SQL
code written for MySQL or Apache Impala. Check out the live demo
of SQLInspect at http://perso.unamur.be/~cnagy/ sqlinspect.

KEYWORDS
MySQL, Apache Impala, Embedded SQL, Static Analysis, Metrics,
Bad Smells, Concept Location, Java, JDBC, Eclipse
ACM Reference Format:
Csaba Nagy and Anthony Cleve. 2018. SQLInspect: A Static Analyzer to
Inspect Database Usage in Java Applications. In ICSE ’18 Companion: 40th In-
ternational Conference on Software Engineering, May 27-June 3, 2018, Gothen-
burg, Sweden. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3183440.3183496

1 INTRODUCTION
SQL is the query language of mainstream relational databases, but
it is also used by new-generation distributed database management
systems. It was number two on the list of most popular program-
ming languages in the 2017 survey of StackOverflow1. For com-
parison, JavaScript was the first and Java the third on the same
list. In Java, a standard way to communicate with the DBMS is to
send SQL statements to the database via JDBC and then process
the answer with the result. This either requires the developer to
∗This work was supported by the University of Namur and by the Fonds de la Recherche
Scientifique-FNRS under EOS Project 30446992 SECO-ASSIST.
1https://insights.stackoverflow.com/survey/2017

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3183496

write the queries and to embed them as strings in the source code,
or to use a higher-level API like an ORM which translates the data-
base accesses to SQL. It is quite rare that an SQL statement is just
statically embedded in the code. More frequently, it is constructed
dynamically via string operations on variables scattered throughout
different source code locations. In the end, the statement is rarely
visible to the developer in its final form as it is sent to the database.
An error report may occur that will make it visible, but it would
probably be too late. This query embedding mechanism makes it
difficult to work with the database and to avoid the construction of
erroneous or inefficient queries.

One problem is dynamicity. That is, to collect the SQL statements
of dynamic string operations, they have to be tracked down during
execution (e.g., by dynamic analysis), which is not always feasible
during the development and it limits the analysis to a single exe-
cution. Using a static analyzer would reap benefits, but it cannot
resolve corner-cases of dynamically assembled strings. Another
problem is the weak tool support of the code interacting with the
database. Understandably, DBMSs limit their tool support to work
within the boundaries of the database. They cannot afford to invest
much effort in the development of the client side; likewise, the
situation is the same for client applications. As a result, it is the
developer who has a hard time managing the SQL code in between.

Third parties have realized this problem, and now there are some
tools available. For example, XRebel2 supports the tracking of SQL
and NoSQL queries so one can explore the number of affected
rows and required execution time for each database access. For
this purpose, it dynamically catches the SQL strings sent to the
database. The Eclipse Data Tools Platform3 provides an environment
for Eclipse to work with data-centric systems. Its SQL Development
Tools package assists in editing SQL through code completion, for-
matting, and dialect specialization. One can explore the execution
plan of a given query too. It makes it easier to work with SQL
inside the IDE, but does not handle the SQL embedded in the code.
The only tool designed for this is Alvor [2], developed as an Eclipse
plug-in. It statically evaluates strings passed to JDBC methods for
subsequent execution and to check syntax/semantics correctness
or object availability. Alvor was a Google code project, but it seems
to have been discontinued, and its functionality remains limited to
checking the semantic correctness of the extracted queries.

SQLInspect is a novel tool for statically extracting SQL queries
embedded in Java and performing various analyses on them. It
seeks to provide support for developers to accomplish SQL-related
maintenance tasks in the code, where it encounters data.

2https://zeroturnaround.com/software/xrebel/
3https://www.eclipse.org/datatools/

http://perso.unamur.be/~cnagy/sqlinspect
https://doi.org/10.1145/3183440.3183496
https://doi.org/10.1145/3183440.3183496
https://doi.org/10.1145/3183440.3183496


ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Csaba Nagy and Anthony Cleve

2 USE CASES
Our aim was to combine state-of-the-art software analysis tech-
niques in SQLInspect and provide a compelling, working solution
for developers to assess the Java code using embedded SQL. This is
very helpful for data-centric applications where higher level APIs
are avoided in favor of efficiency or because of limited resources,
e.g., distributed database applications or Android development.

For this purpose, (I) we implemented a static control-flow based
SQL extraction technique that is configurable and able to deal with
Java applications that have hundreds of thousands of lines of code.
(II) The queries extracted are then analyzed by an internal parser
for MySQL and Apache Impala, which can tolerate unresolved code
fragments, i.e., parts of string operations that cannot be statically
resolved due to the dynamicity problem. (III) It resolves identifiers
of database objects to show the slice of the source code working
with given schema objects. (IV) SQL quality metrics are provided
for database accesses so one can assess methods and classes that
pester the database too much or complex queries which handle
lots of schema elements. (V) SQL bad smells are also detected, e.g.,
common coding mistakes within the extracted queries. (VI) A tree-
matching algorithm enables the developer to perform a configurable
search for a given query within the entire source code. Should a
query show up in an error report, one can search for its location in
the source code. This search can be configured so that some parts of
the query are ignored, e.g., literal values or identifier names. Below,
we elaborate on the main use cases.

Figure 1: A screenshot of SQLInspect with a query selected
in the editor.

Query Inspection. To help us better understand the SQL state-
ments and the way they were constructed, SQLInspect takes ad-
vantage of the features of Eclipse. Hotspots, the locations in the
source code where the queries are sent to the database, are marked
withmarkers. Hence, if a statement sends a query to the database, a
marker will indicate this in the editor. Other source code elements
taking part in the construction (e.g., variables, string concatena-
tions) are also annotated. Therefore, the whole slice responsible for
the creation of the query can be highlighted (see Figure 1). This
allows the developer to readily debug or modify the query and the
source code involved in its construction.

Query Search. It is not unusual for information systems to have
toworkwith hundreds of tables and pester the database with several
thousands of different SQL queries coming from different source
code locations. If a query causes an error on the database side, it
can be extremely hard to track it down in the Java classes. Imagine,
for instance, when a DBA spots a SELECT statement causing heavy
database load. But it just appears randomly from time-to-time, and
the application does not report an error message. On the database
side, it is only the SELECT that is visible for the DBA, and its source
code location remains unknown. If we do not get an exception or
other indication of the misbehaving query on the client side, it can
be quite hard to locate it.

Figure 2: The query search feature is integrated into the
search page of Eclipse.

We implemented a query search feature in SQLInspect to address
such a situation. A search can be initiated under the search menu
of Eclipse just like a normal text or Java search, and the results will
show up in a tree view. The query given here is parsed by the inter-
nal SQL parser, and a tree matching algorithm looks for statements
in the code with similar syntax trees. This query matching can be
configured so as to ignore literal values or identifier names. The
algorithm also handles the case where a query in the source code
cannot be fully resolved. More details about this algorithm can be
found in our early research achievement paper [9].

Table/Column Access Analysis. A more general use case is
when one wants to explore the classes and methods in the source
code from which a given part of the database is accessed. If the
schema description is available, SQLInspect can parse it and resolve
the identifiers in the SQL. With this information, it is possible to
determine which Java methods access specific tables or columns.
SQLInspect provides a view to browse the database schema, and
a search for methods accessing selected schema elements can be
easily launched from it. This is an effortless way of seeing which
part of the source code is responsible for handling specific database
tables or columns.

Embedded SQL Bad Smells. To provide guidance on the im-
provement of SQL queries, SQLInspect implements algorithms to
identify SQL bad smells based on the query antipatterns defined
in the SQL Antipatterns book of Bill Karwin [5]. We rely here on
our earlier bad smell detection method, which also motivated us
to improve and extend our work, where we give more details on
these bad smells [8].



SQLInspect: A Static Analyzer to Inspect Database Usage in
Java Applications ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

Embedded SQLQualityMetrics. SQLInspect has information
both on the structure of a query and on the source code respon-
sible for constructing it. This enables us to implement a wide
range of quality metrics to identify problematic or poorly designed
classes and SQL statements. For example, one can investigate which
classes are responsible for the majority of queries, the most complex
queries, and the queries using many joins. To this end, quality met-
rics for embedded SQL queries have been implemented following
Brink et al. [3]. These metrics can be explored in a view or they can
be exported for further investigation in XML format.

3 IMPLEMENTATION DETAILS
SQLInspect was developed using Java technologies for Eclipse Oxy-
gen (4.7). Its overall design is illustrated in Figure 3. Here, there are
twomain components. The SQL Analyzer is responsible for perform-
ing all the analyses related to the SQL code, and the Java-related
analyses are implemented in an Eclipse plug-in. While SQLInspect
is seamlessly integrated into Eclipse, both key components have
command-line interfaces for debugging or scripting purposes.

Figure 3: Design overview of SQLInspect.

The typical workflow takes place within the IDE. It starts with
an analysis that can be initiated from the main menu or the context
menu of the Eclipse project. The results can then be investigated in
different views. Some problem markers and ruler annotations are
created in the standard way in Eclipse, to indicate the location of
a warning. We also created search pages under the Search menu of
Eclipse. What is more, SQLInspect can be configured with project-
specific settings via standard property pages.

When an analysis has been executed, SQLInspect processes all
the compilation units of the Java project. Eclipse JDT API calls are
invoked to parse the Java classes, and then the queries are extracted
in twomain steps. (I) First, we look for API calls sending SQL queries
to the databases. These are called hotspots following the terms of

Alvor [2] and JSA[4]. For JDBC, this is implemented by the JDBC
Hotspot Finder (see Figure 3) using the Visitor pattern provided
by JDT. While traversing the AST, it looks for given method calls
like the Statement.execute() call. It also handles the usage of
PreparedStatements, where the SQL statement is first ‘prepared’
in an object for execution. It looks for the definitions of these objects
where the SQL string is provided as a parameter. (II) In the second
phase, the Query Extractor takes all the hotspots and extracts all
the SQL strings passed to them.

The Query Extractor implements a control-flow path-sensitive
query extraction algorithm following the method introduced in [7].
However, to integrate it into the IDE, we implemented this approach
on the Eclipse AST andmade it configurable to meet project-specific
requirements. Once a hotspot is identified, we recursively resolve
the query expression. This resolution follows the control-flow in a
backward direction and terminates if an expression is a constant
expression according to the JLS2 specification4, or if the analysis
reaches given thresholds (e.g., max depth or number of branches).
During the resolution, a Query Model is constructed in a tree. It
specifies relations between Java elements that build the fragments
of the query. Lastly, the potential query strings are generated from
this model.

The resulting strings are then given to the SQL Analyzer along
with the schema dump (if it was provided). Its MySQL and Apache
Impala Parsers are written using ANTLR 4.7. Both parsers construct
an AST defined by a common SQL model, and at the end of an
analysis session, an identifier resolution is performed on this AST.
The resulting SQL ASG (Abstract Semantic Graph) serves as input
of the Smell Detector algorithms, SQL Metrics and the Table Access
Analyzer. These analyzers are implemented as visitors, each one
realizing a single pre-order traversal of the SQL AST.

4 EVALUATION
We tested the performance of SQLInspect and evaluated the re-
sults on open-source Java systems, relying on JDBC as their main
database access library. ADempiere is an ERP system under active
development with 3,422 downloads in October 2017. It was forked
from Compiere in 2006. Therefore, the origin of the code is the same
but it evolved over a decade independently. Plandora is a medium-
sized project management system, and Plazma is an ERP and CRM.
All of the projects can be downloaded from https:// sourceforge.net.

Table 1 shows the results of the performance benchmark. These
tests were performed on an Intel(R) Core(TM) i5-6300 CPU@2.40GHz
machine with 16GB RAM. Eclipse was run with a limit of 1024MB
maximum heap size (-Xmx), and for the query extraction, we used
our intra-procedural path-sensitive implementation limited to max-
imum 100 CFG branches with a maximum nesting level of 10. In
the table, LOC refers to the lines of code (excluding blank lines
and comments), Extr., Pars. and An. show the time needed for the
SQL extraction, the SQL parser (with identifier resolution) and the
remaining analyzers (table/column access analysis, bad smell de-
tectors and metric calculations). The Mem. column shows the total
memory consumption of Eclipse during the analysis. All the values
are averages of five executions. For the sake of comparison, we
included the measurements of Annamaa et al. [2], as Alvor was

4https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html

https://sourceforge.net


ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Csaba Nagy and Anthony Cleve

evaluated on Compiere and Plazma too. It can be seen that the
systems have evolved since 2010. Still, the figures are impressive.
An important difference however is that for memory usage, we
measured the total memory consumption for our whole analysis
process, which includes more analysis steps than those for Alvor.

Project LOC Time (s) Memory
Extr. Pars. An. (Mb)

Adempiere 797,482 157.9 38.8 0.2 1,969
Compiere 400,383 78.0 24.8 0.2 1,359
CompiereAlvor 319,570 120.0 10.4 - 445*
Plandora 93,777 14.2 7.3 0.7 97
Plazma 182,771 52.1 4.1 0.0 38
PlazmaAlvor 48,520 3.8 0.5 - 64*

Table 1: Benchmark results on open-source systems

Project No of. DB No. of No. of Max. of
Acc. Classes Hotspots Queries Queries

Adempiere 514 1,978 3,579 128
Compiere 480 1,164 2,844 512
CompiereAlvor - 1,343* - -
Plandora 62 424 571 72
Plazma 24 140 146 3
PlazmaAlvor - 94* - -

Table 2: Statistics of hotspots on the benchmark systems

Table 2 provides statistics of the hotspots identified and the
queries extracted. The first column shows the number of classes
with hotspots. The next two columns show the total number of
hotspots and queries, while the last column lists the max. number of
queries we found for a hotspot. Again, results of Alvor are included.
We notice here, however, that a hotspot in SQLInspect is slightly
different than that in Alvor. For us, a hotspot is the execution point
of a query, while for Alvor, it is the point where a string is finally
assembled. For a Statement in JDBC, these are the same, but for
a PreparedStatement the execution (e.g. executeQuery() call) is
preceded by one or more Connection.prepareStatement() calls.
As a result, Alvor counts more hotspots. Another difference is that
Alvor uses a regular language to describe the queries for each
hotspot, while we generate all the possible query strings. Therefore
a direct comparison of the number of queries is not possible.

Overall, we found that SQLInspect performs well. The SQL ex-
traction competes with the extraction implemented in Alvor and
the parsing time remains good considering the actual size of the
applications. The reason for the relatively high memory usage is
that our current implementation keeps in memory the AST nodes
for all the query parts regardless of whether the query is opened
in an editor or not. We plan to optimize this in the future. We
should also mention that we analyzed the systems in Eclipse by
merely importing each as a whole project and we did not break
them down into smaller projects. In practice, Eclipse projects are
typically smaller in size than the complete systems we examined.

5 RELATEDWORK
In the introduction, we mentioned tools that inspired us, but there
are many more that deserve a mention here.

In Java, Alvor is the most similar tool to SQLInspect. However,
Alvor does not go further than a semantic analysis of the embedded
query, while SQLInspect carries out a wide range of analyses. The

basic query extraction algorithm is also entirely different as Alvor
relies on an interprocedural, path-insensitive constant propagation
algorithm, whereas SQLInspect is path-sensitive. There is also a
plug-in named Eclipse SQL Explorer, but it serves a different pur-
pose as a thin SQL client to query and browse JDBC-compliant
databases. A notable tool here is also DBScribe [6] that can extract
SQL statements from Java code, but for documentation purposes.

Outside of the world of Java, a recent work of Anderson et al.
[1] implements a similar query extraction algorithm and query
model for PHP applications. There is also a tool named Django SQL
Inspector5 for projects using Django, which extracts SQL queries
embedded through more layers and measures similar SQL metrics.

It should be added that SQLInspect is a novel tool implementation
of our research work on SQL extraction [7], concept location [9] and
smell detection [8]. As a tool implementation, we have significantly
extended our work with new features such as the query search, the
table access analysis and the quality metrics.

6 CONCLUSION AND FUTUREWORK
SQLInspect targets a challenging and practical software engineer-
ing problem of developers working with data-centric applications
written in Java; namely overcoming the hassle of maintaining SQL
code embedded in classes. For this purpose, we implemented re-
cent analysis techniques that we briefly described here. Besides
the implementation details, we provided some use cases in which
SQLInspect proved useful. Afterwards, we performed a preliminary
evaluation on open-source systems to compare SQLInspect with the
only tool, Alvor, which is available for a similar purpose but it has
less functionality. The results are more than promising: SQLInspect
successfully competes on the query extraction task, and it also offers
a wider range of functionality. We have several ideas for continuing
the development. For example, we would like to smoothly integrate
SQLInspect into the build process of Eclipse with an incremental
analysis, and we also would like to support more SQL dialects.

REFERENCES
[1] David Anderson and Mark Hills. 2017. Supporting Analysis of SQL Queries in

PHP AiR. In Proc. of the 17th IEEE Int. Work. Conf. on Source Code Analysis and
Manipulation.

[2] Aivar Annamaa, Andrey Breslav, Jevgeni Kabanov, and Varmo Vene. 2010. An
Interactive Tool for Analyzing Embedded SQL Queries. In Proc. of the 8th Asian
Conf. on Prog. Languages and Systems (APLAS2010). Springer-Verlag, 131–138.

[3] Huib van den Brink, Rob van der Leek, and Joost Visser. 2007. Quality Assessment
for Embedded SQL. In Proc. of the 7th Int. Working Conf. on Source Code Analysis
and Manipulation (SCAM2007). IEEE, 163–170.

[4] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. 2003. Pre-
cise Analysis of String Expressions. In Proc. of the 10th Int. Conf. on Static Analysis
(SAS2003). Springer-Verlag, 1–18.

[5] Bill Karwin. 2010. SQL Antipatterns: Avoiding the Pitfalls of Database Programming
(Pragmatic Programmers). Pragmatic Bookshelf.

[6] Mario Linares-Vásquez, Boyang Li, Christopher Vendome, and Denys Poshyvanyk.
2016. Documenting Database Usages and Schema Constraints in Database-centric
Applications. In Proc. of the 25th Int. Symp. on Soft. Testing and Analysis. ACM, 12.

[7] Loup Meurice, Csaba Nagy, and Anthony Cleve. 2016. Static Analysis of Dy-
namic Database Usage in Java Systems. In Proc. of the 28th Int. Conf. on Advanced
Information Systems Engineering (CAiSE2016). Springer LNCS.

[8] Csaba Nagy and Anthony Cleve. 2017. Static Code Smell Detection in SQL Queries
Embedded in Java Code. In Proc. of the 17th IEEE Int. Working Conf. on Source Code
Analysis and Manipulation (SCAM 2017). IEEE Comp. Soc.

[9] Csaba Nagy, Loup Meurice, and Anthony Cleve. 2015. Where Was This SQL Query
Executed? A Static Concept Location Approach. In Proc. of the 22nd Int. Conf. on
Software Analysis, Evolution, and Reeng. (SANER2015). IEEE Comp. Soc., 580–584.

5https://github.com/rory/django-sql-inspector


