
An Empirical Study ofQuick Remedy Commits
Fengcai Wen, Csaba Nagy, Michele Lanza, Gabriele Bavota

Software Institute, USI Università della Svizzera italiana - Lugano, Switzerland

ABSTRACT
Software systems are continuously modified to implement new

features, to fix bugs, and to improve quality attributes. Most of these

activities are not atomic changes, but rather the result of several

related changes affecting different parts of the code. For this reason,

it may happen that developers omit some of the needed changes

and, as a consequence, leave a task partially unfinished, introduce

technical debt or, in the worst case scenario, inject bugs. Knowing

the changes that are mistakenly omitted by developers can help

in designing recommender systems able to automatically identify

risky situations in which, for example, the developer is likely to be

pushing an incomplete change to the software repository.

We present a qualitative study investigating “quick remedy com-
mits” performed by developers with the goal of implementing

changes omitted in previous commits. With quick remedy commits
we refer to commits that (i) quickly follow a commit performed by

the same developer in the same repository, and (ii) aim at remedy-
ing issues introduced as the result of code changes omitted in the

previous commit (e.g., fix references to code components that have

been broken as a consequence of a rename refactoring). Through a

manual analysis of 500 quick remedy commits, we define a taxon-

omy categorizing the types of changes that developers tend to omit.

The defined taxonomy can guide the development of tools aimed

at detecting omitted changes, and possibly autocomplete them.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; Software maintenance tools.

KEYWORDS
Fixing Commits, Empirical Software Engineering, Mining Software

Repositories

ACM Reference Format:
Fengcai Wen, Csaba Nagy, Michele Lanza, Gabriele Bavota. 2020. An Empiri-

cal Study of Quick Remedy Commits. In 28th International Conference on Pro-
gram Comprehension (ICPC ’20), October 5–6, 2020, Seoul, Republic of Korea.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3387904.3389266

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7958-8/20/05.

https://doi.org/10.1145/3387904.3389266

1 INTRODUCTION
In the software life-cycle, change is the rule rather than the excep-

tion. Changes are generally performed through commit activities

aimed at adding new functionalities, repairing faults, and refactor-

ing code [49]. Some of these commits can involve a substantial part

of the source code, with dozens of artifacts impacted [39]. This is

often the result of what Herzig and Zeller [41] defined as tangled
commits: commits grouping together several unrelated activities,

such as fixing a bug and adding a new feature.

In other cases, a single cohesive change (e.g., a bug fix) is in-

stead split across several commits. This can be due to omitted code

changes and/or the need for fixing a mistake done in the first at-

tempt to implement the change. Park et al. [54] showed that 22% to

33% of bugs require more than one fix attempt (i.e., supplementary

patches). Studying supplementary patches can be instrumental in

designing recommender systems able to reduce omission errors by

alerting software developers, as attempted in a subsequent work

by Park et al. [53], where the authors tried to predict additional

change locations for real-world omission errors. Due to the limited

empirical evidence about the nature of omitted changes, this is

still an open challenge. Indeed, while the work by Park et al. [54]
investigates omitted changes, it explicitly focuses on supplemen-

tary patches for bug-fixing activities, ignoring other types of code

changes (e.g., implementation of new features, refactoring). Thus,

there is no study broadly investigating the types of changes that

developers tend to omit during implementation activities.

We present a qualitative study focusing on “quick remedy com-
mits” performed by developers. We define as quick remedy commits
those commits that (i) quickly succeed a commit performed by the

same developer in the same repository; and (ii) aim at remedying
to issues introduced as the result of code changes omitted in the

previous commit (e.g., fix references to code components that have

been broken as a consequence of a rename refactoring) and/or of

introduced errors. In other words, we identified pairs of commits

(𝑐𝑖 , 𝑐𝑖+1) that are temporally close (i.e., 𝑐𝑖+1 succeeds 𝑐𝑖 by a few

minutes), are performed by the same developer, and include in the

commit note of 𝑐𝑖+1 a reference to fixing issues introduced in 𝑐𝑖 .

Fig. 1 shows an example of a quick remedy commit from our

dataset, and in particular from the GitHub project bardsoftware/-
ganttproject. In the commit depicted in the top part of Fig. 1

(i.e., commit a43b8f2), the developer implemented, among other

changes, a refactoring aimed at simplifying the code of the GPAction
class. In particular, instead of invoking three times the method

GanttLanguage.getInstance() in different parts of the class, the

language variable is instantiated, and reused where needed. Note

that we only show in Fig. 1 part of the commit diff due to space

constraints.

https://doi.org/10.1145/3387904.3389266
https://doi.org/10.1145/3387904.3389266

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Fengcai Wen, Csaba Nagy, Michele Lanza, Gabriele Bavota

a43b8f2 Aug 14 15:23:17 2011
Author: maarten bezemer
[…] (slightly) improved GPAction

action/GPAction.java

@@ -42,10 +42,17 @@

[…]

+ private static GanttLanguage language =
 GanttLanguage.getInstance();

2c40a07 Aug 14 15:25:08 2011
Author: maarten bezemer
Forgot 1 refactoring of 'language' in previous commit

@@ -114,7 +114,7 @@

Commit

Quick Remedy Commit

@@ -56,7 +63,7 @@

- GanttLanguage.getInstance().addListener(this);
+ language.addListener(this);

@@ -100,9 +107,10 @@

[…]

action/GPAction.java

- return GanttLanguage.getInstance().getText(key);
+ return language.getText(key);

Figure 1: Example of quick remedy commit

Two minutes later, the same author performs a quick remedy
commit (bottom part of Fig. 1 — commit 2c40a07) by reporting

in the commit note: Forgot 1 refactoring of ’language’ in previous
commit. The remedy commit propagates the changes introduced

by the refactoring to another location of the GPAction class, that
was missed by mistake in the original commit.

We decided to focus on remedy commits (𝑐𝑖+1) that are tempo-

rally close to the original change they fix (𝑐𝑖) for two reasons. First,

it is easier to establish a clear link between two commits by the

same developer if they are performed within a few minutes one

from the other. Second, as shown by Park et al. [53], it is challenging
to prevent omission errors automatically; thus, we decided to focus

on omission errors that, since fixed within few minutes, are likely

not to be so complex.

This allows gathering empirical knowledge to take a first step in

automating the prevention of a basic set of omission errors that, as

we show, can be responsible for bugs andmajor code inconsistencies

if not promptly fixed.

We defined heuristics to identify quick remedy commits automat-

ically, and mined the commits of interest from the complete change

history of 1,497 Java projects hosted on GitHub. This allowed the

identification of ∼1,500 candidates quick remedy commits. We man-

ually analyzed 500 of them looking at the changes introduced in

the remedy commit (𝑐𝑖+1) and the previous commit (𝑐𝑖) as well as

the summary of changes provided in the commit notes.

The goal of the manual analysis was to identify the rationale of

the remedy commits to define a taxonomy categorizing the types

of issues introduced by developers during commit activities that

trigger a remedy commit. We present our taxonomy via qualitative

examples and discuss implications for researchers and practitioners.

Structure of the paper. In Section 2 we present the design of

our empirical study, and discuss its results in Section 3. In Section 4

we discuss the threats that could affect the validity of our study. In

Section 5 we discuss the related literature, while in Section 6 we

draw our conclusions and outline our future work.

2 STUDY DESIGN
The goal of the study is to qualitatively investigate quick remedy

commits. The purpose is to define a taxonomy of quick remedy com-

mits that developers perform to fix issues introduced in a previous

commit and/or finalize an uncompleted implementation task. The

study addresses the following research question (RQ):

RQ1:What types of quick remedy commits are made
by developers?

This RQ aims at identifying the types of quick remedy commits

that are performed by developers (e.g., documenting through a code

comment a piece of code introduced in the previous commit). Know-

ing the types of quick remedy commits made by developers can

guide the development of tools to automatically alert developers

when code changes they are committing may require a subsequent

remedy commit. In some cases this could even avoid the introduc-

tion of bugs (e.g., due to changes not propagated in all code areas

where they are required).

2.1 Data Collection and Analysis
To answer RQ1 wemined the complete change history of 1,497 open

source Java projects hosted on GitHub. These projects represent

the context of our study and have been selected from GitHub in

November 2018 using the following constraints:

• Programming language.We only considered projects writ-

ten in Java since all the manual evaluators involved in the

study (i.e., three of the four authors) have experience in Java,

and would be able to understand the reasons behind the

quick remedy comments in most of the cases.

• Change history. Since we were interested in identifying a

good number of quick remedy commits to manually analyze,

we only selected projects having a relatively long change

history, composed of at least 500 commits.

• Popularity. The number of stars [1] of a repository is a

proxy for its popularity on GitHub. Starring a repository

allows GitHub users to express their appreciation for the

project. Projects with less than ten stars are excluded from

the dataset, to avoid the inclusion of likely irrelevant/toy

projects.

A total of 6,563 projects satisfied these constraints. Then, we

manually filtered out repositories that do not represent real software

systems (e.g., java-design-patterns [21] and spring-petclinic

[23]), and checked for projects with shared history (i.e., forked
projects).

An Empirical Study of Quick Remedy Commits ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

When we identified a set of forked projects, we only selected

among them the one with the longest commit history (e.g., both
FindBugs [20] and its successor SpotBugs [22] fall under our search

criteria, but we only kept the latter one). Finally, we sorted the

projects in descending order based on their number of stars (i.e., the
most popular on top), and we selected from the list the top 1,500

projects for our study.

Table 1: Dataset Statistics

Overall Per Project
Mean Median

Java files 1,599,323 1,068 360

Effective LOC 162,243,714 108,379 31,392

Stars 2,895,219 1,930 762

Commits 7,926,912 5,313 1778

During the cloning of the 1,500 GitHub repositories, we got

a cloning error for three of them. Thus, we extracted the list of

commits performed over the change history of the remaining 1,497

projects.

Table 1 reports descriptive statistics for size, change history, and

popularity of the selected projects. The complete list of considered

projects is publicly available in our replication package [24].

To extract the history of the subject systems, we iterated through

the commit history related to all branches of each project with

the git log --topo-order command. This allowed us to analyze

all branches of a project, without intermixing their history and

avoiding unwanted effects of merge commits.

Then, given the commit history, our goal was to identify all pairs

of subsequent commits (𝑐𝑖 , 𝑐𝑖+1) in which 𝑐𝑖+1 had been performed

by the developer as a quick remedy fix for 𝑐𝑖 . In other words, 𝑐𝑖+1
must (i) have been performed within a relatively short time interval

from 𝑐𝑖 ; (ii) clearly be a “compensatory” fix for 𝑐𝑖 . To identify the

(𝑐𝑖 , 𝑐𝑖+1) pairs of interest, we adopt the following heuristic-based
procedure. First, we computed the time interval between all adjacent

(subsequent) commits in each system, by using the author date of

each commit. In git it is possible to retrieve the author date (i.e.,
the date in which the change has been implemented by the author)

or the committer date (i.e., the date in which the change has been

committed). Given the goal of our work, we considered the author
date. We analyzed the distribution of these time intervals (see Fig. 2).

0 200 400 600 800 1000

Figure 2: Time differences (in minutes) between subsequent
commits (without outliers)

We considered the first quartile, exactly five minutes, as a candi-
date threshold to identify remedy commits: 𝑐𝑖+1 commits performed

as quick fixes for their predecessor 𝑐𝑖 commit.

This allowed us to select pairs of commits meeting our first

requirement: They were performed in rapid succession (i.e., within
five minutes). Then, we excluded from the selected pairs of commits

all those in which 𝑐𝑖 and 𝑐𝑖+1 had not been performed by the same

author, to increase the probability of 𝑐𝑖+1 actually being a remedy

commit for 𝑐𝑖 rather than an unrelated change implemented by

another author and just by chance being temporally close to 𝑐𝑖 .

This filtering left us with 1,041,397 candidate commits.

Finally, we set up a process to define lexical patterns allowing

the identification of 𝑐𝑖+1 commits in which the developer explicitly

indicates in the commit note the fact that 𝑐𝑖+1 is a remedy commit

for changes introduced in the previous commit (𝑐𝑖). The first author

extracted from all 1,041,397 commits output of the previous filter-

ing step the words and 2-grams used in their commit notes. This

means that, from a commit note reporting “Fixes a bug introduced
in previous commit”, we would extract fixes, a, bug, etc. as the single
words, and fixes a, a bug, bug introduced, etc. as 2-grams. To remove

noise, stop words (e.g., articles) and all single words shorter than

four characters had been excluded from the set of single words (not

from the 2-grams list). The remaining words and all 2-grams had

then been sorted by frequency in descending order, excluding the

long tail of those appearing in less than ten commits. Indeed, even

if useful to identify remedy commits, lexical patterns defined from

these words/2-grams are unlikely to retrieve a substantial amount

of useful commits and, thus, are excluded a priori from reducing the

inspection effort. For each remaining word/2-gram, we randomly

extracted ten commit notes in which it appears.

This dataset, composed of words/2-grams and related commit

notes, had been manually and independently inspected by three

authors with the goal of defining the needed lexical patterns. After

an open discussion in which each author presented his list of pat-

terns, the three evaluators agreed on the following lexical pattern

to identify remedy commits:

(former or last or prev or previous) and commit

This means that commit notes including former commit, last
commit, prev commit, or previous commit would be matched and

considered as relevant for our study. While this heuristic is quite

strict, our goal was to maximize precision at the expense of recall,

considering the fact that our study is qualitative in nature and

does not target a large number of manually analyzed commits. At

the end of this last filtering step, we obtained 1,577 𝑐𝑖+1 commits

which (i) have been authored within five minutes from the commit

𝑐𝑖 previously performed by the same author; and (ii) explicitly

mention in the commit note a lexical reference to the previous

commit that can be captured by the defined pattern. Given the high

cost of the manual analysis process detailed in the following, we

decided to focus our analysis on a randomly selected sample of 500

commits, representing a 99% statistically significant sample with a

4.8% confidence interval.

The 500 commits were randomly distributed among three au-

thors, making sure that each commit was classified by two authors.

The goal of the process was to identify the exact reason behind the

changes performed in the commit. If the commit was unrelated to

the previous one, the evaluator classified it as false positive.

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Fengcai Wen, Csaba Nagy, Michele Lanza, Gabriele Bavota

Add credits for previously committed code Add missed commit message Add missed documentation Add test for code implemented in last commit
Application logic fixes Commit adds/deletes files missed in previous commit Document the implementation logic of new code Document the rationale
for refactoring in previous commit Fix compilation error Fix checkstyle warnings for previous commit Fix compatibility issue introduced in previous
commit Fixed broken references caused by rename package refactoring in previous commit Forgot to propagate a change in a clone

Commit

Figure 3: Web application used to run the manual tagging

Otherwise, a tag explaining the reason for the change (e.g., re-
move debugging code from the previous commit) was assigned.

We did not limit our analysis to the reading of the commit mes-

sage, but we analyzed the source code diff of the changes imple-

mented in the GitHub commits, both in the 𝑐𝑖+1 commit as well as

in its predecessor (𝑐𝑖). The tagging process was supported by a Web

application that we developed to classify the commit and to solve

conflicts between the authors. The Web application is shown in

Fig. 3. Each author independently tagged the commits assigned to

him by defining a tag describing the reason behind the commit. Ev-

ery time the authors had to tag a commit, the Web application also

showed the list of tags created so far, allowing the tagger to select

one of the already defined tags (visible in the bottom part of Fig. 3).

Although, in principle, this is against the notion of open coding, in

a context like the one encountered in this work, where the number

of possible tags (i.e., cause behind the commit) is extremely high,

such a choice helps using consistent naming and does not introduce

substantial bias. In cases for which there was no agreement between

the two evaluators (44% of the classified commits), the commit was

assigned to an additional evaluator to solve the conflict. While such

a percentage may look high, it is worth considering that our task

was not to assign commits to a list of predefined categories, but to

define the names for such categories during the tagging process.

This naturally leads to a higher number of conflicts.

After having manually tagged all commits, we defined a taxon-

omy of quick remedy commits through an open discussion involv-

ing all the authors (see Fig. 4). We qualitatively answer our research

question by discussing specific categories of commits likely related

to the code changes developers often forget to implement and try

to immediately remedy. For each category, we present interesting

examples and discuss implications for researchers and practitioners.

2.2 Replication Package
The data used in our study is publicly available [24]. We provide

(i) the list of 1,497 subject projects; (ii) the link to the 500 commits

we manually analyzed; and (iii) the classification of the manually

analyzed commits.

3 RESULTS
We addressed our research question by labeling 500 commits identi-

fied as candidates to being quick remedy commits (see Section 2).We

identified 42 false positives (i.e., commits 𝑐𝑖+1 that were not related
to the preceding 𝑐𝑖 commit) and 458 commits actually classifiable as

quick remedies. Note that not all these quick remedy commits are

compensatory fixes for issues caused by omitted changes. They also

include fixes for previously introduced errors (e.g., the developer
realizes that her previous commit introduced a bug) as well as com-

mits aimed at simply improving the previously committed change

(e.g., improve the name of a newly introduced variable). Finally, our

taxonomy also features remedy commits aimed at fixing simple

mistakes performed during the 𝑐𝑖 commit process itself (e.g., the
developer forgot to include a modified file in commit 𝑐𝑖 and thus

commits it in 𝑐𝑖+1).
Overall, we identified 69 types of quick remedy commits made

by developers, 20 of which relevant for changes omitted in the

previous commit.

Fig. 4 presents the results in the form of a hierarchical taxonomy

composed by six root categories: Bug Fix, Code Refactoring/Clean
Up, Build Issue, Missing Code Change, Documentation, and Reverted
Commit. Themore specific types of quick remedy commits are repre-

sented either as intermediate nodes or leaves, and commits relevant

for the fixing of issues caused by omitted changes are marked with

a sign. For each category, we next describe representative exam-

ples and discuss implications for researchers (indicated with the

� icon) and/or practitioners (⋔ icon) derived from our findings.

3.1 Bug Fix (79)
This category groups pairs of commits (𝑐𝑖 , 𝑐𝑖+1) in which the remedy

commit (i.e., 𝑐𝑖+1) fixes a bug introduced in 𝑐𝑖 . We identified two

main subcategories: Fix Broken Test, in which 𝑐𝑖+1 has been triggered
by test cases failing after the change implemented in 𝑐𝑖 , and Fix
Implementation Logic, in which the developer realized that she

introduced a bug in 𝑐𝑖 and quickly submits a patch.

The commits in the Fix Broken Test category targets the fixing

of the production code or the test code modified in 𝑐𝑖 and causing

the test suite to brake. For example, in the Denominator project of

Netflix, a developer reported in the commit message: “Fix tests
broken by former commits” [4].

An Empirical Study of Quick Remedy Commits ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

B
ug

 F
ix

C
od

e
R

ef
ec

to
rin

g/
C

le
an

 u
p

Fi
x

C
om

pi
la

tio
n

W
ar

ni
ng

/E
rro

r

D
oc

um
en

ta
tio

n

B
ui

ld
 Is

su
e

Fi
x

Br
ok

en
 T

es
t

Fi
x

Im
pl

em
en

ta
tio

n
Lo

gi
c

Fo
rm

at
tin

g
Re

m
ov

e
De

bu
gg

in
g

C
od

e
Re

m
ov

e
U

nn
ec

es
sa

ry

C
od

e
Im

pr
ov

e
C

od
e

C
om

pr
eh

en
si

bi
lit

y
Im

pr
ov

e
Pe

rfo
rm

an
ce

W
ar

ni
ng

Sy
nt

ax
 E

rro
r

C
om

m
it

ad
de

d/
de

le
te

d
fil

es
 m

is
se

d
in

 p
re

vi
ou

s
co

m
m

it

R
ev

er
te

d
C

om
m

it

C
od

e
C

om
m

en
t

Re
le

as
e

N
ot

e
Li

ce
ns

e
C

om
m

it
M

es
sa

ge
Re

ad
M

e
Fi

le

Fi
x

Bu
ild

 Is
su

e
in

Bu

ild
 S

cr
ip

t
Fi

x
Er

ro
r i

n
C

on
fig

ur
at

io
n

Fi
le

N
ul

l P
oi

nt
er

Ex

ce
pt

io
n

W
ro

ng
 M

et
ho

d
Re

fe
re

nc
e

W
ro

ng
 R

et
ur

n
Va

lu
e

W
ro

ng
 If

C

on
di

tio
n

W
ro

ng
 V

ar
ia

bl
e

Re
fe

re
nc

e
C

ha
ng

e
Pr

op
ag

at
io

n
M

is
si

ng
 G

ua
rd

C

la
us

e
W

ro
ng

 L
ite

ra
l

Va
lu

es
Am

bi
gu

ou
s

Re
fe

re
nc

es

Du
e

To
 In

co
m

pl
et

e
M

ov
e

Pa
ck

ag
e

Re
fa

ct
or

in
g

Fi
el

ds
 O

rd
er

in
g

Re
na

m
e

M
et

ho
d

fo
r

C
on

si
st

en
cy

Ex
tra

ct
 M

et
ho

d
Re

fa
ct

or
in

g

Re
m

ov
e

U
nu

se
d

Im
po

rt
Re

fe
re

nc
es

Ty
po

s

Du
e

to
 In

tro
du

ce
d

Bu
g

Du
e

to
 F

ai
lin

g
Te

st
Du

e
to

 U
ni

nt
en

de
d

C
ha

ng
e

Do
cu

m
en

t t
he

Ra

tio
na

le
 o

f C
od

e
C

ha
ng

es
Fi

x
C

od
e

C
om

m
en

t
Re

m
ov

e
Pa

ye
d

Ba
ck

Se

lf
Ad

m
itt

ed

Te
ch

ni
ca

l D
eb

t

U
pd

at
e

Re
le

as
e

N
ot

e
to

 F
ix

 W
ro

ng
 Is

su
e

N
um

be
r

U
pd

at
e

C
op

yr
ig

ht

Ye
ar

Ad
d

M
is

se
d

C
om

m
it

M
es

sa
ge

Fo
rg

ot
 to

 P
ro

pa
ga

te
 a

C

ha
ng

e
in

 B
ui

ld
 F

ile

Fo
rg

ot
 to

 D
ep

re
ca

te

M
et

ho
d

Af
te

r a
 N

ew

O
ne

 Im
pl

em
en

te
d

Fo
rg

ot
 to

 P
ro

pa
ga

te

C
od

e
C

ha
ng

e
Fi

xe
d

W
ro

ng
 Im

po
rts

Re
m

ov
e

N
ew

ly

In
tro

du
ce

d
Im

po
rt

Im
po

rt
Be

ca
m

e
U

nu
se

d
Af

te
r C

od
e

C
ha

ng
e

Br
ok

en
 R

ef
er

en
ce

s
C

au
se

d
by

 R
en

am
e

Re
fa

ct
or

in
g

Fo
rg

ot
 to

 A
dd

 a
n

Im
po

rt

De
le

te
 F

ile

In
ad

ve
rte

nt
ly

 A
dd

ed
Fi

le
 C

om
m

itt
ed

 b
y

M
is

ta
ke

Te
m

po
ra

ry
 T

es
t C

od
e

Fi
x

M
is

le
ad

in
g/

Er
ro

ne
ou

s
C

om
m

en
t

Fo
rm

at
tin

g/
Re

ad
ab

ilit
y

Im
pr

ov
em

en
ts79

6
73

39

9
7

8
13

2

9
43

68 7
9

49

17
4

16
5

7

Fi
x

in
 C

od
e

M
is

si
ng

 C
od

e
C

ha
ng

e

Fi
na

liz
in

g
C

od
e

C
ha

ng
e

Ad
d

Te
st

 fo
r

Im
pl

em
en

te
d

C
od

e

16
5

52
13

15
2

C
om

pl
et

e
Pr

ev
io

us

Im
pl

em
en

ta
tio

n
Ta

sk

M
ar

k
Te

st
 a

s
Fa

ilu
re

Ex
pe

ct
ed

In
de

nt
at

io
n/

Li
ne

Br

ea
k

U
pd

at
e

Re
le

as
e

N
ot

e
fo

r P
re

vi
ou

s
C

od
e

C
ha

ng
es

58

Fi
x

Im
pr

op
er

Ex

ce
pt

io
n

N
am

e

Fi
gu

re
4:

Ta
xo

no
m
y
of

Q
ui
ck

R
em

ed
y
C
om

m
it
s

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Fengcai Wen, Csaba Nagy, Michele Lanza, Gabriele Bavota

While in the cases we analyzed the issue was spotted and fixed

quickly by the developer, there might be non-trivial cases in which

only a subset of the test suite is executed for regression testing (e.g.,
due to a limited testing budget) and a non-executed broken test is

not identified by the developer.

� For researchers, this is an opportunity to study test breaking-

changes and to develop techniques able to alert the developer when

a change she implemented might require a double check of (part of)

the test suite. ⋔ For practitioners, continuous integration practices

can help in timely spotting these issues in most of the cases.

The fixes to the implementation logic are mostly classic bugs

introduced but quickly recognized and fixed by developers (e.g.,
errors in if conditions, wrong literal values, null pointer excep-

tions, etc.). While these are not related to omitted changes, they are

interesting since they represent bugs fixed by developers within

five minutes (due to our selection criteria for the commits).

This indicates that these bugs, while prevalent in our taxonomy

(73 instances), are likely quite simple to fix. Thus, � researchers

could investigate the possibility of creating approaches able to

learn from this data on how to avoid and/or automatically fix these

bugs. For example, recent work applied Neural Machine Translation

(NMT) models to automatically fix bugs [65]. However, given the

complexity of this task and the non-trivial bugs that these models

have to fix, they are usually only able to automatically fix a minority

of the bugs provided as input [65]. Focusing on these simpler but

quite frequent bugs could represent a good application scenario for

the NMT-based bug fixing approach.

Some of the fixes in the Fix Implementation Logic category are

related to omitted changes (see Fig. 4). This includes the Forgot to
Propagate Code Change category in which developers do not consis-

tently propagate a change across all relevant code components. This

is typical of cases in which code clones are spread in the system and

inconsistent changes are implemented in 𝑐𝑖 [46]. An example of this

can be seen in the𝑚𝑎𝑡ℎ𝑡𝑡𝑇𝑜𝑚𝑃2𝑃 project. In a commit [15], the

developers adapts a builder class (PutBuilder) to earlier changes

of the original class and they implement new methods such as

isPutConfirm and isPutReject. In a follow-up change [16], they

fix a conditional statement to check the status of a Put object in

a new branch. Then, only a few seconds later [17], they update

a conditional check with a similar structure but in another class.

For this last commit, the commit message says “belongs to previous
commit”. Another example can be seen in the 𝑚𝑎𝑡ℎ𝑡𝑡𝑠𝑝𝑎𝑐𝑒𝑤𝑎𝑙𝑘

project. In a commit [11], they update a SQL script by adding a

query for the removal of unnecessary data. Then, in the quick sub-

sequent commit [12], they propagate the same schema changes into

a database upgrade file.

⋔ These examples highlight the relevance for practitioners of

approaches to guide code changes (see e.g., the seminal work in

the area by Zimmermann et al. [70]) as well as the need for� the

research community to continue improving these techniques and,

possibly, making them easily pluggable into a continuous integra-

tion pipeline to foster developers’ adoption.

Interesting in this category is also the introduction of ambiguous
references due to incomplete move package refactoring. We found this

case in the apache/accumulo project, where they migrate some

classes to another package [2], but still keep the old ones.

In a follow-up commit [3], they realize that they use, however, the

wrong references to the migrated classes. � Code clone detection

techniques [60] could help in these cases by promptly pointing the

developer to the presence of multiple copies of the same classes

in the repository. The integration of these approaches in a just-in-

time fashion could help in identifying clones introduced in the last

commit, thus avoiding mistakes as the one in the discussed commit

[2].

3.2 Code Refactoring/Clean up (39)
This category groups the pairs of commits (𝑐𝑖 , 𝑐𝑖+1) in which the

remedy commit (i.e., 𝑐𝑖+1) implements a refactoring/cleanup of the

code changed in 𝑐𝑖 (see Fig. 4). In these commits developers are

either not satisfied of the code they implemented or are trying to

address warnings received by static analyzers.

Some other subcategories include the simple removal of code

that was only temporary implemented in 𝑐𝑖 (i.e., Remove Debugging
Code) or that becomes unnecessary after 𝑐𝑖 ’s changes (i.e., Remove
Unnecessary Code). Also, code formatting issues (e.g., mainly the

inconsistencies of indentations and line breaks introduced with

code changes) were fixed by developers in the remedy commit (ie

Code Formatting). Additionally, in 2 cases, developers changed the

code implemented in 𝑐𝑖 to improve its performance. An example can

be seen in project rzwitserloot/lombok [9] where a developer

fine tunes a cache clearing mechanism implemented in a previous

commit by turning a variable volatile and moving the invocation

for the cache clearing after a conditional check.

However, the main purpose of those code refactoring/clean up

tasks is to improve the code understandability. Variable and method

renaming refactoring (i.e., renaming a variable or method to better

reflect its functionality) is the most common way to make the code

easier to comprehend. Also popular are code transformations aimed

at replacing literal values with variables or splitting long functions

through extract method refactoring. The latter allows not only

to foster comprehensibility, but also the reusability of small code

snippets.

Other interesting cases are the ones in which developers modify

the previously committed code to promote consistency with the

coding style of the project (see e.g., Rename Method for Consistency).
For example, in a commit of the liferay − portal project [8], de-

velopers opened an issue to “introduce tests to document current
behavior” [19]. Interestingly, in this process they very carefully re-

view the used method names for better readability, and in a commit

they say:

“[...] where specific method names are NOT accurate,
go for a generic name to force the developer to read the
code to find what the method actually does”.

The developers decided to change a method’s name from assert-
ThatSearchResultHasVersion to assertSearchResult. In the

next commit [8], to remain consistent, they replace the method

invocation of assertThatEverythingButSummaryIsEmpty (in an-

other class) to assertSearchResult. For this last commit, the com-

mit message says “Match previous commit even though this method
name was accurate”.

An Empirical Study of Quick Remedy Commits ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

� The inconsistencies fixed with simple refactorings point to

the possibility for the software engineering research community

to investigate techniques able to learn coding conventions used

in a given system and recommend fixes for possible violations. To

the best of our knowledge, the only attempt at date has been made

by Allamanis et al. [25] with their NATURALIZE tool able to rec-

ommend meaningful identifier names and formatting guidelines.

Other approaches focus only on rename refactoring suggestions

[47]. While these techniques cover most of the inconsistencies fixed

in the Code Refactoring/Clean up category (e.g., Rename Method for
Consistency, Fix Improper Exception Name), others are left uncov-
ered (e.g., Fields Ordering), indicating more potential for additional

research in the area of recommending coding convention fixes.

3.3 Build Issue (68)
This category is related to commits fixing build issues introduced

as a result of the 𝑐𝑖 changes. The main subcategory here is the fix of

the compilation errors/warnings issued by the compiler due to the

changes in 𝑐𝑖 (i.e., Fix Compilation Warning/Error). Unused import

statements are the main cause for the warnings we identified (see

Fig. 4), and the trigger for the remedy commits in this category.

The unnecessary import statements are caused either by import
statements introduced in 𝑐𝑖 by the developer and then unused, or by

previously existing imports becoming unused due to the changes

implemented in 𝑐𝑖 . These warnings are usually raised by static

analysis checks performed at commit time and, thus, are easy to

catch for developers.

In the Syntax Error category we found many cases of broken

references due to rename refactoring operations performed in 𝑐𝑖 .

These rename refactorings are related to variables, methods, classes,

as well as packages. An example can be seen in the commit [18]

of the DroidPlanner/Tower project which followed a renaming

of multiple classes. Some other cases were violating the syntax of

the programming language due to introduced typos (e.g., missing

statement separators).

Considering the good refactoring support provided by modern

IDEs, the identification of these broken references as a consequence

of refactorings was quite surprising for us. � ⋔ This may indicate

either that these refactorings were performed manually, leading

to the introduction of broken references, or that bugs might affect

refactoring engines, as already found by previous work in the liter-

ature [36]. Additional investigation focused on these specific types

of errors is needed to understand the reasons behind them.

Other subcategories that also caused a build issue include the fix

of introduced errors in configuration files (i.e., Fix Error in Configu-
ration File) or in a build script (i.e., Fix Build Issue in Build Script).
For example, in some remedy commits developers fixed broken

tags in configuration files or incorrect filepath references in build

scripts.

3.4 Missing Code Change (165)
This category groups the pairs of commits (𝑐𝑖 , 𝑐𝑖+1) in which the

remedy commit (i.e., 𝑐𝑖+1) adds some missing code changes that

should be introduced within previous commit 𝑐𝑖 . We divided those

commits into two subcategories: Commit Added/Deleted Files Missed
in Previous Commit and Finalizing Code Change.

The first subcategory is related to fixing a previous commit error.

In this case, we are not referring to the code changes implemented

in 𝑐𝑖 , but to the commit process itself. This issue is mainly caused

by an incorrect selection of committed files by the developer. Also,

sometimes IDE cache issues can lead to a similar situation (e.g., the
IDE cached the wrong version of a committed file or lost track of

some code changes during the git commit process). While this sub-

category is kind of unrelated to artifacts’ changes, it still provides

hints for interesting research directions.� For example, approaches

to automatically identify the set of files to commit can be designed

to reduce the possibility of missing files or to include unrelated

changes. This could also go further and recommend to the devel-

oper when to commit in such a way to avoid tangled commits [41]

and committing cohesive sets of code changes. To the best of our

knowledge, the only step in this direction has been done by Bradley

et al. [32] with a context-aware developer assistant able to identify

the files to push towards the repository when the developer asks.

However, more automation can be envisioned, with approaches

also able to (i) recommend when to commit (as previously said, to

e.g., avoid tangled commits), and (ii) summarize the changes in a

meaningful commit message (as attempted by Jiang et al. [43]).
The second subcategory (i.e., Finalizing Code Change) refers to

code changes forgotten or left incomplete for other reasons in com-

mit 𝑐𝑖 that are then finalized in 𝑐𝑖+1. This includes cases in which

developers add new test cases needed to test the production code

introduced in the previous commit, or to complete an implemen-

tation task. For example, in a commit of the openpnp project [10],
the developer claimed in the commit message that three new sub-

features were introduced. However, the developer forgot to actually

implement one of those sub-features and added the missing imple-

mentation in the following commit. In another interesting case from

the geoserver project [5], the developer introduced a guard clause
in commit 𝑐𝑖 to check if a processed reference is null. Meanwhile,

a debugging message was also added saying that “the reference is
null, reset it to default value”. However, the actual implementation

for resetting this reference value was missing in commit 𝑐𝑖 , and

implemented in the remedy commit 𝑐𝑖+1. � While these issues are

of different natures, some of them can be spotted automatically

through techniques able to compare what described in the com-

mit message and what has been actually implemented in the code

change. For example, in the previously discussed example [10], a

misalignment between the number of sub-features actually imple-

mented and claimed in the commit message could be spotted and

reported to the developer.

3.5 Reverted Commit (58)
This category groups remedy commits 𝑐𝑖+1 in which the developers

revert the code changes they committed in the previous commit

𝑐𝑖 . The reasons pushing a developer to revert previous changes

through a remedy commit include: (i) introduced bugs spotted after

pushing the changes in 𝑐𝑖 ; (ii) unintended changes, pushed in 𝑐𝑖 by

mistake; (iii) failing test cases, possibly indicating a bug worth of

investigation before applying the 𝑐𝑖 ’s changes. In all these cases,

developers prefer to quickly bring the code back to its previous

state to double check the implemented changes and understand the

causes for the (possible) introduced issues.

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Fengcai Wen, Csaba Nagy, Michele Lanza, Gabriele Bavota

It is also worth mentioning that in many cases, we were not able

to understand the reasons behind the reverted changes by manually

inspecting the subject commits. These cases are just grouped in the

root category Reverted Commit. Also, we observed that sometimes

the code changes were reverted backward and forward within a

few subsequent commits.

Our study is not the first one investigating reverted commits

in software repositories. Shimagaki et al. [61] conducted a study

to gain a better understanding of why commits are reverted in

large software systems. They found that 1%-5% of the commits

from the systems they studies are reverted and this number could

be reduced by improving team communication and developers’

awareness. However, in some cases, commits are reverted due to

external factors (e.g., requirement change by end-users, customers,

or remote teams) and, in this case, they are difficult to avoid. Yan

et al. [67] proposed a model to automatically identify commits that

will be reverted in the future. They also found that the developer

who performs the change is the most important predictive fea-

ture among the three they studied (i.e., code change, developer,

commit message). ⋔ Besides the recommendations to developers

already provided by Shimagaki et al. [61], � the presence of re-

verted commits in the history of software systems is also relevant

for the mining software repositories (MSR) research community.

For example, it could be debated whether studies analyzing the

change-proneness of code components (i.e., how frequently code

components are subject to changes in software repositories) — e.g.,
[27, 30, 33] — should take into account commits that are quickly

reverted or, as currently done, should consider them. The same

applies for works using the history of changes implemented by

developers as a proxy for the developers’ experience — e.g., [58, 63].
Empirical studies aimed at assessing the impact of considering (or

not) reverted commits on the findings of MSR studies could shed

some light on the bias (if any) these commits introduce.

3.6 Documentation (49)
Our last category groups remedy commits related to software doc-

umentation. These commits impact a number of documentation

artifacts that represent the main subcategories (see Fig. 4), namely:

release notes, licensing statements, code comments, commit mes-

sages, and readme files.

The errors fixed in release notes, licenses and readme files are

mostly minor. For example, some commits just update the copyright

year in a previously committed file. Also, the fix of commit messages

rarely happens, and are mostly due to adding a missing commit

message for the code changes implemented in the previous commit.

� Also these cases are interesting for the MSR community. For

example, approaches using pairs ⟨code changes implemented in a
commit 𝑐𝑥 , commit message of 𝑐𝑥 ⟩ to train models able to learn how

to generate commit notes [43], could be negatively biased by commit

messages in a commit 𝑐𝑖+1 referring to changes implemented in 𝑐𝑖 .

Other remedy commits are related to code comments. In some

cases, developers documented the rationale for a code change im-

plemented in the previous commit. This is the case of commit [6]

performed in the jitsi project. In a commit [7] they fix a bug due

to wrong generation of a message where they mistakenly set a

value of a parameter to an empty string instead of a null value.

In the next commit [6] they add a comment to explain the other-

wise non-trivial difference in the generated message.

Interesting is also the missed removal of Self Admitted Tech-

nical Debt (SATD) instances [55], meaning technical debt docu-

mented by developers in the code with comments such as TODO : . . .,

TOFIX : . . ., etc. We found cases in which developers payed-back

the technical debt instance, but forgot to remove the comment docu-

menting the SATD. This resulted in a code-comment inconsistency

[66], that could possibly confuse developers comprehending the

associated code components. One representative example of this

scenario is the commit [13] performed in the apache/tinkerpop
project where the developers “Forgot to remove todo from previous
commit”, as their commit message says. Indeed, in the remedy com-

mit they remove a single-line comment which says “todo: need a
test to enforce this condition”, and just right in the previous commit

[14] they had implemented the missing test case, thus paying back

the technical debt.

� The cases discussed above for the Documentation category

provide us with some interesting lessons learned. First, identify-

ing code components in which specific types of comments (e.g.,
to document the rationale for a given implementation and/or to

detail the application logic) are needed, can be a promising research

direction. Second, automatically classify SATD as payed-back (or

not) can help in identifying obsolete and misleading comments in

the code. We believe this is another interesting research direction

for the software engineering community.

4 THREATS TO VALIDITY
Threats to construct validity concern the relation between the the-

ory and the observation, and in this work are mainly due to the

manual analysis we performed to identify the reasons behind the

quick remedy changes performed by developers. To mitigate sub-

jectivity bias in such a process, every commit was assigned to two

authors who manually analyzed it independently. Then, in the case

of disagreement, a third author was assigned to the commit to

solve the conflict. In addition to that, we used lexical patterns to

identify candidate remedy commits. While these lexical patterns

can return false positives, these have been excluded in our study

through manual validation, and thus do not influence our findings.

Threats to internal validity concern external factors we did not

consider that could affect the variables and the relations being

investigated. One aspect could be related to the selection of projects

being considered. As explained by Kalliamvakou et al. [44] mining

GitHub can be risky because projectsmay contain very few commits.

To mitigate this threat, we applied strict criteria (i.e., more than 500

commits, more than ten stars) when selecting the context of our

study. Also, we manually looked into the set of retrieved projects

to exclude repositories that do not represent real software systems

(e.g., tutorials, collections of code examples) and forked projects.

Finally, due to the qualitative nature of our study, all considered data

points (i.e., commits) have been manually checked, strengthening

its internal validity.

Threats to external validity concern the generalizability of our

findings. Our analysis is limited to a specific set of 500 commits we

randomly selected as the output of a keyword-based mechanism

used for the pre-selection of commits likely to be “remedy” commits.

An Empirical Study of Quick Remedy Commits ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

Because of this procedure, our taxonomy inevitably omits types of

remedy commits we did not analyze and/or documented in diverse

data sources.

Also, we set a 5-minute threshold to identify the quick remedy
commits subject of our study. While our choice is justified by the

temporal distribution plotted in Fig. 2, changing this threshold value

may result in different findings. This investigation is part of our

future research agenda.

5 RELATEDWORK

There is a vast literature of empirical studies investigating develop-

ers’ commits for various purposes. Many studies tackle who/what/-

when/where/why developers change their source code. However,

there has been little research on quick fixes, or consecutive changes

performed by software developers. Here we present an overview

of the related work close to the topic of our paper.

5.1 Reasons for Changes
Mockus et al. [49] studied a large legacy telecommunication sys-

tem to identify reasons for software changes. Using an automatic

classification algorithm, they discovered three primary reasons

for changes according to maintenance activities: adding new func-

tionality (adaptive), repairing faults (corrective), and restructuring

the code to accommodate future changes (perfective). Besides, they
noticed that several changes fall under the fourth category of in-

spection rework changes, i.e., changes to implement the recommen-

dations of code inspections. They also found a strong relationship

between the type and size of a change and the difficulty of a change.

Hattori and Lanza [39] conducted an empirical study on nine

large open source systems. They defined the size of a commit based

on the number of files. They classified commits according to the

comments information into development (forward engineering) or

maintenance (reengineering, corrective engineering, and manage-

ment) categories.

Hindle et al. [42] conducted a study on large commits and created

a taxonomy of the purpose of large commits. They also found that

large commits are more focused on perfective maintenance, while

small commits are more related to corrective maintenance.

5.2 Effects of a Change on Quality
5.2.1 Small Changes. Purushothaman and Perry [56] investigated

small source code changes (i.e., one-line changes) during the de-

velopment process. An interesting finding of their work is that

there is less than a four percent probability that a one-line change

introduces a fault in the code.

5.2.2 Large Changes. Sliwerski et al. [62] studied fix-inducing

changes, i.e., changes that lead to problems indicated by fixes. In

particular, they investigated the day of the week and the size of com-

mits in Eclipse andMozilla. They found that the commits performed

on Friday and large commits have higher chances of introducing

bugs.

5.2.3 Social Characteristics. Eyolfson et al. [37] investigated the

bug-fix time as the time from the earliest commit that introduced

the bug to the bug-fixing commit. Their findings suggest that the

time and date of a code update may affect the quality of the code.

In an earlier study, Claes et al. [34] also studied developers’

working hours by investigating the timestamps of commit activities.

They found that developers mainly work in regular office hours, and

they did not find support that project maturation would decrease

irregular working hours.

Bird et al. [31] mined commits in Windows Vista and Windows

7 to investigate the relationship between code ownership and soft-

ware quality. They found that high levels of ownership, specifically

high values for the proportion of ownership for the top owners, or

high values for major, and low values of minor contributors, are

associated with fewer defects.

Rahman et al. [57] found that implicated code is more closely

related to the contribution of a single developer. Their findings also

indicate that an author’s specialized experience in the target file is

more important than general experience.

Gonzales-Barahona et al. [38] investigated in FLOSS projects

from the Mozilla community whether contributors fixing a bug

are the same introducing and seeding them in the first place. Their

results show that in 80% of the cases, the bug-fixing activity involves

source code modified by at most two developers. Hence, in most

of the cases, the bug fixing process is not carried out by the same

developers.

5.2.4 Supplementary Patches. Park et al. [54] studied bugs whose

initial patches were later considered incomplete and to which pro-

grammers applied supplementary patches. They examined three

open source projects: Eclipse JDT core, Eclipse SWT, and Mozilla.

They found that a significant portion of bugs fall in this category

while their causes are often diverse, e.g.,missed port changes, incor-

rect handling of conditional statements, or incomplete refactoring.

In their follow-up work [52, 53] they further investigated sup-

plementary patches, and the results showed that only 7 % to 17 % of

supplementary patches had content similar to their initial patches,

which implies that a separate code clone analysis could not predict

the supplementary patch location.

An et al. [26] found that supplementary bug fixes accounted for

10.3% to 26.9% of total bug reports. Also, in the subject systems,

a high percentage of the supplementary fixes (i.e., from 21.6% to

33.8%) had been re-opened.

5.2.5 Tangled Changes. Herzig et al. [41] defined a tangle change

as a single commit which consists of separate changes (e.g., fixing a
bug and adding a new feature). They found that up to 15% of all bug

fixes include multiple tangled changes. Later, they also showed that

tangled changes could significantly impact the accuracy of defect

prediction models as assessed in empirical studies [40].

5.2.6 Consecutive Changes. Dai et al. [35] investigated the rela-

tionship between consecutive changes and software quality. They

studied two concepts of consecutive changes: chain of consecu-

tive bug-fixing file versions, and chain of consecutive file versions

where each pair of adjacent versions has different authors. They

found that those consecutive changes have a negative and strong

impact on the later file versions in the short term, especially when

the length of the change chain is four or five.

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Fengcai Wen, Csaba Nagy, Michele Lanza, Gabriele Bavota

5.2.7 Inconsistent Changes. Bettenburg et al. [29] conducted an

empirical study on inconsistent changes to code clones in two large

open source software systems.

They observed that the number of defects caused by inconsistent

changes to code clones was substantially lower at the release level,

compared to the revision level. Their findings suggest that devel-

opers can effectively manage and control the evolution of cloned

code at the release level.

5.2.8 Incorrect Changes. Yin et al. [68] presented a comprehensive

characteristic study on incorrect bug-fixes from large operating

system code bases, including Linux, OpenSolaris, and FreeBSD.

They found that at least 14.8%-24.4% of sampled fixes for post-

release bugs in these large operating systems were incorrect.

5.2.9 Changes and Refactoring. Palomba et al. [50] conducted a

quantitative investigation of the relationship between different

types of code changes and different refactoring types. They found

that developers tend to apply a higher number of refactoring oper-

ations when they are fixing bugs.

Bavota et al. [28] presented a study aimed at investigating to

what extent refactoring activities induce faults. They showed that

refactorings involving hierarchies (e.g.,pull down method) induce
faults very frequently. Conversely, other kinds of refactorings are

likely to be harmless in practice.

5.3 Changes and Time
Rodriguez-Perez et al. [59] conducted two case studies and studied

the Time To Notify (TNN) metric which describes how much time it

takes for a bug to be notified/reported since the bug was introduced

into the source code. They examined how this metric is related

to software maintenance and evolution. Interestingly, they found

relatively high mean values of TTN in the projects: 312 and 431

days.

Kim et al. [45] studied the bug-fix time of files in ArgoUML and

PostgreSQL. Their statistics showed that fixing 50% of the bugs

requires 100 to 300 days, while the median bug-fix time is about

200 days.

5.4 Change Patterns
Pan et al. [51] presented an automatic approach in which software

history data is mined to find patterns in bug fix changes and au-

tomatically categorize bugs. They defined bug fix patterns (e.g.,
method call with different actual parameter values) which covered

45-63 % of bug fixes in seven open source projects.

Zhao et al. [69] conducted an empirical study to investigate the

characteristics of change types in bug fixing code. They proposed a

change classification schema and developed an automatic classifica-

tion tool to categorize changes into five change types. They found

that interface related code changes are the most frequent bug-fixing

changes. In a related research thread, Martinez and Monperrus [48]

presented Coming, a tool to mine change pattern instances from

git commits.

Change patterns have also been exploited recently to train neu-

ral networks in order to automatically reproduce code changes

implemented by developers in pull requests of open source projects

[64] or to learn how to automatically fix bugs [65].

5.5 Summing Up
As discussed above, previous work investigated code changes from

several different points of view. However, to the best of our knowl-

edge, our study is the first shedding some light on the phenomenon

of quick remedy commits. Indeed, while previous studies looked at

supplementary bug-fixes [52–54], their focus was limited to bug-

fixing activities, while we looked at remedy commits from a broader

perspective. For this reason, our work complements previous find-

ings reported in the literature.

6 CONCLUSION
We presented a qualitative empirical study aimed at investigating

quick remedy commits performed by developers in GitHub projects.

We defined quick remedy commits as commits performed by de-

velopers to remedy to changes omitted or errors introduced in a

previous commit, performed just a few minutes before.

Our study is based on the manual analysis of 500 commits, that

we classified by looking at the objective of the remedy commit. The

output of our study is represented by the taxonomy depicted in

Fig. 4. We used several qualitative findings to distill lessons learned

resulting in actionable items for both researchers and practitioners.

Our future work will target two directions. First, we plan to

enlarge the set of commits manually analyzed to test the generaliz-

ability and completeness of the defined taxonomy. Second, we will

work on some of the research directions discussed in our results

section, and summarized in the following:

Automatic bug fixing.Developing approaches able to learn how to

automatically fix the “simple” bugs that, as shown in our study, are

fixed by developers within a few minutes from their introduction.

We believe that approaches based on deep learning (see e.g., [65])
can be particularly performant in this specific context.

Automatic identification of omitted changes. Integrating approaches
to identify locations for missed code changes in a continuous inte-

gration pipeline, to alert developers when changes they are com-

mitting are likely to be incomplete.

Learning coding conventions. Investigating novel techniques to
learn coding conventions, enlarging the set of conventions that

are currently supported by state-of-the-art techniques [25]. Once

learned, the coding conventions can be automatically checked on

the code to commit, raising a warning in case violations are de-

tected.

On the impact of reverted commits on MSR studies. Studying the
impact that reverted commits have on the findings of MSR studies

using the change history of software systems as basic information

to compute a variety of proxies (e.g., developers’ experience, change-
proneness of code) is also part of our research agenda.

Automatic software documentation. Developing techniques able
to (i) identify code components in which specific types of comments

(e.g., rationale for implementation choices) are needed; and (ii)

automatically classify SATD as payed-back (or not).

ACKNOWLEDGMENT
We gratefully acknowledge the financial support of the Swiss Na-

tional Science Foundation for the projects PROBE (SNF Project

No. 172799) and CCQR (SNF Project No. 175513), and CHOOSE for

sponsoring our trip to the conference.

An Empirical Study of Quick Remedy Commits ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

REFERENCES
[1] [n. d.]. About stars (GitHub). https://help.github.com/articles/about-stars/.

[2] [n. d.]. Commit to Accumulo project on GitHub. https://github.com/apache/

accumulo/commit/2ad672a

[3] [n. d.]. Commit to accumulo project on GitHub. https://github.com/apache/

accumulo/commit/b8859513a

[4] [n. d.]. Commit to denominator project on GitHub. https://github.com/Netflix/

denominator/commit/e727b9d

[5] [n. d.]. Commit to geoserver project on GitHub. https://github.com/geoserver/

geoserver/commit/22c89ad106

[6] [n. d.]. Commit to jitsi project on GitHub. https://github.com/jitsi/jitsi/commit/

6a361bbf6

[7] [n. d.]. Commit to jitsi project on GitHub. https://github.com/jitsi/jitsi/commit/

a74af45

[8] [n. d.]. Commit to liferay-portal project on GitHub. https://github.com/liferay/

liferay-portal/commit/1b5c378d4785

[9] [n. d.]. Commit to lombok project on GitHub. https://github.com/rzwitserloot/

lombok/commit/57f59074

[10] [n. d.]. Commit to openpnp project on GitHub. https://github.com/openpnp/

openpnp/commit/aeef4cb0e4

[11] [n. d.]. Commit to spacewalk project on GitHub. https://github.com/

spacewalkproject/spacewalk/commit/6df7327

[12] [n. d.]. Commit to spacewalk project on GitHub. https://github.com/

spacewalkproject/spacewalk/commit/fec7040

[13] [n. d.]. Commit to tinkerpop project on GitHub. https://github.com/apache/

tinkerpop/commit/a4c62be7a5

[14] [n. d.]. Commit to tinkerpop project on GitHub. https://github.com/apache/

tinkerpop/commit/aa3d538

[15] [n. d.]. Commit to TomP2P project on GitHub. https://github.com/tomp2p/

TomP2P/commit/3db803c

[16] [n. d.]. Commit to TomP2P project on GitHub. https://github.com/tomp2p/

TomP2P/commit/8802c5e

[17] [n. d.]. Commit to TomP2P project on GitHub. https://github.com/tomp2p/

TomP2P/commit/4bc6e824

[18] [n. d.]. Commit to Tower project on GitHub. https://github.com/DroidPlanner/

Tower/commit/72132d049

[19] [n. d.]. Liferay Portal Issue LPS-44476. https://issues.liferay.com/browse/LPS-

44476

[20] [n. d.]. Project FindBugs on GitHub. https://github.com/findbugsproject/findbugs

[21] [n. d.]. Project java-design-patterns on GitHub. https://github.com/iluwatar/java-

design-patterns

[22] [n. d.]. Project SpotBugs on GitHub. https://github.com/spotbugs/spotbugs

[23] [n. d.]. Project spring-petclinic on GitHub. https://github.com/spring-projects/

spring-petclinic

[24] [n. d.]. Replication Package. https://github.com/Em11FW/ICPC2020-quick-

remedy-commit.

[25] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2014. Learn-

ing Natural Coding Conventions. In Proceedings of the 22Nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering (FSE 2014). 281–293.

[26] Le An, Foutse Khomh, and Bram Adams. 2014. Supplementary Bug Fixes vs. Re-

opened Bugs. In Proceedings of the 2014 IEEE 14th InternationalWorking Conference
on Source Code Analysis and Manipulation (SCAM ’14). IEEE Computer Society,

Washington, DC, USA, 205–214. https://doi.org/10.1109/SCAM.2014.29

[27] Mauricio Finavaro Aniche, Gabriele Bavota, Christoph Treude, Marco Aurélio

Gerosa, and Arie van Deursen. 2018. Code smells for Model-View-Controller

architectures. Empirical Software Engineering 23, 4 (2018), 2121–2157.

[28] Gabriele Bavota, Bernardino De Carluccio, Andrea De Lucia, Massimiliano Di

Penta, Rocco Oliveto, and Orazio Strollo. 2012. When Does a Refactoring Induce

Bugs? An Empirical Study. In 12th IEEE InternationalWorking Conference on Source
Code Analysis and Manipulation, SCAM 2012, Riva del Garda, Italy, September
23-24, 2012. 104–113.

[29] Nicolas Bettenburg, Weiyi Shang, Walid M. Ibrahim, Bram Adams, Ying Zou, and

Ahmed E. Hassan. 2012. An Empirical Study on Inconsistent Changes to Code

Clones at the Release Level. Sci. Comput. Program. 77, 6 (June 2012), 760–776.
https://doi.org/10.1016/j.scico.2010.11.010

[30] J. M. Bieman, A. A. Andrews, and H. J. Yang. 2003. Understanding change-

proneness in OO software through visualization. In 11th IEEE International Work-
shop on Program Comprehension, 2003. 44–53.

[31] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and

Premkumar Devanbu. 2011. Don’T Touch My Code!: Examining the Effects

of Ownership on Software Quality. In Proceedings of the 19th ACM SIGSOFT Sym-
posium and the 13th European Conference on Foundations of Software Engineering
(ESEC/FSE ’11). ACM, New York, NY, USA, 4–14. https://doi.org/10.1145/2025113.

2025119

[32] Nick C. Bradley, Thomas Fritz, and Reid Holmes. 2018. Context-aware conver-

sational developer assistants. In Proceedings of the 40th International Conference
on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018.

993–1003.

[33] Gemma Catolino and Filomena Ferrucci. 2019. An extensive evaluation of en-

semble techniques for software change prediction. Journal of Software: Evolution
and Process 31, 9 (2019).

[34] Maëlick Claes, Mika V. Mäntylä, Miikka Kuutila, and Bram Adams. 2018. Do

Programmers Work at Night or During the Weekend?. In Proceedings of the 40th
International Conference on Software Engineering (ICSE ’18). ACM, New York, NY,

USA, 705–715. https://doi.org/10.1145/3180155.3180193

[35] Meixi Dai, Beijun Shen, Tao Zhang, and Min Zhao. 2014. Impact of Consecutive

Changes on Later File Versions. In Proceedings of the 2014 3rd International Work-
shop on Evidential Assessment of Software Technologies (EAST 2014). ACM, New

York, NY, USA, 17–24. https://doi.org/10.1145/2627508.2627512

[36] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. 2007. Automated

Testing of Refactoring Engines. In Proceedings of the the 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering (ESEC-FSE ’07). 185–194.

[37] Jon Eyolfson, Lin Tan, and Patrick Lam. 2011. Do Time of Day and Developer Ex-

perience Affect Commit Bugginess?. In Proceedings of the 8th Working Conference
on Mining Software Repositories (MSR ’11). ACM, New York, NY, USA, 153–162.

https://doi.org/10.1145/1985441.1985464

[38] Jesus M.. Gonzalez-Barahona, Daniel Izquierdo-Cortazar, and Andrea Capiluppi.

2011. Are Developers Fixing Their Own Bugs?: Tracing Bug-Fixing and Bug-

Seeding Committers. Int. J. Open Source Softw. Process. 3, 2 (April 2011), 23–42.
https://doi.org/10.4018/jossp.2011040102

[39] Lile P. Hattori and Michele Lanza. 2008. On the Nature of Commits. In Proceedings
of the 23rd IEEE/ACM International Conference on Automated Software Engineering
(ASE’08). IEEE Press, Piscataway, NJ, USA, III–63–III–71. https://doi.org/10.1109/

ASEW.2008.4686322

[40] Kim Herzig, Sascha Just, and Andreas Zeller. 2016. The Impact of Tangled Code

Changes on Defect Prediction Models. Empirical Softw. Engg. 21, 2 (April 2016),
303–336. https://doi.org/10.1007/s10664-015-9376-6

[41] Kim Herzig and Andreas Zeller. 2013. The Impact of Tangled Code Changes. In

Proceedings of the 10th Working Conference on Mining Software Repositories (MSR
’13). IEEE Press, Piscataway, NJ, USA, 121–130.

[42] Abram Hindle, Daniel M. German, and Ric Holt. 2008. What Do Large Commits

Tell Us?: A Taxonomical Study of Large Commits. In Proceedings of the 2008
International Working Conference on Mining Software Repositories (MSR ’08). ACM,

New York, NY, USA, 99–108. https://doi.org/10.1145/1370750.1370773

[43] Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generat-

ing commit messages from diffs using neural machine translation. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineering,
ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017. 135–146.

[44] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.

German, and Daniela Damian. 2014. The Promises and Perils of Mining GitHub.

In Proc. of the 11th Working Conference on Mining Software Repositories (MSR
2014). 92–101.

[45] Sunghun Kim and E. James Whitehead, Jr. 2006. How Long Did It Take to Fix

Bugs?. In Proceedings of the 2006 International Workshop on Mining Software
Repositories (MSR ’06). ACM, New York, NY, USA, 173–174. https://doi.org/10.

1145/1137983.1138027

[46] J. Krinke. 2007. A Study of Consistent and Inconsistent Changes to Code Clones.

In 14th Working Conference on Reverse Engineering (WCRE 2007). 170–178.
[47] Bin Lin, Simone Scalabrino, Andrea Mocci, Rocco Oliveto, Gabriele Bavota, and

Michele Lanza. 2017. Investigating the Use of Code Analysis and NLP to Promote

a Consistent Usage of Identifiers. In 17th IEEE International Working Conference on
Source Code Analysis and Manipulation, SCAM 2017, Shanghai, China, September
17-18, 2017. 81–90.

[48] Matias Martinez andMartinMonperrus. 2019. Coming: A Tool for Mining Change

Pattern Instances from Git Commits. In Proceedings of the 41st International
Conference on Software Engineering: Companion Proceedings (ICSE ’19). IEEE Press,

Piscataway, NJ, USA, 79–82. https://doi.org/10.1109/ICSE-Companion.2019.00043

[49] Audris Mockus and Lawrence G. Votta. 2000. Identifying Reasons for Software

Changes Using Historic Databases. In Proceedings of the International Conference
on Software Maintenance (ICSM’00) (ICSM ’00). IEEE Computer Society, Washing-

ton, DC, USA, 120–.

[50] Fabio Palomba, Andy Zaidman, Rocco Oliveto, and Andrea De Lucia. 2017. An

Exploratory Study on the Relationship Between Changes and Refactoring. In

Proceedings of the 25th International Conference on Program Comprehension (ICPC
’17). IEEE Press, 176–185. https://doi.org/10.1109/ICPC.2017.38

[51] Kai Pan, Sunghun Kim, and E. James Whitehead, Jr. 2009. Toward an Under-

standing of Bug Fix Patterns. Empirical Softw. Engg. 14, 3 (June 2009), 286–315.
https://doi.org/10.1007/s10664-008-9077-5

[52] Jihun Park, Miryung Kim, and Doo-Hwan Bae. 2014. An Empirical Study on

Reducing Omission Errors in Practice. In Proceedings of the 29th ACM/IEEE In-
ternational Conference on Automated Software Engineering (ASE ’14). ACM, New

York, NY, USA, 121–126. https://doi.org/10.1145/2642937.2642956

[53] Jihun Park, Miryung Kim, and Doo-Hwan Bae. 2017. An Empirical Study of

Supplementary Patches in Open Source Projects. Empirical Softw. Engg. 22, 1

https://help.github.com/articles/about-stars/
https://github.com/apache/accumulo/commit/2ad672a
https://github.com/apache/accumulo/commit/2ad672a
https://github.com/apache/accumulo/commit/b8859513a
https://github.com/apache/accumulo/commit/b8859513a
https://github.com/Netflix/denominator/commit/e727b9d
https://github.com/Netflix/denominator/commit/e727b9d
https://github.com/geoserver/geoserver/commit/22c89ad106
https://github.com/geoserver/geoserver/commit/22c89ad106
https://github.com/jitsi/jitsi/commit/6a361bbf6
https://github.com/jitsi/jitsi/commit/6a361bbf6
https://github.com/jitsi/jitsi/commit/a74af45
https://github.com/jitsi/jitsi/commit/a74af45
https://github.com/liferay/liferay-portal/commit/1b5c378d4785
https://github.com/liferay/liferay-portal/commit/1b5c378d4785
https://github.com/rzwitserloot/lombok/commit/57f59074
https://github.com/rzwitserloot/lombok/commit/57f59074
https://github.com/openpnp/openpnp/commit/aeef4cb0e4
https://github.com/openpnp/openpnp/commit/aeef4cb0e4
https://github.com/spacewalkproject/spacewalk/commit/6df7327
https://github.com/spacewalkproject/spacewalk/commit/6df7327
https://github.com/spacewalkproject/spacewalk/commit/fec7040
https://github.com/spacewalkproject/spacewalk/commit/fec7040
https://github.com/apache/tinkerpop/commit/a4c62be7a5
https://github.com/apache/tinkerpop/commit/a4c62be7a5
https://github.com/apache/tinkerpop/commit/aa3d538
https://github.com/apache/tinkerpop/commit/aa3d538
https://github.com/tomp2p/TomP2P/commit/3db803c
https://github.com/tomp2p/TomP2P/commit/3db803c
https://github.com/tomp2p/TomP2P/commit/8802c5e
https://github.com/tomp2p/TomP2P/commit/8802c5e
https://github.com/tomp2p/TomP2P/commit/4bc6e824
https://github.com/tomp2p/TomP2P/commit/4bc6e824
https://github.com/DroidPlanner/Tower/commit/72132d049
https://github.com/DroidPlanner/Tower/commit/72132d049
https://issues.liferay.com/browse/LPS-44476
https://issues.liferay.com/browse/LPS-44476
https://github.com/findbugsproject/findbugs
https://github.com/iluwatar/java-design-patterns
https://github.com/iluwatar/java-design-patterns
https://github.com/spotbugs/spotbugs
https://github.com/spring-projects/spring-petclinic
https://github.com/spring-projects/spring-petclinic
https://github.com/Em11FW/ICPC2020-quick-remedy-commit
https://github.com/Em11FW/ICPC2020-quick-remedy-commit
https://doi.org/10.1109/SCAM.2014.29
https://doi.org/10.1016/j.scico.2010.11.010
https://doi.org/10.1145/2025113.2025119
https://doi.org/10.1145/2025113.2025119
https://doi.org/10.1145/3180155.3180193
https://doi.org/10.1145/2627508.2627512
https://doi.org/10.1145/1985441.1985464
https://doi.org/10.4018/jossp.2011040102
https://doi.org/10.1109/ASEW.2008.4686322
https://doi.org/10.1109/ASEW.2008.4686322
https://doi.org/10.1007/s10664-015-9376-6
https://doi.org/10.1145/1370750.1370773
https://doi.org/10.1145/1137983.1138027
https://doi.org/10.1145/1137983.1138027
https://doi.org/10.1109/ICSE-Companion.2019.00043
https://doi.org/10.1109/ICPC.2017.38
https://doi.org/10.1007/s10664-008-9077-5
https://doi.org/10.1145/2642937.2642956

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Fengcai Wen, Csaba Nagy, Michele Lanza, Gabriele Bavota

(Feb. 2017), 436–473. https://doi.org/10.1007/s10664-016-9432-x

[54] J. Park, M. Kim, B. Ray, and D. Bae. 2012. An empirical study of supplementary

bug fixes. In 2012 9th IEEE Working Conference on Mining Software Repositories
(MSR). 40–49. https://doi.org/10.1109/MSR.2012.6224298

[55] A. Potdar and E. Shihab. 2014. An Exploratory Study on Self-Admitted Technical

Debt. In 2014 IEEE International Conference on Software Maintenance and Evolution.
91–100.

[56] Ranjith Purushothaman and Dewayne E. Perry. 2005. Toward Understanding the

Rhetoric of Small Source Code Changes. IEEE Trans. Softw. Eng. 31, 6 (June 2005),
511–526. https://doi.org/10.1109/TSE.2005.74

[57] Foyzur Rahman and Premkumar Devanbu. 2011. Ownership, Experience and

Defects: A Fine-grained Study of Authorship. In Proceedings of the 33rd Interna-
tional Conference on Software Engineering (ICSE ’11). ACM, New York, NY, USA,

491–500. https://doi.org/10.1145/1985793.1985860

[58] M. M. Rahman, C. K. Roy, and R. G. Kula. 2017. Predicting Usefulness of Code

Review Comments Using Textual Features and Developer Experience. In 2017
IEEE/ACM 14th International Conference on Mining Software Repositories (MSR).
215–226.

[59] Gema Rodriguez-Perez, Gregorio Robles, and Jesus M. Gonzalez-Barahona. 2017.

How Much Time Did It Take to Notify a Bug?: Two Case Studies: Elasticsearch

and Nova. In Proceedings of the 8th Workshop on Emerging Trends in Software
Metrics (WETSoM ’17). IEEE Press, Piscataway, NJ, USA, 29–35. https://doi.org/

10.1109/WETSoM.2017..6

[60] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. 2009. Comparison and

Evaluation of Code Clone Detection Techniques and Tools: A Qualitative Ap-

proach. Sci. Comput. Program. 74, 7 (May 2009), 470–495.

[61] J. Shimagaki, Y. Kamei, S. McIntosh, D. Pursehouse, and N. Ubayashi. 2016. Why

are Commits Being Reverted?: A Comparative Study of Industrial and Open

Source Projects. In 2016 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 301–311. https://doi.org/10.1109/ICSME.2016.83

[62] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When Do

Changes Induce Fixes?. In Proceedings of the 2005 International Workshop on
Mining Software Repositories (MSR ’05). ACM, New York, NY, USA, 1–5. https:

//doi.org/10.1145/1082983.1083147

[63] Michele Tufano, Gabriele Bavota, Denys Poshyvanyk, Massimiliano Di Penta,

Rocco Oliveto, and Andrea De Lucia. 2017. An empirical study on developer-

related factors characterizing fix-inducing commits. Journal of Software: Evolution
and Process 29, 1 (2017).

[64] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and

Denys Poshyvanyk. 2019. On learning meaningful code changes via neural

machine translation. In Proceedings of the 41st International Conference on Software
Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019. 25–36.

[65] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin

White, and Denys Poshyvanyk. 2018. An empirical investigation into learning

bug-fixing patches in the wild via neural machine translation. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering,
ASE 2018, Montpellier, France, September 3-7, 2018. 832–837.

[66] Fengcai Wen, Csaba Nagy, Gabriele Bavota, and Michele Lanza. 2019. A large-

scale empirical study on code-comment inconsistencies. In Proceedings of the
27th International Conference on Program Comprehension, ICPC 2019, Montreal,
QC, Canada, May 25-31, 2019. 53–64.

[67] Meng Yan, Xin Xia, David Lo, Ahmed E. Hassan, and Shanping Li. 2019. Charac-

terizing and identifying reverted commits. Empirical Software Engineering 24, 4

(01 Aug 2019), 2171–2208. https://doi.org/10.1007/s10664-019-09688-8

[68] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and Lakshmi

Bairavasundaram. 2011. How Do Fixes Become Bugs?. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations of
Software Engineering (ESEC/FSE ’11). ACM, New York, NY, USA, 26–36. https:

//doi.org/10.1145/2025113.2025121

[69] Yangyang Zhao, Hareton Leung, Yibiao Yang, Yuming Zhou, and Baowen Xu.

2017. Towards an Understanding of Change Types in Bug Fixing Code. Inf. Softw.
Technol. 86, C (June 2017), 37–53. https://doi.org/10.1016/j.infsof.2017.02.003

[70] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl. 2005. Mining version

histories to guide software changes. IEEE Transactions on Software Engineering
31, 6 (2005), 429–445.

https://doi.org/10.1007/s10664-016-9432-x
https://doi.org/10.1109/MSR.2012.6224298
https://doi.org/10.1109/TSE.2005.74
https://doi.org/10.1145/1985793.1985860
https://doi.org/10.1109/WETSoM.2017..6
https://doi.org/10.1109/WETSoM.2017..6
https://doi.org/10.1109/ICSME.2016.83
https://doi.org/10.1145/1082983.1083147
https://doi.org/10.1145/1082983.1083147
https://doi.org/10.1007/s10664-019-09688-8
https://doi.org/10.1145/2025113.2025121
https://doi.org/10.1145/2025113.2025121
https://doi.org/10.1016/j.infsof.2017.02.003

	Abstract
	1 Introduction
	2 Study Design
	2.1 Data Collection and Analysis
	2.2 Replication Package

	3 Results
	3.1 Bug Fix (79)
	3.2 Code Refactoring/Clean up (39)
	3.3 Build Issue (68)
	3.4 Missing Code Change (165)
	3.5 Reverted Commit (58)
	3.6 Documentation (49)

	4 Threats to Validity
	5 Related Work
	5.1 Reasons for Changes
	5.2 Effects of a Change on Quality
	5.3 Changes and Time
	5.4 Change Patterns
	5.5 Summing Up

	6 Conclusion
	References

