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Abstract—Meaningful, expressive identifiers in source code can
enhance the readability and reduce comprehension efforts. Over
the past years, researchers have devoted considerable effort to
understanding and improving the naming quality of identifiers in
source code. However, little attention has been given to test code,
an important resource during program comprehension activities.

To better grasp identifier quality in test code, we conducted a
survey involving manually written and automatically generated
test cases from ten open source software projects. The survey
results indicate that test cases contain low quality identifiers,
including the manually written ones, and that the quality of
identifiers is lower in test code than in production code. We also
investigated the use of three state-of-the-art rename refactoring
recommenders for improving test code identifiers. The analysis
highlights their limitations when applied to test code and supports
mapping out a research agenda for future work in the area.

Index Terms—Test code quality; Empirical study

I. INTRODUCTION

Identifiers represent a major part of the source code [1] and
program comprehension becomes significantly harder when
they are not meaningful [2], [3]. Indeed, while comprehending
code, programmers rely on the meaning encoded in names [4],
since those are supposed to record knowledge and communicate
key concepts in the source code [1], [5]. Poor identifier names
can hinder code comprehension and negatively affect code
quality [6]. Moreover, they may also threaten the performance
of identifier based software engineering tools [7], [8].

Consequently, many naming conventions, guidelines, and
best practices have been distilled to help developers to choose
appropriate names for their identifiers. For example, the
Java Language Specification [9] indicates rules for naming
local variables and parameters: e.g., “should be short, yet
meaningful”; “one-character identifiers should be avoided,
except for temporary and looping variables, or where a variable
holds an undistinguished value of a type”. Researchers have also
extensively studied what makes an identifier good or bad [2]–
[4], [10], [11], and how it is possible to automatically improve
existing ones using Natural Language Processing (NLP) [12],
thesauruses [13], or statistical language models [14], [15].

Existing empirical studies and rename refactoring techniques
target the source code as a whole when studying/improving
identifier names, often ignoring the test code, despite its
important peculiarities. For instance, many studies found that
developers take less care of the quality of test code as compared
to production code, thus leading to possible quality issues in
the tests [16]–[21], including specific types of smells [22]–[24]
accompanied by refactorings aimed at removing them [22].

The quality problem of test code is further exacerbated
when using automated test suite generators [25], [26]. These

tools [27] represent a useful aid to identify defects through a
systematic, automatic approach and to improve the coverage of
a test bed. Another possible use case is to generate an initial
test suite and then manually improve/evolve it. In any case, the
generated code, and especially the assertions of tests, need to
be manually validated. Hence, the quality of the generated code
matters, including the meaningfulness of the used identifiers.

We first present an empirical investigation of the quality
of identifiers in test code and compare it to the quality of
production code. Given the result that the identifier quality is
often unsatisfactory, especially for the test code, we investigate
whether the identifier quality can be improved by three state-of-
the-art rename recommenders [15], [28], [29]. More specifically,
in this paper we address the following research questions:

RQ1: What is the quality of identifiers in the test code
of open source projects? We conducted a survey asking
19 participants to inspect the quality of identifiers in both,
human-written manually and automatically generated, test code.
As target systems, we select ten open source Java projects
maintained by companies/organizations or by small teams of
developers, ensuring high popularity and diversity of the target
projects. The participants were asked to judge the identifiers
and to list for the characteristics of high- and low-quality
identifiers. To ease the interpretation of the achieved results
and to have a baseline for comparison, we also asked four of
the 19 participants to evaluate the quality of identifiers in the
production code of two of the subject systems.

RQ2: What is the accuracy of rename refactoring ap-
proaches when applied on test code identifiers? We evaluate
three state-of-the-art rename refactoring approaches, namely
CA-RENAMING [28], NATURALIZE [29], and LEAR [15]. We use
the same ten projects used to answer RQ1 and 429 additional
projects from GitHub. We assess the rename refactorings with
two different datasets as oracle: 1) the high-quality identifiers
obtained as an output of RQ1, 2) identifiers from the test code
of open source projects that underwent code reviews. We also
used the two systems for which we collected evaluations related
to the quality of identifiers in production code to compare the
performance of the renaming tools on the test and on the
production code.

Our results show that low-quality identifiers are spread both
in manually written and in automatically generated tests, and
this problem is more relevant in test than in production code
(RQ1). State-of-the-art rename refactoring tools are of little
help in improving the identifier quality of test code while their
performance is more promising for production code (RQ2).
Major advances are needed in this field. Given our findings,
we outline a research agenda for future work in the area.
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II. RELATED WORK

A. Quality of Identifiers

Strong connections have been discovered between bad
identifier names and code quality issues [6]. Researchers
have put a considerable amount of effort into investigating
which characteristics of identifier names can influence program
comprehension, positively or negatively.

Deissenboeck and Pizka [1] introduced two important con-
cepts for good identifier naming: consistency and conciseness.
They also proposed a model based on bijective mappings
between concepts and names. The model requires that each
concept should have a unique name and this name should be
able to represent the concept correctly.

Lawrie et al. [2], [3] studied the impact of identifier length
on program comprehension and found out that developers can
easily comprehend source code with full word identifiers or
well-formed abbreviations. However, excessively long identi-
fiers might hinder program comprehension as they overload
short-term memory. A recent study with 72 professional C#
developers conducted by Hofmeister et al. [30] provides
evidence that using full words in identifiers helps developers
in code comprehension, compared to letters and abbreviations.

Lawrie et al. [31], [32] also analyzed identifier usage in
186 programs written in four different programming languages.
Their findings disclose that better programming practices are
producing higher quality identifiers.

Binkley et al. [11] conducted an experiment with 150
participants to understand the impact of identifier styles on
program comprehension. As a result, they discovered that camel
casing can help novices detect identifiers more accurately, at a
cost of more time needed.

Researchers have also investigated practical issues (e.g., bad
smells, inconsistencies) originating from identifier naming.
Kim et al. [33] performed interviews with developers, finding
that developers often deal with inconsistent identifiers and the
inconsistency is more common in larger projects. Butler et al.
[34] analyzed 3.5 million Java reference name declarations
in 60 well-known Java projects, and manually tagged around
46,000 names. Their study shows that the use of unknown
abbreviations and words is not rare in the source code and
might potentially hinder program comprehension.

Abebe et al. [35] introduced the notion of “lexicon bad
smell” to indicate potential problems in identifier names. With
the tool they built, they were able to identify 15,633 bad smells
in Alice, an open-source software system containing around
1.5 million lines of code, demonstrating the wide spread of
imperfect identifiers.

Arnaoudova et al. [36] presented a catalogue of 17 linguistic
antipatterns (LAs) capturing inconsistencies among the naming,
documentation, and implementation of attributes and methods,
showing that LAs are negatively perceived by developers who
highlighted their negative impact on code comprehension.

Fakhoury et al. investigated how poor lexica of source code
negatively affects the readability of source code, thus hindering
comprehension processes [37].

To the best of our knowledge, our study is the first focusing
on the quality of identifiers used in test code.

B. Rename Refactoring

Identifiers are often composed of abbreviations, and tech-
niques like identifier splitting [38]–[41] and expansion [42],
[43] have been proposed to ease comprehension. However, in
practice, lots of identifiers do not follow naming conventions
and can be composed of meaningless tokens. Researchers have
also investigated rename refactoring approaches, which rename
the identifier with a more meaningful and/or consistent name.

Corbo et al. [44] and Reiss [45] proposed renaming ap-
proaches able to learn code identifier conventions from existing
code. The rename refactoring approaches proposed by Feldthaus
and Møller [46] and by Jablonski and Hou [47], instead,
focus on the relations between variables, inferring whether
one variable should be changed together with others.

Caprile and Tonella [13] proposed an approach to enhance the
meaningfulness of identifiers with a standard lexicon dictionary
and a thesaurus collected by analyzing a set of programs,
replacing non-standard terms used in identifiers with a standard
one from the dictionaries.

Thies and Roth [28] proposed a static analysis based
approach to support identifier renaming: if a variable v1
is assigned to an invocation of method m (e.g., name =
getFullName), and the type of v1 is identical to the type
of the variable v2 returned by m, then rename v1 to v2. This
was effective when experimented on open source projects.

Allamanis et al. [29] proposed NATURALIZE, a n-gram
language model based approach which suggests new names to
identifiers. The n-gram model predicts the probability of the
next token given the previous n-1 tokens. NATURALIZE learns
coding conventions from the codebase, promoting the consistent
use of identifiers. The approach trains a language model on
the rest of the project code, and then predicts the identifier
names for the target files. Building on top of NATURALIZE,
Lin et al. [15] proposed LEAR, an approach combining code
analysis and n-gram language models. The differences between
LEAR and NATURALIZE are 1) while NATURALIZE considers
all the tokens in the source code, LEAR only focuses on tokens
containing lexical information; 2) LEAR also considers the type
information of variables.

The approach proposed by Daka et al. [48] is explicitly
designed to rename identifier in test code and, in particular,
in automatically generated unit tests. It generates descriptive
method names for automatically generated unit tests by summa-
rizing API-level coverage goals. A relevant work by Høst and
Østvold [10] identifies the “bugs” in method names, meaning
names that do not reflect the responsibilities implemented in
the method. This approach recommends new method names by
learning naming rules from a corpus of Java applications. Since
these tools [10], [48] only recommend method names, they
cannot be used in our study to suggest names for variables.

We assess the accuracy of three identifier renaming tech-
niques [15], [28], [29] when applied on test code, including a
comparison of their performance on production code.
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III. STUDY I: QUALITY OF IDENTIFIERS IN TEST CODE

Our goal is to better understand the characteristics of
good/bad identifiers used by local variables in test methods.

A. Research Question

Studies [2], [4], [10] have investigated the quality of
identifiers in production code, yet little attention has been
given to test code. We aims to answer the research question:

RQ1: What is the quality of identifiers in the test code of
open source projects?

The quality of the identifiers was judged by 19 participants,
who were also required to justify their quality assessment
by explicitly reporting what makes an identifier good or bad.
Given the advances in automatic test case generation [27], we
also asked participants to judge the quality of identifiers in
automatically generated test cases for the same set of projects.
Instructions were distrubuted to participants, stressing that high-
quality identifiers make the code easier to read and understand.

The set of identifiers deemed as “good” in this study will be
used as a ground truth in our second study (Section IV).This
allows to have a manually validated ground truth, overcoming
one of the limitations of experimentations performed to evaluate
the performance of naming approaches, in which researchers
often use the identifiers defined by developers in open source
projects as oracle [14].

B. Study Context and Data Collection

TABLE I: Subject projects for Study I: Identifier quality.

Project Repository # Java Files ELOC

Community Projects
Commons Lang https://goo.gl/wdZMf9 323 75,958
Gson https://goo.gl/JkG9CV 176 22,272
Jackson Core https://goo.gl/WTeh3N 238 42,150
Plexus-Utils https://goo.gl/j3ckGk 128 24,710
REST Assured https://goo.gl/ivx7jK 171 9,175

Team Projects
Jesque https://goo.gl/GJxAuv 121 10,339
Jongo https://goo.gl/M2nDdK 155 8,190
la4j https://goo.gl/fPKYDX 117 13,480
Natty https://goo.gl/RBznPG 27 3,854
ORMLite Core https://goo.gl/TXaRiR 280 34,970

The study context consists of the 10 open source Java
projects from GitHub (Table I). We selected well-known
projects maintained by companies/organizations (from now
on community projects), as well as projects maintained by
small teams (from now on team projects). We selected five
projects for each of these two categories, by adopting the
following selection criteria:

• Popularity. For community projects, we selected popular
libraries hosted on Maven (https://mvnrepository.com/)
and used by at least 500 client projects. For the team
projects, we select projects having more than 300 stars
on GitHub, to filter out “toy projects”.

• Diversity. The projects are of different size and type and
run by different entities, preventing the bias of internal
coding conventions and programming practices.

To answer RQ1, we conducted a survey asking 19 partic-
ipants to manually inspect the quality of identifiers in both,
human-written and automatically generated, test code.

Manually written test code. For each of the 10 projects, we
randomly selected eight test methods from different classes to
guarantee the generalizability and parsed them with JavaParser
(https://javaparser.org/). In total, we extracted 237 manually
written identifiers from these 80 test methods.

Automatically generated test code. We used EvoSuite
[27] to generate test code for the selected projects, randomly
selecting two test methods from each project. We collected 46
automatically generated identifiers.

Summarizing, we extracted 283 identifiers, 237 manually
written and 46 automatically generated. We preferred to have
more manually written than automatically generated identifiers
since we expect automatically generated identifiers to follow a
limited number of naming patterns and, thus, a smaller number
of instances is necessary to observe a trend in the data.

We also asked four participants to judge the quality of
identifiers in the production code of Jackson Core and ORMLite
Core (i.e., one community and one team project). This was
done to (i) have a term of comparison when discussing the
results achieved in terms of quality of the identifiers in test
code, and (ii) verify whether there is a difference in the quality
of identifiers used in test and production code. In this case,
we extracted 47 identifiers from 20 methods (10 per system)
contained in 20 different classes of the two systems. Note that
the study on the production code identifiers has only been
conducted on two systems since we preferred to polarize the
participants’ effort towards the evaluation of test identifiers,
being this the main goal of our study.

Table II summarizes the identifiers judged for each project.

TABLE II: Number of identifiers inspected for each project

Project #Human Written
Test Identifiers

#Auto. Gener.
Test Identifiers

#Human Written
Prod. Identifiers Total

Commons Lang 17 7 - 24
Gson 20 4 - 24
Jackson Core 38 8 26 46
Plexus-Utils 16 2 - 18
REST Assured 12 3 - 15
Jesque 25 7 - 32
Jongo 15 3 - 18
la4j 26 6 - 32
Natty 28 3 - 31
ORMLite Core 40 3 21 43
sum 237 46 47 330

1) Judgment of identifiers quality: Through convenience
sampling, we invited 19 participants, including 4 professional
developers, 11 computer science students (BSc, MSc, PhD), 2
academic staff to evaluate the quality of the identifiers collected
from the previous steps, based on how well the identifiers
support code comprehension. Participants had an average
of 6.6 years experience of Java development (median=7.0,
min=1, max=15), 1.5 years industrial experience (median=1,
min=0, max=5), and 2.8 years experience of software testing
(median=1, min=0, max=12). None of the participants was
involved in the development of the subject projects.
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TABLE III: Evaluation of identifier quality given by evaluators

Evaluation of Manually Automatically
Identifiers Written Generated

both good 59 (24.9%) 0 (0.0%)
both acceptable 13 (5.5%) 4 (8.7%)
both poor 36 (15.2%) 9 (19.6%)
both unsure 0 (0.0%) 0 (0.0%)
good & acceptable 43 (18.1%) 8 (17.4%)
good & poor 36 (15.2%) 6 (13.0%)
good & unsure 2 (0.8%) 0 (0.0%)
acceptable & poor 46 (19.4%) 19 (41.3%)
acceptable & unsure 1 (0.4%) 0 (0.0%)
poor & unsure 1 (0.4%) 0 (0.0%)

sum 237 (100.0%) 46 (100.0%)

Participants judged the identifiers from one test (or produc-
tion) method at a time using a Web app we developed1. The
app showed one test case/method at a time together with links
to the methods in the production code that it tests. Participants
are not explicitly informed whether the displayed method is
manually written or automatically generated. The quality of an
identifier was judged on a 3-point scale: “good”, “acceptable”,
“poor”. Participants could also select a “not sure” option.

Participants were asked to motivate their judgment by
explaining the positive and negative characteristics of identifiers.
An identifier judged as having a good (poor) quality could have
both positive and negative characteristics. We provided two
lists of predefined categories based on a literature review we
performed (one for positive and one for negative characteristics,
the detailed lists can be found in Section III-D), and participants
could also add their own quality attributes. Moreover, they had
the option to suggest a new name for the identifiers.

On average, each participant assessed the quality of 33.3
identifiers (median=23, min=16, max=118). Each identifier was
evaluated by two participants, totaling 566 manual evaluations
for test code and 94 for production code identifiers.

C. Data Analysis

To answer RQ1, we plot the distribution of quality scores
for the identifiers used in the subject test code. We discuss
the characteristics of good and poor identifiers as reported
by participants and compare the assessments provided for
community projects and team projects, and the differences
between human written and automatically generated identifiers.
We also compare the quality of manually written identifiers in
test and production code for Jackson Core and ORMLite Core.

D. Results

Table III reports the evaluations given by the participants to
the quality of the identifiers subject of our study. Since each
identifier has been judged by two evaluators, we report the
frequency of each possible pair of evaluations and their ratio
to the total number of evaluation pairs.

1The screenshots of the Web app can be found in the replication package:
https://identifierquality.bitbucket.io/webapp/

TABLE IV: Frequency of scores given to identifier quality

Evaluation Manually Automatically Sum
Written Generated

Identifiers Identifiers

good 199 (42.0%) 14 (15.2%) 213 (37.6%)
acceptable 116 (24.5%) 35 (38.0%) 151 (26.7%)
poor 155 (32.7%) 43 (46.7%) 198 (35.0%)
unsure 4 (0.8%) 0 (0.0%) 4 (0.7%)
sum 474 (100.0%) 92 (100.0%) 566 (100.0%)

1) Agreement Analysis: Assessing the quality of an identifier
is subjective and depends on the experience and coding habits
of developers. We first look at the level of agreement reached
by the study participants. For manually written variables, 45.6%
of evaluations for the same identifier reached an agreement:
both evaluators rate the same identifier as “good” (24.9%),
“acceptable” (5.5%) or “poor” (15.2%). Since each identifier
was judged on a 3-point scale, we also computed the cases of
“weak agreement”, meaning a 1-point difference on the quality
assessment scale (i.e., “good vs acceptable” and “acceptable
vs poor”). In this case, the ratio of agreement reaches 83.1%.
15.2% quality assessments gave totally different quality scores
(i.e., “good vs poor”), which confirms that developers can have
very different views on what a good identifier actually is.

For automatically generated variables, evaluators agreed in
28.3% of cases (as opposed to the 45.6% of the manually
written code) and weakly agreed in 87.0% of cases. 13.0%
obtained an inconsistent assessment (i.e., “good vs poor”).

The obtained agreement level confirmed the high subjective-
ness of this task. It also highlighted a good level of agreement
in discriminating between good and poor identifiers, with only
∼15% of identifiers falling in this strong disagreement scenario.

We also manually inspected these ∼15% of identifiers, and il-
lustrate them with some examples. One interesting controversial
identifier is “notDao”. In that test case, “dao” was created
to represent an object of type LocalBigDecimalNumeric.
The developer used “notDao” to represent another object of
a different numeric class. While one evaluator believes this
identifier is informative, the other considers “notDao” as
misleading as readers might consider it as a Boolean value.
Another example is the identifier “value”, assigned to a string
“easter ’06”. “value” is intended to be parsed by a date
parser. While one evaluator thinks this identifier is meaningful
and concise, the other believes “value” is too general.

2) Quality of Identifiers: Table IV reports the quality scores
assigned by participants to test code identifiers.

Manually written vs automatically generated. For man-
ually written identifiers, 42% of the ratings indicate a good
quality and an additional 24.5% an acceptable quality. ∼33%
of evaluations pointed to poor-quality identifiers. This indicates
that poor identifiers are frequent in manually written test code.

For automatically generated variables we obtained only
15.2% good evaluations (as compared to the 42% of manually
written ones), with an additional 38% of acceptable ratings, i.e.,
evaluators were not satisfied with the quality of identifiers in
automatically generated test cases in almost half of the cases.
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If we compare the results for manually written and auto-
matically generated variables, the quality of manually written
identifiers is better overall, especially considering that the
automatic test case generation approach rarely generates “good”
identifiers according to the study participants. It is worth
highlighting that in∼53% of the cases the evaluators considered
the automatically generated identifiers at least as acceptable,
indicating the use of good naming heuristics in EvoSuite.

We further analyze the obtained results in Section III-D3 to
better understand the reasons behind these quantitative findings.

Community projects vs team projects. Table V reports
the quality scores assigned to manually written variables in
community projects and team projects.

TABLE V: Evaluation of manually written variables

Evaluation Community Projects Team Projects
Manual Variables Manual Variables

good 65 (31.6%) 134 (50.0%)
acceptable 62 (30.1%) 54 (20.1%)
poor 77 (37.4%) 78 (29.1%)
unsure 2 (1.0%) 2 (0.7%)
sum 206 (100%) 268 (100%)

A quality score is assigned by a single participant to one
identifier (i.e., a single evaluation). This means that each
identifier results in two quality scores assigned by the two
participants evaluating it, thus 237 manually written identifiers
lead to 474 scores. As explained before, the same identifier
could have both a good and a poor evaluation.

We can see from the table that for community projects, the
ratios of “good”, “acceptable”, and “poor” quality evaluations
are quite similar (∼30%), while for team projects around half
of the evaluations pointed to a good identifier quality. This
seems to indicate that the presence of organizations behind
community projects does not guarantee better code quality
assurance, at least not for identifiers quality in test code.

TABLE VI: Quality of Identifiers in Test Code vs Production
Code for Jackson Core and ORMLite Core

Evaluation Test Code Production Code
Manual Variables Manual Variables

good 55 (35.3%) 49 (52.1%)
acceptable 41 (26.3%) 38 (40.4%)
poor 58 (37.2%) 7 (7.5%)
unsure 2 (0.2%) 0 (0.0%)
sum 156 (100%) 94 (100%)

Test Code vs Production Code. Finally, we conclude our
quantitative analysis by comparing the quality of manually
written identifiers in test and production code as judged by
four participants for two subject systems (i.e., Jackson Core
and ORMLite Core). Table VI shows the achieved results: For
production code, 92.5% of identifiers are judged as having a
good or an acceptable quality, as compared to the 61.6% of
the test code identifiers from the same systems. While a full
comparison of the quality of identifiers in test and production
code is out of the scope of this paper, the results obtained on

these two systems seem to indicate that the quality problem
is more evident in test code rather than in production code.
Additional data is present in our online appendix [49].

3) Qualitative Analysis: Fig. 1 summarizes the reasons
provided by participants when classifying a test code identifier
as having a good quality (a), an acceptable quality (b), or a
poor quality (c). These reasons are the characteristics that make
an identifier perceived as good, acceptable, or poor. We did
not report characteristics listed in less than 1% of cases.

Concerning “good” identifiers, “it expresses a pattern”, “it is
too general”, and “it uses a useless sequence number” are the
characteristics provided by the evaluators, while all others were
predefined by us, based on the related literature. Among the
listed characteristics, the most selected ones are “it is meaning-
ful” and “it is concise”: Participants appreciated short identifiers
having, however, a clear meaning (e.g., config is considered
good as it refers to an object of type HeaderConfig).

Two factors considered by evaluators as contributing to high
quality identifiers are semantic consistency (i.e., no different
identifiers are used for the same concept), and consistency
with the tested code (i.e., it uses the same terms used in the
tested code to represent a specific concept). For example, the
methods setIndexName and getIndexName appear in
multiple test cases, all the identifiers they interact with are
consistently named as indexName, without any use of other
names such as index and name. Moreover, indexName is
also consistently used in the methods tested by these test cases.

Good-quality identifiers also had some negative characteris-
tics highlighted by the participants, and in particular “it is too
general” (e.g., when an object is named with the name of the
class it instantiates) and “it uses a useless sequence number”
which, as we will also discuss in the following, is one of the
main issues with the automatically generated identifiers.

Moving to the poor-quality identifiers, besides the prede-
fined characteristics, one additional characteristic has been
contributed by the evaluators: “it does not represent its type”.
Fig. 1-(c) shows that different problems exist in the low-quality
manually written and automatically generated variables. For
manually written variables, the major issues include: 1) “the
identifiers are not meaningful” (e.g., a for a matrix); 2) “the
identifiers are too general” (e.g., type for the type of a
token); and 3) “the identifiers are too short” (e.g., g for a
JsonGenerator object). Two other attributes which account
for around 5% of occurrences each are “syntactically similar
to another identifier” (i.e., similar identifiers are used for
other concepts, such as applicationConfigurator and
applicationConfiguration) and “not representing its
type” (e.g., strings is used to name a DateMap object).

For automatically generated variables, the dominant issue
is that identifiers include “useless sequence numbers”. Indeed,
EvoSuite assigns the object type as variable names followed by
a progressive number (e.g., a new instance of a JsonReader
object is called jsonReader0). This heuristic, while very
simple, helps EvoSuite obtain some meaningful identifiers,
especially in the case where a single variable of a specific type
is used (e.g., a single JsonReader is instantiated).
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(a) Characteristics of "good" identifiers
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(b) Characteristics of "acceptable" identifiers
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(c) Characteristics of "poor" identifiers
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Fig. 1: Characteristics of identifiers having different quality levels, as perceived by the study participants

In this case, the progressive number is not disturbing and
there is no reason for a more specific name (since only one
variable of that type exists in the test method), explaining why
the identifiers are assessed as good by the participants, despite
the presence of a “useless sequence number” (see Fig. 1-(a)).

More specific names and advanced heuristics are needed
when the role played in the test method by two variables of
the same type must be disambiguated through their identifiers.

Being “not meaningful” and “too general” are two evident
problems for automatically generated identifiers, accounting
for 12% and 14% of the negative characteristics mentioned by
the evaluators for the automatically generated tests. In very
few cases, evaluators report the misuse of underscore or of
capitalization as negative characteristics of identifiers in both
manually written and automatically generated variables. These
are issues that could be easily fixed with existing tools.

Finally, the acceptable identifiers (see Fig. 1-(b)) represent
a mix of good and bad practices, justifying their rating in
between good and poor identifiers.

4) Participants’ recommendations to improve poor identi-
fiers: As previously said, participants could suggest a new name
for an identifier, when it was judged as not good enough. The
recommendations can be found in our replication package. By
inspecting the identifiers rated as good and the 205 identifiers
suggested by participants, we observed three patterns:

1 Participants prefer full name identifiers to abbreviations.
For example, both evaluations judging the quality of the qb
identifier recommended to rename it into queryBuilder,

thus confirming the importance of techniques supporting the
automatic expansion of identifiers (e.g., [42], [43]).

2 Plural format of an object type is recommended for the
list of a certain type of objects. For example, dataGroups
is suggested to replace dataGroup, which is a list of
DataGroup objects.

3 Identifiers assigned to get methods and identifiers used
as parameters of set methods are suggested to be consistent
with the method names. For example, foreignCollection
is considered a good name for a local variable assigned to the
getForeignCollection() method.

We plan to conduct larger surveys in the future to distill a
list of additional good naming practices and integrate them in
rename refactoring and code generation tools.

IV. STUDY II: IDENTIFIER RENAMING IN TEST CODE

The goal of this study is to assess whether state-of-the-art
rename refactoring techniques can improve the identifier quality,
especially for the test code.

A. Research Question

Given the fact that the quality of identifiers in test code
is indeed a problem, one might wonder whether we can
automatically improve it. While rename refactoring techniques
have been proven useful on the production code by several
studies [15], [28], [29], their effectiveness on test code remains
unknown.

We aim at answering the following research questions:
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RQ2: What is the accuracy of rename refactoring approaches
when applied on test code identifiers?

This RQ aims at exploring the possibility of using state-
of-the-art rename refactoring techniques [15], [28], [29] to
improve identifier quality of test code.

B. Study Context

The study context consists of the same ten projects used in
our first study and 429 additional projects mined from GitHub
and used for the training/test of the refactoring techniques.

To select the tools, we first investigated which rename
refactoring techniques can be applied to rename variable
identifiers. This led to the identification of three state-of-the-art
approaches, namely CA-RENAMING2 [28], NATURALIZE [29],
and LEAR [15]. These techniques are described in Section II.
We used the original implementations provided by the authors
of NATURALIZE and LEAR, and reimplemented CA-RENAMING.

We consider two types of ground truths to assess the accuracy
of the experimented techniques. One is the set of 201 high-
quality identifiers obtained as output of Study I, including
the identifiers that were assessed by both evaluators as at
least acceptable (i.e., good-good, good-acceptable, acceptable-
acceptable) as well as the identifiers suggested by participants
as a good alternative to the poor identifiers. From now on, we
refer to this ground truth as the manual-oracle. The second set
includes reviewed test code identifiers used in the 429 additional
projects we mined for this study (from now on, mined-oracle).
Similarly to what has been done in the literature, the idea for
the mined-oracle is to assess the ability of the experimented
techniques in recommending identifiers for a given variable
in a test method. The assumption is that these identifiers are
meaningful and, as seen in RQ1, such a strong assumption does
not always hold, since low-quality identifiers are still prevalent
in manually written code. We mitigate this issue in two ways.
First, we also compute the accuracy of the rename refactoring
techniques on the manual-oracle including manually checked
identifiers assessed to be meaningful. Second, we only consider
in mined-oracle identifiers from the test methods of the 429
projects that have been submitted in pull requests on GitHub
and underwent a code review process. This should increase the
confidence in the high quality of the identifiers in mined-oracle.

To understand how the performance of rename refactoring
approaches differ for production code, we also constructed the
manual-oracle for production code identifiers in the same way
with the data collected in our first study, which consists of 42
identifiers from Jackson Core and ORMLite Core.

To build the mined-oracle, we first mined Java projects from
GitHub on Sept. 1, 2018, using the following selection criteria:

• Activity level. To exclude inactive projects, the projects
must have at least one commit in the three months
preceding the data collection.

• Popularity. Projects must have at least 100 forks and 100
stars, in order to exclude “toy-projects”.

2Note that CA-RENAMING is not the original name proposed by Thies and
Roth, the researchers presenting this approach (that has no specific name), but
the name assigned in [15], in which LEAR was compared to CA-RENAMING.

This process resulted in the selection of 2,583 Java projects.
Then, we excluded the projects for which the test methods
that underwent a review process in the latest version have
less than 50 identifiers usable in our dataset, to ensure a
good representativeness for each of the included projects. This
led to the final 429 projects part of our dataset, including
24,355 reviewed test files. The test files were identified when
their name started with “Test” or when they were located
under a folder named “src/test” or “tests”. Table VII
summarizes the dataset used in this study.

TABLE VII: Dataset Statistics

Overall Per Project
Mean Median St. Deviation

Java files 166,558 388.2 256.0 385.6
# total test files 46,260 107.8 62.0 138.7

# test files for study 24,355 56.8 24.0 99.7
# variables for study 397,936 927.6 396.0 1533.6

C. Data Collection and Analysis

The three considered rename refactoring techniques rely
on a training phase to learn naming patterns: LEAR [15] and
NATURALIZE [29] need to build a language model based on
n-grams extracted from the training code, while CA-RENAMING
[28] needs to extract static type information and returned
identifiers from declared methods in the training code. We
experimented with different training scenarios to understand
whether projects themselves or other projects are more helpful
for training recommenders to rename identifiers in test code:

• Training on production code. Given the test code of a
system A on which we apply a given renaming technique
T , we train T on A’s production code. Thus T learns
naming conventions that are specific to project A.

• Training on test code. We train T on the large corpus
of test code, extracted from reviewed and merged pull
requests of 429 open source projects. Thus T learns
naming conventions specific for test code, across several
projects. The idea behind this scenario is that software
is in general very repetitive and natural [50]. Due to the
high computational cost of this procedure, this second
training scenario has only been performed by using the
429 projects for training and the 10 projects used in Study
I as testing (i.e., the ones part of the manual-oracle).

We ran the three techniques on the manual-oracle (both
scenarios) and on the mined-oracle (only in the “training on
production code” scenario). For production code identifiers, we
only performed training on other production code in the project.
We also only ran the three techniques on the manual-oracle.

We used two different matching approaches to determine
whether the techniques provide correct renaming recommenda-
tions: 1) exact match (the recommended identifier is identical
to the one in the oracle); 2) fuzzy match, meaning that at
least 50% of the tokens (words identified through CamelCase
splitting) composing the identifier in the oracle appear among
the tokens used in the recommended identifier.
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For test code identifiers, we compare via box plots the
precision of the techniques in the different training scenarios
and on the two oracles. The comparisons are also performed via
the Mann-Whitney test [51], with results intended as statistically
significant at α = 0.05. To control the impact of multiple
pairwise comparisons (e.g., the precision of CA-RENAMING
is compared with both NATURALIZE and LEAR), we adjust
p-values with the Holm’s correction [52]. We estimate the
magnitude of the differences by using the Cliff’s Delta (d),
a non-parametric effect size measure [53]. We follow well-
established guidelines to interpret the effect size: negligible
for |d| < 0.10, small for 0.10 ≤ |d| < 0.33, medium for
0.33 ≤ |d| < 0.474, and large for |d| ≥ 0.474 [53].

For identifiers in production code, we list in a table the
precision of the techniques for the two projects, and we also
display the performance of the same projects when applying
these techniques in their test code.

D. Results

1) Training on production code: We analyze the perfor-
mance of rename refactoring techniques from two aspects: 1)
the ability to generate recommendations for rename refactoring,
2) the correctness of the generated recommendations.

Ability to generate recommendations. Understanding how
many recommendations can be generated can help us assess the
applicability of rename refactoring tools in practice. Therefore,
as the first step of our analysis, we inspect the percentage of
identifiers involved in our study for which the three techniques
can recommend an identifier name. Note that with “recom-
mending an identifier name” we do not refer to the scenario
in which a new name is recommended for a variable, but to
the scenario in which a name (any name) is recommended,
even the original one. Indeed, for a given variable, the three
techniques might not be able to generate a recommendation. In
particular, CA-RENAMING does not generate a recommendation
in the case in which: 1) the variable to rename is not assigned
to a method invocation (e.g., for String name = “Max”,
CA-RENAMING cannot be applied — see Section II for a
description of the CA-RENAMING technique) or if the invoked
method returns a variable of a different type (e.g., String
age = (String) getAge() with getAge() returning
an integer). The other two techniques (NATURALIZE and LEAR)
are both based on n-gram language models, and do not trigger
any recommendation when a minimum confidence threshold
set by the original authors is not met for a generated identifier.

Tables VIII and IX report descriptive statistics (e.g., mean
across projects) of the ratio of variables with renaming
recommendations for test code generated by CA-RENAMING,
NATURALIZE and LEAR on the manual-oracle and the mined-
oracle, respectively. CA-RENAMING is omitted in Table VIII
as it is unable to generate any renaming recommendation.

The achieved results show the limited percentage of cases
in which these approaches are actually able to generate a
recommendation. Indeed, even by considering the approach
generating the highest number of recommendation (i.e., LEAR),
it can only be applied on ∼20% of the test code identifiers of a

TABLE VIII: Ratio of variables for which a rename refactoring
is generated (manual-oracle)

Approach Mean Median St. Deviation

NATURALIZE 12.2% 9.9% 0.133
LEAR 22.1% 17.9% 0.199

TABLE IX: Ratio of variables for which a rename refactoring
is generated (mined-oracle)

Approach Mean Median St. Deviation

CA-RENAMING 0.9% 0.1% 0.023
NATURALIZE 3.6% 0.0% 0.075
LEAR 26.1% 24.0% 0.251

given project. Not surprisingly, CA-RENAMING has the lowest
applicability, given its strong constraint making it applicable
only to variables assigned to a method invocation returning the
same type. NATURALIZE can generate refactoring recommen-
dations for around 10% of the variables in the manual-oracle,
while for mined-oracle this percentage significantly drops. This
difference might be the consequence of test method sampling
when building the manual-oracle dataset.

Correctness of the generated recommendations. Fig. 2
compares the precision of rename refactoring techniques when
applied on the manual-oracle and the mined-oracle.

For the reason mentioned before, since CA-RENAMING does
not generate any recommendation for the manual-oracle, it is
not plotted on Fig. 2a. The main message highlighted by Fig. 2
is that the precision is in general quite low in terms of rec-
ommending good identifiers for test code. Moreover, although
LEAR significantly outperforms the other two approaches (see
Table XI), the average and median precision is still lower than
50% even when only fuzzy match is required.

However, it is worth noting that the low precision does not
necessarily mean the generated identifiers are wrong, due to
the matching rules we adopted to define “correctness”. As we
know, in practice, often many variants of identifiers can well
fit in the code context. Therefore, the precision people perceive
with these tools could be higher than the values presented here.

To better compare these rename refactoring approaches, we
applied statistical analysis to the precisions of the renaming
recommendations. For the manual-oracle, we compared NATU-
RALIZE against LEAR. The p-value of 0.35 (exact match)/0.44
(fuzzy match) indicates that the precision difference between
NATURALIZE and LEAR is not statistically significant. However,
the situation changes on the mined-oracle. In the Table XI,
we can find that there is no statistically significant difference
(adjusted p-value ≥ 0.05) between CA-RENAMING and NATU-
RALIZE when exact match is required. However, the advantage
of LEAR is visible in any case. All of the statistical comparisons
with CA-RENAMING and NATURALIZE result in a statistically
significant difference, with small or negligible effect sizes.

Test Code vs Production Code. Table X compares the
performance of rename refactoring techniques when they are
applied to production code and test code (manual-oracle).
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TABLE X: Performance comparison of rename refactoring techniques for identifiers in production code and test code

NATURALIZE LEAR
Project # Variables # Recomm. Precision (exact) Precision (fuzzy) # Recomm. Precision (exact) Precision (fuzzy)

Jackson Core (Prod. code) 24 5 40.0% 40.0% 20 55.0% 60.0%
Jackson Core (Test code) 35 4 0.0% 0.0% 3 0.0% 0.0%
ORMLite Core (Prod. code) 18 8 37.5% 62.5% 7 42.9% 57.1%
ORMLite Core (Test code) 37 0 0.0% 0.0% 0 0.0% 0.0%

TABLE XI: Statistical tests of precisions of rename refactoring techniques for mined-oracle

Comparison P-Value (exact match) P-Value (fuzzy match) Effect Size (exact match) Effect Size (fuzzy match)

CA-RENAMING vs NATURALIZE 0.74 0.0037 0.01 (Negligible) 0.10 (Negligible)
CA-RENAMING vs LEAR <0.0001 0.0003 0.29 (Small) 0.14 (Negligible)
NATURALIZE vs LEAR <0.0001 <0.0001 0.31 (Small) 0.29 (Small)
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Fig. 2: Precision of rename refactoring techniques on test code

CA-RENAMING is also omitted as no recommendation was
generated for both production and test code. We can notice
that rename refactoring approaches can generate more recom-
mendations for production code, and the precision is much
higher. This result indicates that rename refactoring techniques
are less effective when used to improve the quality of test code
identifiers as compared to production code identifiers.

2) Training on test code: Table XII reports the performance
of NATURALIZE and LEAR applied on the manual-oracle of
test code identifiers, when training on test code from other
projects.

In this case, CA-RENAMING was unable to generate any

recommendation, as it heavily relies on program analysis. Since
no production code was used for training, CA-RENAMING could
not retrieve the declarations of methods used in test cases.
Therefore, CA-RENAMING is excluded in this study.

Both NATURALIZE and LEAR perform poorly in this task.
The unsatisfactory performance comes from two aspects: the
amount and the precision of generated refactoring recommen-
dations. More specifically, NATURALIZE failed to generate
recommendations for six projects, while LEAR could not
recommend any identifier for five projects. As a side note, LEAR
can generate at maximum five refactoring recommendations
when applied on the manual-oracle and trained with test
code. When it comes to the precision of exactly matched
recommendations, the performance is extremely poor for LEAR.
That is, none of the generated recommendations is correct,
which is not the case for NATURALIZE.

We can also spot some major differences between these
results and the previous ones. Although the performance of
both techniques drop significantly, in this study NATURALIZE
performs better than LEAR in terms of the number of exactly
matched generated recommendations. The reason could be the
nature of the training materials. Unlike the previous study, in
which the training of the techniques was performed on the
production code of the same system for which the test code
identifiers were recommended, training on the test code from
other projects likely results in the learning of linguistic patterns
that are not representative of the “test project” (i.e., the one for
which identifiers must be recommended). This might be due to
a vocabulary mismatch between the code used for training and
the one used for test. LEAR seems to be more sensitive to this
change since it only considers tokens carrying out semantic
information during the training (i.e., the identifiers used in
method names, parameters, and variables), while NATURALIZE,
also learns from syntax-related tokens (e.g., Java keywords),
thus being able to better deal with the vocabulary mismatch.

Although researchers have proved that source code is
repetitive [50], [54], [55], our study discloses that to recommend
renaming operations for test code, it might be more effective
to train these approaches on the related production code rather
than from a massive dataset containing thousands of projects.
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TABLE XII: Results of rename refactoring techniques for manual-oracle when trained on test code

NATURALIZE LEAR
Project # Variables # Recomm. Precision (exact) Precision (fuzzy) # Recomm. Precision (exact) Precision (fuzzy)

Natty 22 12 50.0% 50.0% 1 0.0% 0.0%
Jongo 12 0 0.0% 0.0% 0 0.0% 0.0%
Commons Lang 14 10 0.0% 0.0% 1 0.0% 0.0%
Jackson Core 35 0 0.0% 0.0% 3 0.0% 66.7%
Plexus-Utils 14 0 0.0% 0.0% 5 0.0% 40.0%
Jesque 21 10 10.0% 10.0% 0 0.0% 0.0%
Gson 18 14 28.6% 43.0% 0 0.0% 0.0%
REST Assured 12 0 0.0% 0.0% 0 0.0% 0.0%
la4j 16 0 0.0% 0.0% 0 0.0% 0.0%
ORMLite Core 37 0 0.0% 0.0% 2 0.0% 50.0%

V. THREATS TO VALIDITY

Construct validity. In Study I, instead of using proxy
measures, we preferred to let participants evaluate the quality
of identifiers used in test code. While how to perceive the
identifier quality may vary among different participants, the
subjectiveness of such an evaluation was mitigated by involving
two evaluators for each identifier. Also, although a four or
five-level Likert scale [56] could have provided a more accurate
evaluation of the identifiers’ quality, we preferred a simpler
three-level scale to facilitate the task to the respondents.

In Study II, we assessed the performance of the experi-
mented techniques by adopting two different ground truths that
complement each other. Indeed, the manual-oracle is small in
size, but includes identifiers manually classified as meaningful.
The mined-oracle, instead, includes 397,936 identifiers, thus
ensuring a good generalizability at the risk, however, of
including some poor-quality identifiers in the ground truth.
This threat was mitigated by only considering in the mined-
oracle identifiers from test code that underwent code review.

Internal validity. The experience of the participants involved
in Study I could have played a role in the assessment of the
identifiers quality. We only involved participants having at least
one year of Java experience but, due to the limited number of
participants, we did not analyze the influence of their experience
on the quality assessments they provided.

External validity. The validity of Study I is limited by
the 19 participants and by the selected projects of our study.
This, as a consequence, partially impacted the generalizability
of Study II concerning the results achieved on the manual-
oracle. Also, when running our studies on production code,
we only considered identifiers from two systems (and their
respective evaluations provided by four participants in Study I).
This is a clear limitation to the generalizability of the findings
related to the comparison between test and production code
performed in both studies. However, our focus is on test code
identifiers, and production code identifiers were only considered
to have a baseline for comparison, easing the interpretation
of the achieved results. Details about the results achieved on
production code identifiers are available in our appendix [49].

VI. CONCLUSION AND FUTURE WORK

We studied the the quality of identifiers in test code and
compared it with identifiers in production code. We also

analyzed the attributes that are important for identifier quality
and assessed the performance of three state-of-the-art rename
refactoring techniques in suggesting good identifiers. The
results of our study provide us with a few lessons learned.

The quality of identifiers in test code is a notable problem.
Even in well-known projects run by open source organizations,
one out of three quality assessments performed by developers
would result in the identification of a poor-quality identifier.
This highlights the need for techniques and tools able to
help developers in identifying and fixing these problematic
identifiers, and leads us to our next point.

The performance of state-of-the-art rename refactoring
techniques is far from promising for improving the unsatis-
factory identifier quality of test code. In the best case scenario,
these techniques achieve a limited precision, lower than 50%
on average. We observed that training language models on
the production code of the same system for which test code
identifiers should be recommended as a more promising training
approach as compared to the usage of a large set of test cases
extracted from other systems. Techniques specifically tailored
for test code and, for example, exploiting its relationship with
the tested production code, might be required to substantially
increase the automated support provided to developers for the
renaming of test code identifiers.

Automatically generated test code suffers even more
from identifiers’ quality issues. This result, while expected,
highlights the need for integrating more sophisticated naming
heuristics in tools for the automatic generation of test cases. Our
findings in Study I disclose that some simple heuristics (e.g.,
the use of plural for naming variables representing collections
of objects) could be implemented with very little effort, and
would generate identifiers appreciated by software developers.

These findings dictate our future research agenda.
Reproducibility. The data used in our studies as well as the

experimented renaming approaches are available for replication
(https://identifierquality.bitbucket.io/). This includes the manual-
oracle output of Study I that could represent a valuable resource
for testing rename refactoring approaches tailored for test code.
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