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Abstract—Code comments are a primary means to document
source code. Keeping comments up-to-date during code change
activities requires substantial time and attention. For this reason,
researchers have proposed methods to detect code-comment
inconsistencies (i.e., comments that are not kept in sync with the
code they document) and studies have been conducted to inves-
tigate this phenomenon. However, these studies were performed
at a small scale, relying on quantitative analysis, thus limiting
the empirical knowledge about code-comment inconsistencies.
We present the largest study at date investigating how code
and comments co-evolve. The study has been performed by
mining 1.3 Billion AST-level changes from the complete history
of 1,500 systems. Moreover, we manually analyzed 500 commits
to define a taxonomy of code-comment inconsistencies fixed by
developers. Our analysis discloses the extent to which different
types of code changes (e.g., change of selection statements) trigger
updates to the related comments, identifying cases in which code-
comment inconsistencies are more likely to be introduced. The
defined taxonomy categorizes the types of inconsistencies fixed
by developers. Our results can guide the development of tools
aimed at detecting and fixing code-comment inconsistencies.

Index Terms—Software Evolution, Code Comments

I. INTRODUCTION

Any code-related activity lays its foundations in program
comprehension: before fixing a bug, refactoring a class, or
writing new tests, developers first need to acquire knowledge
about the involved code components. As recently shown by
Xia et al. [1], this results in 58% of developers’ time spent
comprehending code. Besides the code itself, code comments
are considered as the most important form of documenta-
tion for program comprehension [2]. Indeed, not surprisingly,
studies showed that commented code is easier to comprehend
than uncommented code [3], [4]. This empirical evidence also
pushed researchers to consider code comments as a pivotal
factor to study technical debt [5]–[7], or to assess code quality
[8], [9].

While the importance of code comments is undisputed,
developers do not always have the chance to carefully com-
ment new code and/or to update comments as consequence
of code changes [10]. This latter scenario might result in
the introduction of code-comment inconsistencies, manifesting
when the source code does not co-evolve with the related
comments. For example, if a method comment is not updated
after major changes to the method’s application logic, the
comment might provide misleading information to developers
comprehending the method, hindering program comprehension
rather than fostering it.

Given the potential harmfulness of code-comment inconsis-
tencies, several researchers studied the co-evolution of code
and comments [11]–[14], while others proposed techniques
and tools able to detect code-comment inconsistencies au-
tomatically [15]–[18]. These techniques are able to identify
specific types of code-comment inconsistencies. For example,
@TCOMMENT [17] detects inconsistencies between Javadoc
comments related to null values and exceptions with the
behavior implemented in the related method’s body, while
Fraco [18] focuses on inconsistencies introduced as result of
rename refactoring operations. Still, more research is needed
in this area to increase the types of code-comment inconsisten-
cies that can be automatically identified. Also, the empirical
evidence provided by studies that pioneered the investigation
of code-comment evolution [11]–[14] is limited to the analysis
of the change history of a few software systems (less than 10).

To raise the knowledge about the co-evolution of code
and comments and the introduction/fixing of code-comment
inconsistencies, we present a large-scale empirical study quan-
titatively and qualitatively analyzing these phenomena. We
mine the complete change history of 1,500 Java projects hosted
on GitHub for a total of 3,323,198 analyzed commits. For
each commit, we use GUMTREEDIFF [19] to extract AST
operations performed on the files modified in it. In this way, we
captured fine-grained changes performed in code (e.g., change
of a selection statement) as well as update, delete, and insert
operations performed in the related comments. Overall, this
process resulted in a database of ∼476 GB containing ∼1.3
Billion AST-level operations impacting code or comments.
Using this data, we study the extent to which code changes
impacting different code constructs (e.g., literals, iteration
statements) trigger the update of the related code comments
(e.g., the developer adds a try statement and updates the
method comment to “document” the changed code behavior).

Then, we manually analyze 500 commits identified, via a
keywords-matching mechanism, as likely related to the fixing
of code-comment inconsistencies. The output of this analysis
is a taxonomy of code comment-related changes implemented
by developers, from which we present relevant cases related
to code-comment inconsistencies, and discuss implications for
researchers and practitioners.

As a contribution to the research community, we make the
database of fine-grained code changes publicly available. This
enables the replication of this work, making also other types
of investigations possible.
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II. RELATED WORK

We discuss related work concerning (i) empirical studies
on code comments, and (ii) approaches for the detection of
code-comment inconsistencies.

A. Empirical Studies on Code Comments

Woodfield et al. [3] conducted a user study with 48 pro-
grammers and showed that commented code is better under-
stood by developers as compared to non-commented code.

Ying et al. [20] analyzed the usage of code comments in
the IBM internal codebase. They show that comments are
not only a means to document the source code, but also a
communication channel towards colleagues, e.g., to assign
tasks and keep tracks of ongoing coding activities.

McBurney and McMillan [21] compared code summaries
written by code authors and readers (i.e., non-authors per-
forming code understanding). They used the Short Text Se-
mantic Similarity (STSS) metric to assess the similarity be-
tween source code and summaries written by the authors
and compare it to the similarity between the code and the
summaries written by the readers. They found that readers
rely more on source code than authors when summarizing the
code. Pascarella and Bacchelli [22] presented a hierarchical
taxonomy of types of code comments for Java projects.
Such a taxonomy, composed of six top categories and 16
inner categories, was built by manually analyzing 2,000 code
comments. The taxonomy presented in this paper, differently
from the one in [22], aims at classifying the types of code-
comment inconsistencies fixed by software developers.

Other authors studied the evolution of code comments.
Jiang and Hassan [11] conducted a study on the evolution
of comments in PostgreSQL. They investigated the trend over
time of the percentage of commented functions in PostgreSQL.
Their results reveal that the proportion of commented functions
remains constant over time.

Arafat et al. [23] studied the density of comments (i.e.,
the number of comment lines divided by the number of code
lines) in the history of 5,229 open source projects written in
different programming languages. They show that the average
comment density depends on the programming language (with
the highest one of 25% measured for Java systems), while it
is not impacted by the project and team size.

Ibrahim et al. [14] studied the relationship between com-
ment update practices and bug introduction. Their findings
show that abnormal comment update behavior (e.g., missing to
update a comment in a subsystem whose comments are always
updated) leads to a higher probability of introducing bugs.

Fluri et al. [12] investigated how comments and source
code co-evolved over time in three open source systems. They
observed that 23%, 52%, and 43% of all comment changes in
ArgoUML, Azureus, and JDT Core respectively, were due to
source code changes, and in 97% of these cases the comment
changes occurred in the same revision as the associated code
change. However, newly added code barely got commented.

In a follow-up work, Fluri et al. [13] investigated the co-
evolution between code and comment in eight systems.

They found that the ratio between the growth of code and
comments is constant but confirmed the previous observation
about the frequent lack of comment updates for newly added
code. They also found that (i) the type of code entity impacts
its likelihood of being commented (e.g., if statements are
commented more often than other types of statements), and
(ii) 90% of comment changes represent a simultaneous co-
evolution with code (i.e., they change in the same revision).

Our study stems from the seminal work by Fluri et al. [12],
[13], but it is performed on a much larger scale, involving
the change history of 1,500 projects. Also, we complement
this quantitative analysis with a manually defined taxonomy
of code-comment inconsistencies fixed by developers.

B. Automatic Assessment of Comments Quality

Researchers have developed tools and metrics to capture
the quality of code comments. Khamis et al. [16] devel-
oped JavadocMiner, an approach to assess the quality of
Javadoc comments. JavadocMiner exploits Natural Language
Processing (NLP) to evaluate the “quality” of the language
used in the comment as well as its consistency with the
source code. The quality of the language is assessed using
several heuristics (e.g., checking whether the comment uses
well-formed sentences including nouns and verbs) combined
with readability metrics such as the Gunning Fog Index. The
consistency between code and comments is also checked with
a heuristic-based approach, e.g., a method having a return type
and parameters is expected to have these elements documented
in the Javadoc with the @return and @param tags.

Steidl et al. [10] also proposed an approach for the auto-
matic assessment of comments’ quality. First, their approach
uses machine learning to classify the “type” of code comment
(e.g., copyright comment, header comment). Second, a quality
model is defined to assess the comments’ quality. Also in this
case, the model is based on a number of heuristics (e.g., the
coherence of the vocabulary used in code and comments). On a
similar line of research, Scalabrino et al. [9] used the semantic
(textual) consistency between source code and comments
to assess code readability, conjecturing that the higher this
consistency, the higher the readability of the commented code.

Other authors explicitly focused on the automatic detection
of code-comment inconsistencies. Seminal in this area are
the works by Tan et al. [15], [17]. First, they presented
iComment [15], a technique using NLP, machine learning,
and program analysis to detect code-comment inconsistencies.
iComment is able to detect inconsistencies related to the
usage of locking mechanisms in code and their description
in comments. This technique was evaluated on four systems
(Linux, Mozilla, Wine, and Apache) showing its ability to
identify inconsistencies confirmed by the original developers.

In a follow-up work, Tan et al. [17] also presented
@TCOMMENT, an approach able to test the consistency
between Javadoc comments related to null values and ex-
ceptions with the behavior of the related method’s body.
@TCOMMENT has been experimented on seven open source
projects, identifying inconsistencies confirmed by developers.



Similarly, Zhou et al. [24] devised an approach detecting
inconsistencies related to parameter constraints and exceptions
API documentation and code. The approach was able to detect
1,146 defective document directives with a ∼80% precision.

A rule-based approach named Fraco was proposed by Ratol
et al. [18] to detect code-comment inconsistencies resulting
from rename refactoring operations performed on identifiers.
Their evaluation shows the superior performance ensured
by FRACO as compared to the rename refactoring support
implemented in Eclipse.

Liu et al. [7] analyzed historical versions of existing projects
to train a machine learner able to identify comments that need
to be updated. The approach uses 64 features capturing, for
example, the diff of the implemented changes, to automati-
cally detect outdated comments. The authors report a ∼75%
detection precision for their approach.

Finally, a related research thread is the one presenting
techniques to detect self-admitted technical debt (SATD) in
code comments [5], [6], [25]–[27]. These techniques, while
not directly related to the quality of code comments, use these
latter to make the development team aware of SATD.

Our work, while not related to the automatic assessment
of comments’ quality, provides empirical knowledge useful to
devise novel approaches for the detection of “problematic”
code comments.

III. STUDY DESIGN

The goal of the study is to investigate code-comments in-
consistencies from a quantitative and a qualitative perspective.
The purpose is to (i) understand how code and comments co-
evolve, to identify coding activities triggering/not-triggering
the introduction of code-comment inconsistencies; (ii) define
a taxonomy of inconsistencies that developers tend to fix.

The study addresses the following research questions (RQ):
RQ1: To what extent do different code change types trigger

comment updates? This RQ studies the code-comments co-
evolution in open source projects. We investigate the extent
to which different types of fine-grained code changes (e.g.,
changes to selection statements) trigger the update of the
related code comments. This analysis provides empirical evi-
dence useful to quantify the cases in which code-comment in-
consistencies could possibly be introduced and to identify the
types of code changes having a higher chance of introducing
these inconsistencies. This evidence can be used, for example,
to develop context-aware tools warning developers when code
changes are likely to require code comments’ updates.

RQ2: What types of code-comment inconsistencies are fixed
by developers? This research question aims at identifying the
types of code-comment inconsistencies that are fixed by soft-
ware developers e.g., updating a comment as a consequence of
a previously performed refactoring that renamed an identifier.
Knowing the types of code-comment inconsistencies fixed
by developers can guide the development of tools aimed at
automatically detecting them.

TABLE I
DATASET STATISTICS

Overall Per Project
Mean Median Std. Dev.

Java files 1,599,323 1,068 360 2,838
Effective LOC 162,243,714 108,379 31,392 305,704

Stars 2,895,219 1,930 762 3,455
Commits analyzed 3,323,198 2,215 832 5,089

A. Data Collection and Analysis

To answer RQ1 we mine the fine-grained changes at AST
(Abstract Syntax Tree) level performed in commits from the
change history of 1,500 open source Java projects hosted
on GitHub. Then, we analyze the extent to which different
types of code changes trigger updates in the related code
comments. The 1,500 projects representing the context of our
study have been selected from GitHub in November 2018
using the following constraints:

Programming language. We only consider projects written
in Java since, as it will be clear later, Java is the reference
language for the infrastructure used in this study.

Change history. Since in RQ1 we study the co-evolution
of code and comments, we only focus on projects having a
long change history, composed of at least 500 commits.

Popularity. The number of stars [28] of a repository is a
proxy for its popularity on GitHub. Starring a repository allows
GitHub users to express their appreciation for the project.
Projects with less than ten stars are excluded from the dataset,
to avoid the inclusion of likely irrelevant/toy projects.

6,563 projects satisfy these constraints. Then, we manually
filtered out repositories that do not represent real software
systems (e.g., JAVA-DESIGN-PATTERNS [35] and SPRING-
PETCLINIC [36]), and checked for projects with shared history
(i.e., forked projects). When we identified a set of forked
projects, we only selected among them the one with the longest
commit history (e.g., both FINDBUGS [37] and its successor
SPOTBUGS [38] fall under our search criteria, but we only kept
the latter one). Finally, considering the high computational cost
of the data extraction process needed for our study (details
follow), we decided to only analyze a subset of the remaining
projects: We sorted the projects in descending order based on
their number of stars (i.e., the most popular on top), and we
selected from the list the top 1,500 projects for our study.
Table I reports descriptive statistics for size, change history,
and popularity of the selected projects. The complete list of
considered projects is available in our replication package [29].

We cloned the 1,500 GitHub repositories and extracted
the list of commits performed over the change history of
each project. To do so, we iterated through the commit
history related to all branches of each project with the git

log --topo-order command. This allowed us to analyze
all branches of a project, without intermixing their history
and avoiding unwanted effects of merge commits. We then
excluded commits unrelated to Java files (i.e., commits that do
not impact at least one Java file). For each remaining commit
ci, we use GumTreeDiff [19] with its JavaParser generator to
extract AST operations performed on the files modified in ci.



GumTreeDiff considers the following edit actions performed
both on code and comment nodes: (i) updatedValue replaces
the value of a node in the AST; (ii) add/insert inserts a new
node in the AST; (iii) delete, which deletes a node in the AST;
(iv) move, which moves an existing node in a different location
in the AST. Also, to store more details of the changed AST
nodes, such as their parent method and class (needed to know
the code component to which a comment AST node belongs
to), we extended GumTree with our own reporter. Overall, we
extracted 1.3 Billion AST-level changes, resulting in a 476 GB
database (excluding indexes) we make publicly available [29].

From our analysis we disregard any file added/deleted in ci,
since our primary goal is to study how changes to different
types of code constructs trigger (or not) updates in code
comments. In an added/deleted file, all code and comment
AST nodes would trivially be added or deleted. Also, we work
at method-level granularity, meaning that we only focus on
code changes affecting the body or the signature of methods,
discarding code changes impacting e.g., a class attribute. This
is done since it is easy, from the AST, to identify the comment
related to a method (and, thus, to study how changes in the
method impact the related comments) while it is not trivial to
precisely link a class attribute to its related comments. Finally,
we ignore the move actions detected by GumTreeDiff because
we noticed that they generate a lot of noise in the data, since
also deleting a blank line can result in an AST node move.

TABLE II
CATEGORIES OF AST-LEVEL CODE CHANGES

Category GumTreeDiff Changes

Annotation MarkerAnnotationExpr, MemberValuePair, NormalAnno-
tationExpr, SingleMemberAnnotationExpr

Array ArrayAccessExpr, ArrayCreationExpr, ArrayCreation-
Level, ArrayInitializerExpr

Casting CastExpr, InstanceOfExpr
Constructor ConstructorDeclaration
Empty
Statement EmptyStmt

Exception
Handling CatchClause, ThrowStmt, TryStmt

Expression
AssignExpr, BinaryExpr, ClassExpr, ConditionalExpr,
EnclosedExpr, FieldAccessExpr, SuperExpr, ThisExpr,
UnaryExpr

Iteration BreakStmt, ContinueStmt, DoStmt, ForeachStmt, ForStmt,
WhileStmt

Lambda
Expression LambdaExpr, MethodReferenceExpr

Literal
BooleanLiteralExpr, CharLiteralExpr, DoubleLiteralExpr,
IntegerLiteralExpr, LongLiteralExpr, NullLiteralExpr,
StringLiteralExpr

Method In-
vocation ExplicitConstructorInvocationStmt, MethodCallExpr

Method
Signature MethodDeclaration, Parameter

Name Name, SimpleName

Others AssertStmt, BlockStmt, InitializerDeclaration, Labeled-
Stmt, ObjectCreationExpr, SynchronizedStmt

Return ReturnStmt
Selection IfStmt, SwitchEntryStmt, SwitchStmt

Type

ArrayType, ClassOrInterfaceDeclaration, ClassOrInter-
faceType, IntersectionType, LocalClassDeclarationStmt,
PrimitiveType, TypeExpr, TypeParameter, UnionType,
VoidType, WildcardType

Variable
Declaration VariableDeclarationExpr, VariableDeclarator

Once collected the list of AST operations performed in each
commit on the code and comments of modified files, we classi-
fied the code changes into categories as shown in Table II. The
idea is to group together AST-level operations performed on
related code constructs. For example, all operations performed
on if and switch statements are grouped into the Selection
category. Such a grouping is done for the sake of easing
the RQ1 data analysis. In particular, for each code change
category CHi in Table II, we compute MCC(CHi) as the
percentage of AST changes falling in the CHi category that
triggered a Method Comment Change in comments related to
the impacted method. Using the AST, we classify as comments
related to the method those present in the method body plus
its Javadoc comment (if any). As “Comment Changes” we
consider (i) the addition of a comment inside the method
or of the Javadoc; (ii) modifications applied to any of the
already existing method-related comments; and (iii) deletions
of any of the existing method-related comments. Important
to highlight is that, to better isolate the triggering effect of
the CHi type of change on the method’s comments, we
only consider CHi’s changes performed in isolation on a
given method when computing MCC(CHi). Let us explain
this design choice with an example: In a given commit two
methods are modified, M1 and M2. Both methods are subject
to AST changes belonging to the category CHi, but M2 is also
affected by changes of type CHj , with i 6= j. When computing
MCC(CHi), we consider the changes in M1, since possible
M1’s comments updates are likely to be triggered by the
change type CHi, while this is not true for possible comment
updates observed in M2, since this latter has been subject to
different categories of changes.

Since a comment in a method could also have a major
impact on the responsibilities implemented by a class, for
each CHi we also compute CCC(CHi) as the percentage
of changes falling in the CHi category that triggered a
Class Comment Change in comments related to the class
the impacted method belongs to. In this case, we only focus
on the Javadoc comment of the class, since the comments
related to the methods it implements are already considered
by the MCC metric. Also in this case, we only consider
changes performed in isolation for a given change category,
as explained for the MCC.

We answer RQ1 by comparing the distributions of MCC
and CCC for the change categories reported in Table II via
bar charts, showing the percentage of times that each change
category CHi triggered comment updates. We also use the
Fisher’s exact test [30] to test whether the chance of triggering
method’s and class’s comments update significantly differ
across change categories. To control the impact of multiple
pairwise comparisons (e.g., the chance of triggering method’s
comment changes of the Array category is compared against
that of 17 other categories), we adjust p-values using the
Holm’s correction [31]. We use the Odds Ratio (OR) [30]
as effect size measure. An OR of 1 indicates that the event
under study (i.e., the chance of triggering comment updates) is
equally likely in two compared groups (e.g., Array vs Casting).



An OR greater than 1 indicates that the event is more likely
in the first group, while an OR lower than 1 indicates that the
event is more likely in the second group.

Concerning RQ2, we manually analyzed a set of commits in
which the developers fixed code-comment inconsistencies. We
extracted, from the same set of 1,500 systems used in RQ1, all
commits having a commit note matching lexical patterns likely
indicating the fixing of code-comment inconsistencies. To
define these lexical patterns, the first author experimented with
different combinations of words and inspected the resulting
commits (details in [29]). He found the following pattern
to be the best suited for the identification of the commits
of interest: (update* or outdate*) and comment(s). In other
words, all commit notes containing the word update or outdate
in different derivations (e.g., updates, updated) and the word
comment or comments have been selected, for a total of 3,641
commits matched. From this set, we randomly selected for the
manual analysis a sample of 500 commits, representing a 99%
statistically significant sample with a 5% confidence interval.

The 500 commits were randomly distributed among three
authors, making sure that each commit was classified by
two authors. The goal of the process was to identify the
exact reason behind the changes performed in the commit.
If the commit was unrelated to code comments, the evaluator
classified it as false positive. Otherwise, a tag explaining the
reason for the change (e.g., update comment to correct a
wrong method’s parameter description) was assigned, even
in the case the commit was not related to a code-comment
inconsistency, but just to changes in a comment (e.g., fixed
a typo in a comment). We did not limit our analysis to the
reading of the commit message, but we analyzed the source
code diff of the changes implemented in the GitHub commit.
The tagging process was supported by a Web application that
we developed to classify the commit and to solve conflicts
between the authors. Each author independently tagged the
commits assigned to him by defining a tag describing the
reason behind the commit. Every time the authors had to
tag a commit, the Web application also showed the list of
tags created so far, allowing the tagger to select one of the
already defined tags. Although, in principle, this is against the
notion of open coding, in a context like the one encountered
in this work, where the number of possible tags (i.e., cause
behind the commit) is extremely high, such a choice helps
using consistent naming and does not introduce a substantial
bias. In cases for which there was no agreement between the
two evaluators (51% of the classified commits), the document
was assigned to an additional evaluator to solve the conflict.

After having manually tagged all commits, we defined
a taxonomy of code comment-related changes through an
open discussion involving all the authors (see Fig. 3). We
qualitatively answer RQ2 by discussing specific categories of
commits likely related to the fixing of code-comment inconsis-
tencies. For each category, we present interesting examples and
common solutions, and discuss implications for researchers
and practitioners.

B. Replication Package

The data used in our study is publicly available [29].
We provide (i) the list of 1,500 subject projects, (ii) the
database containing the fine-grained changes as extracted by
GumTreeDiff for the 3,323,198 mined commits, and (iii) the
link to the 500 commits we manually analyzed.

IV. RESULTS

A. To what extent do different code change types trigger
comment updates?
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Fig. 1. RQ1: MCC and CCC by change category (Table II)

Fig. 1 compares the MCC (top) and the CCC (bottom)
for the categories of AST-level changes described in Table II.
It is worth remembering that the MCC and the CCC values
for a change category CHi represent the percentage of times
that a change of type CHi triggered a change in a related
method (MCC) or class (CCC) comment. Fig. 2 summarizes
the results of the statistical comparison between the chance of
triggering method (left) and class (right) comment changes
for different categories of change categories in the form of a
heatmap: A white block indicates that the difference between
two categories is not statistically significant (adjusted p-value
≥ 0.05) or that the odds ratio between the two categories indi-
cate a similar chance of triggering changes in code comments
(0.8 ≤ d ≤ 1.25).
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Fig. 2. RQ1: Statistical comparison of the chance of triggering method (left) and class (right) comment update by change category (Table II)

Blocks with four different grayscale values from light to
dark represent a significant difference between two change
categories CHi and CHj accompanied by an odds ratio
indicating that CHi’s changes have at least 25%, 50%, 100%,
or 200% higher chance of triggering method or class comment
changes than CHj (or vice versa). The arrows in the heatmap
point to the change category having the highest chance of
triggering comment changes among the compared two. For
example, when comparing the categories Type and Construc-
tor, Fig. 2-left shows that Type’s changes have a higher chance
of triggering updates in the related comments (at least 200%
higher — black square). The detailed results with adjusted p-
values and odds ratio are available in our online appendix for
all comparisons [29].

From the analysis of Fig. 1 and 2 it is clear that different
categories of code changes have a different likelihood of
triggering updates in the related method and class comments.
Also, the MCC and the CCC values show that changes
to method and class comments are triggered by different
categories of code changes. For example, changes impacting
the Constructor are much more likely to trigger updates in
the class comment (CCC = 0.83) as compared to the method
comment (MCC = 0.06). This is expected since changes
to the constructor can impact the way the whole class is
instantiated and, as a consequence, are likely to require updates
to the class’s comment description. A similar trend can be seen
for changes impacting the Method Signature (CCC = 0.68
vs MCC = 0.04), while the opposite is true for Variable
declaration-related changes, i.e., these changes trigger more
frequently updates in the related method comments (MCC =
0.69) than in the class comment (CCC = 0.19). This result
is reasonable, considering that we only take into account
code changes affecting the methods’ body, as we previously
explained. Thus, changes to a variable declared inside a
method are likely to only impact the logic of that method,
without necessarily involving the overall class functioning.

One general trend that can be observed from Fig. 1 is that
most of the code change categories rarely trigger changes in
the related method and class comments. Our results point
in the same direction of the findings by Fluri et al. [12]:
They found that 23%, 52%, and 43% of all comment changes
in ArgoUML, Azureus, and JDT Core respectively, were
triggered by source code changes. Working on a much larger
corpus of 1,500 systems, when considering all change types
together we observe a co-evolution of code and comments
happening in 7% of cases for method’s comments and 13%
of cases for class’s comments. This means that, according to
our data, 13% to 20% of code changes trigger a comment
change in the class and/or in the methods’ comments: 13%
in case there is complete overlap between the two sets of
changes (i.e., those triggering methods’ and those triggering
class’s comments changes), 20% in case they are completely
disjointed.

Categories exhibiting low values of both MCC and CCC
and showing statistically significant lower chance to trig-
ger comment updates when compared to most of the other
categories are Array, Lambda Expression, Iteration, Literal,
Method Invocation, and Name. Due to the lack of space, we
only discuss two exemplary cases from these categories, while
more qualitative analysis will be reported in RQ2.

The Name category includes changes performed on iden-
tifiers (e.g., rename refactoring). We found cases of code-
comment inconsistencies introduced as result of renamed iden-
tifiers. For example, in a commit performed in the alluxio

project [39], the developer implements a rename refactoring
on the mIn identifier, changing it to mStream. This change
affects several methods implemented in the class, but only
one of them, namely openStream(), mentions the renamed
identifier in its comment. In this commit, the developer forgets
to update the comment, thus referring in it to an identifier that
does not exist anymore in the code. The issue is fixed 20 days
later [40].



The second example of inconsistency refers to the
Literal category, grouping changes related to fixed
values in code (e.g., String literal). A commit from
the bitcoinj project [41] changed the value of a
String literal from "connectionTimeoutMillis" to
"connectTimeoutMillis". This literal was used as a
parameter value in a call to the setOption method. As
explained in the commit note, this change was needed to
fix a bug: “Fix typo that prevented connection timeouts
from being set properly”. Indeed, the parameter value
"connectionTimeoutMillis" was not a valid one. While
the commit fixed the problem in the code, it did not fix
an example reported in one of the comments of the class
including an invocation to the setOption method, still using
the old, wrong parameter value. The problem has been fixed
in a later commit [42].

We answer RQ1 with the following observations:
We confirm previous findings in the literature [12], showing

that between 13% and 20% of code changes trigger comment
updates. This does not imply that in the remaining ∼80%
of cases code-comment inconsistencies are introduced, but
they represent a possibility, as we observed through manual
inspection, and as further demonstrated by the qualitative
analysis we present in RQ2.

Code changes to the Array, Lambda Expression, Iteration,
Literal, Method Invocation, and Name categories are the
ones less frequently triggering comment updates. This is also
confirmed by the statistical analysis (Fig. 2), in which these
categories exhibit, as compared to other categories, statisti-
cally significant lower chance of triggering comment updates,
accompanied by at least a “small” and in most cases by a
“large” effect size.

Change categories Variable Declaration and Selection are
among those more likely to trigger comment updates, both at
the method and at the class level. This is possibly due to the
fact that these changes could severely impact the application
logic (Selection) or the data manipulated in the code Variable
Declaration. Also, changes in the Method Signature and
Constructor categories are often accompanied by changes to
the class’s comment.

The other change categories (e.g., Return, Annotation, etc.)
exhibit MCC and CCC values mostly in the range 0.1-0.2,
showing that they still represent possible scenarios for the
introduction of code-comment inconsistencies.

B. What types of code-comment inconsistencies are fixed by
developers?

We addressed RQ2 by labeling 500 commits identified
as candidates to fix code-comment inconsistencies (see Sec-
tion III). We identified 138 false positives and 362 commits
actually related to comment changes. Note that, while not all
these commits are strictly related to code-comment inconsis-
tencies, they are all related to improvement actions performed
on comments. Overall, we identified 69 types of comment
changes tackled by developers, 25 of which relevant for code-
comment inconsistencies.

Fig. 3 presents the results in the form of a hierarchical
taxonomy composed by six root categories: Application Logic,
Code Design/Quality, Maintenance, Formatting/Readability,
Copyright/License and Others. The more specific types of
comment-related changes are represented either as interme-
diate nodes or leaves, and changes relevant for the fixing of
code-comment inconsistencies are marked with a V sign.

For each root category, we next describe representative ex-
amples and, at the end of this section, we discuss implications
for researchers and/or practitioners derived from our findings.

1) Application Logic (136): This category groups comment
changes in which the impacted comments are related to the
implemented application logic, such as a Javadoc describing
the steps of an algorithm implemented in a method, its
parameters or return type. In most cases, the change occurred
in the form of a comment update (113), while in a few cases
(12) a new comment was added. We observed three main
reasons why developers update comments: (i) the comment
wrongly describes the application logic (35), due to an error
done when the comment was written in the first place or to
an inconsistency introduced later (in these cases we were not
able to trace back to the specific cause of the problem); (ii)
the comment needs to be updated as a consequence of a new
implementation logic (25); (iii) the comment is improved to
explain the implementation in more details (53).

For instance, in a commit of QRCodegenerator [43] an
inline comment describing how an array element is calculated
was updated to fix a copy/paste mistake done when the code
was firstly written. The comment was copied from another
line of code also calculating an array, but in a different
way. This commit fixed the inconsistency between the code
implementation and the comment description.

In WordPressforAndroid [44], the previously misleading
comment of the getPath() method was replaced from “de-
scendants must implement this to send their specific request to
the stats api” to “descendants must implement this to return
their specific path to the stats rest api”. Similarly to the
example discussed in RQ1, also in RQ2 we found cases in
which the comment was fixed to update a code usage example
reported in the comment and not aligned with the actual code
implementation (see [45]).

Comments can also be used to explain the rationale for
implementation choices (e.g., to justify the usage of a spe-
cific collection type to represent data). We found cases in
which after a code change, these comments became outdated,
pushing developers to fix the discrepancy by simply delet-
ing the comments (see [46]). In other commits, comments
documenting the rationale were added, as in the case of the
ApacheCassandra project [47], in which a comment was
added in 2017 to explain why a variable introduced in 2015
was named nulls.

2) Code Design/Quality (80): This category groups com-
ment improvements that originate as consequence of actions
related to code quality and design (e.g., refactoring activities).

We observed three cases in which changes to the class
hierarchy resulted in inconsistent comments.
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Fig. 3. RQ2: Taxonomy of Code Comment-Related Changes

One of these is from the ApacheCordovaAndroid project
[48], in which we found a commit accompanied by the note:
“Update documentation comments to match implementation”.
In 2012, the developers refactored the class hierarchy and con-
verted the abstract class CordovaInterface to an interface
[49]. However, its Javadoc comment has only been updated
one year later, in 2013 [48].

Most of the cases in this group are related to Technical
Debt comments (54), i.e., comments describing known issues
or ‘TODOs’ in the code. Such comments are often deleted
(26) as a consequence of the developers paying back the debt.
While the comment is usually removed in the same commit in
which the technical debt is paid back, we found cases in which
developers fixed the technical debt issue but left the comment
by mistake. This required a subsequent commit aimed at
removing the comment, e.g., “Issue #326: Remove forgotten
outdated comment” [50], from the JavaParser project.

In 19 commits the ‘TODO comments’ were updated due to
a change in the code, for example to keep track of progress
done in the fixing of the documented technical debt.

Related to technical debt, there were also cases in which
comments were added to document the fact that a class/method
was deprecated (see [51], [52]).

Updated comments following refactorings were also fre-
quent (14), particularly after renamed methods/variables (11),
but we found interesting examples also following renamed
GUI elements (2), e.g., [53], or a replace magic number
refactoring (1), e.g., [54]. In the latter case the developer
replaced the inline comment “Keep only 1000 batches worth
data in queue” with “Keep only numBatchesInQueuePerParti-
tion batches worth data in queue”, to match a replace magic
number refactoring performed in a previous commit, thus
fixing the code-comment inconsistency.

Finally, related to Code Design/Quality are comment
changes aimed at fixing inconsistencies originated outside of
the project scope in third-party libraries. An example we found
is from the PSIProbe project [55]: “Update comment about
support as TomEE now supports tomcat 8.5”. Here the code
implementation already provided support for a new Tomcat
version that, however, was not officially released yet.



This was documented in the code through a code comment,
that became obsolete once Tomcat 8.5 was released, pushing
developers to delete it.

3) Maintenance (17): In this category fall comment
changes aimed to ease the future maintenance of comments,
for example by making them more concise. Interesting are the
changes implemented in ApacheGroovy to fix an outdated
comment in such a way to also avoid uptodateness issues in
the future: They modified the comment in order to use a newly
introduced variable (“The parameter can take one of the values
in @link ALLOWED_JDKS”) rather than listing the complete
list of supported JDK versions (“[...] can take one of the
values 1.7, 1.6, 1.5, 1.4”) [56] [57]. This makes unnecessary
in the future to update these comments when new versions are
supported or old versions are not supported anymore.

Another example of comment change aimed at avoiding
future uptodateness issues is the commit “remove comment
that can be very easily outdated” from JetBrainsAndroid

[58]. Here the developer extracts from the Javadoc comment
of the IntellijCodeNavigator class three paragraphs de-
tailing the logic of its main method (getNavigatable), in
particular related to branches of an if statement it implements.
Each of the extracted paragraphs has then been moved closer
to the specific lines of code it documents, to allow for an easier
maintainability and to avoid that future changes to the code
would not be reflected in the comment.

4) Formatting/Readability (63): Changes intended to im-
prove the formatting or readability of comments are grouped
in this category. Not surprisingly, we found many commits in
which developers just improved the wording of the comments
(31) or fixed typos (9). We also grouped in this category
comments aimed at implementing general improvements in
the Javadoc (6), with a mix of changes aimed at fixing typos,
improving readability, formatting, etc. (e.g., “Fix comments to
update javadoc for a bunch of methods” from Aluxio [59]).

Although this type of changes is usually not related to code-
comment inconsistencies, we found cases in which references
(e.g., related to other code elements, bug reports) became
obsolete, resulting in invalid/outdated references in comments.
For example, in GoogleGuava a commit says: “Updated a
comment in ListenerCallQueue to point at SequentialExecutor
instead of the deprecated SerializingExecutor wrapper inter-
face” [60].

5) Copyright/License (10): We grouped fixes related to
copyright/license comments separately under this category as
we found a considerable amount of commits working on
updating licensing information.

These changes were mostly related to simple maintenance
of copyright headers in source files, i.e., updating authorship
[61] or copyright year [62].

We also spotted cases, however, where outdated copyright
comments remained in source files for several years. In 2011 a
developer of the ApacheGroovy project updated the copyright
header of a Java file from a BSD variant to Apache License
v2 [63], although the project had already changed its license
back in 2007 [64].

6) Others (56): This category groups comment changes
that, while not being false positives (i.e., they are related to
code comments), do not fit any of the previous categories.
Comments were added in 37 cases to document new or already
existing code. In one case, automatically generated comment
skeletons were replaced with manually written comments
[65], while the comment deletions were generally related to
outdated comments left in the code by mistake. An example
can be seen in a commit of the CrateDB project [66] where
the developer deletes the description of the error handling of
SQL operations that was rewritten in earlier commits.

C. Discussion and Implications

Our large-scale study in RQ1 confirmed previous findings
reported in the literature and showing that, in most of the
cases, code and comments do not co-evolve. It is important
to highlight that a code change does not always result in
the need for updating the corresponding comment. Thus,
we are not claiming that do not updating comments as a
consequence of code changes is a bad practice. However, our
qualitative analysis disclosed several cases in which developers
introduced (RQ1) or fixed previously introduced (RQ2) code-
comment inconsistencies, providing us with a number of
lessons learned. In the following we discuss implications for
researchers (indicated with the � icon) and/or practitioners
(0 icon) derived from our findings.

The maintainability of comments is as important as that
of source code 0. As it happens for code, comments should
also deal with “functional” and “non-functional” requirements.
The functional aspect here is the proper documentation of the
source code, and it has always been recognized as a funda-
mental support for code comprehension. Not less important
are, however, the non-functional aspects of code comments,
such as their readability and maintainability. As shown in our
study, a simple idea such as using a variable referenced in the
comment to document the supported JDK versions as opposed
to explicitly listing them [56] can dramatically simplify the
maintenance of the comment, that will not require any future
update in case of changes to the supported JDKs. Basically, as
source code is often designed to isolate and minimize future
changes, the same should happen for comments.

Refactoring code comments �. From the researchers’
perspective, our study stresses the importance of investing
effort in the development of tools to support code comments
refactoring. Indeed, most of the effort in this field has been
devoted to the automatic assessment of comment quality (see
e.g., [7], [10], [16], [17]) without, however, recommending
how to automatically refactor it. Our findings provide insights
for the future development of approaches able to both detect
and fix issues in code comments. For example, we have seen
as simple copy/paste can introduce code-comment inconsisten-
cies, due to a wrong reuse of comments across semantically
different instructions (i.e., the same comment is reused for two
different instructions, wrongly documenting one of the two)
[43]. Identifying different code components documented with
the same comment can help in identifying these problems.



Concerning the automatic comment refactoring, a first step
in this direction could be the definition of a catalogue of
operations for comments, similarly to what has been done for
source code [32]. For example, we observed an instance of
what can be defined as an “extract comment refactoring” [58],
aimed at splitting a large comment into several comments to
place each one closer to the exact instruction it documents.

Code comments are first-class citizens in code refactor-
ing � 0. We observed several code-comment inconsistencies
introduced as consequence of refactoring activities. For exam-
ple, the application of a replace magic number refactoring [54]
caused the magic number to be removed from the code but not
from the related comments. Similarly, major refactorings to the
class hierarchy [48] caused outdated references in comments.
This highlights: (i) the need for developers to consider the
effects on comments when applying refactoring operations; (ii)
the opportunity for researchers to investigate how to integrate
better comment support into refactoring tools.

Code-comment traceability is still an open problem �.
Related to the previously discussed points, one major research
challenge is the code-comment traceability (i.e., automatically
identifying the code instructions documented by a given com-
ment). In 1988, Kaelbling argued that programming languages
should not have comment statements [33], but scoped com-
ments, explicitly indicating the code elements they refer to. As
of today, documentation tools such as Javadoc help developers
to explicitly comment certain elements by referring to them.
IDEs also provide support, e.g., by showing related comments
of selected items. However, popular programming languages
are still bound to line and block comments. There are many
research opportunities here both for language designers and
researchers to facilitate the code-comment traceability. Solving
this problem will in turn help to make substantial steps ahead
in the identification/fixing of code-comment inconsistencies.

V. THREATS TO VALIDITY

Threats to construct validity concern the relation between
the theory and the observation, and in this work are mainly due
to the measurements we performed. This is the most important
kind of threat for our study, and is related to:

RQ1: Computation of the MCC and CCC metrics. As
explained in Section III these metrics, for a specific type
of code change category CHi, measure the percentage of
times that method (MCC) or class (CCC) comments are in-
serted/deleted/modified in response to CHi’s changes. Clearly,
if a modified method/class has no comments, these metrics
cannot capture the deletion or modification of the method’s
comments, but only the insertion of new comments. Con-
sidering the scale of our study and the focus on long-lived
and popular systems unlikely to have many undocumented
methods, these imprecisions should not have a major impact
on the outcome of our study.

RQ1: Imprecision introduced by GumTreeDiff. As any dif-
ferencing tool, GumTreeDiff could generate wrong informa-
tion. For example, we noticed that in some cases the update
of a variable type (e.g., from double to int) was reported as

the deletion of a variable (the double one) followed by the
addition of a new variable (the int one). However, GumTree
is a state-of-the-art differencing tool and at least we tried to
reduce possible noise caused by “move” operations.

RQ2: Subjectivity in the manual classification. We iden-
tified through manual analysis the reasons behind commits
performed by developers to (likely) fix code-comment incon-
sistencies. To mitigate subjectivity bias in such a process, every
commit was assigned to two authors who manually analyzed
it independently. Then, in the case of a disagreement, a third
author was assigned to the commit to solve the conflict.

Threats to internal validity concern external factors we did
not consider that could affect the variables and the relations
being investigated. One aspect could be related to the selection
of projects being considered. As explained by Kalliamvakou
et al. [34] mining GitHub can be risky because projects may
contain very few commits. To mitigate this threat, we applied
strict criteria (i.e., more than 500 commits, more than 10
stars) when selecting the context of our study. To reinforce the
internal validity, when possible, we integrated the quantitative
analysis with a qualitative one.

Threats to external validity concern the generalizability of
our findings. RQ1 tries to achieve a high generalizability in
terms of mined projects that, however, are all written in Java.
Future work should focus on systems written in different
languages to confirm or contradict our findings. RQ2 analysis
is limited to a specific set of 500 commits we randomly
selected as output of a keyword-based mechanism used for
the pre-selection of commits likely related to code-comment
inconsistencies. Because of this procedure, our taxonomy
surely omits types of code-comment inconsistencies fixed in
commits we did not analyze and/or documented in diverse data
sources (e.g., issues on GitHub).

VI. CONCLUSION

We presented the largest study at date about the co-evolution
of code and comments. The study involved the analysis of
the complete change history of 1,500 Java systems. Then,
we manually analyzed 500 commits likely related to the
improvement of code comments, classifying 362 of them
(the non-false positives) into a taxonomy of comment-related
changes (Fig. 3). The results achieved with our quantitative
and qualitative analyses have been used to distill lessons
learned resulting in actionable items for both researchers and
practitioners (Section IV-C).

Our future work will target two directions. First, we plan to
enlarge the set of commits manually analyzed for RQ2 to test
the generalizability of the defined taxonomy. Second, we will
work on the development and experimentation of approaches
able to support code comment refactoring, with the goal of
improving the comments’ maintainability.
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