
An Empirical Study of (Multi-) Database
Models in Open-Source Projects

Pol Benats1B, Maxime Gobert1, Loup Meurice1,
Csaba Nagy2, and Anthony Cleve1

1 Namur Digital Institute, University of Namur, Belgium
2 Software Institute, Università della Svizzera italiana, Switzerland

{firstname.lastname}@unamur.be - csaba.nagy@usi.ch

Abstract. Managing data-intensive systems has long been recognized as
an expensive and error-prone process. This is mainly due to the often im-
plicit consistency relationships that hold between applications and their
database. As new technologies emerged for specialized purposes (e.g.,
graph databases, document stores), the joint use of database models
has also become popular. There are undeniable benefits of such multi-
database models where developers combine various technologies. How-
ever, the side effects on design, querying, and maintenance are not well-
known yet. In this paper, we study multi-database models in software
systems by mining major open-source repositories. We consider four years
of history, from 2017 to 2020, of a total number of 40,609 projects with
databases. Our results confirm the emergence of hybrid data-intensive
systems as we found (multi-) database models (e.g., relational and non-
relational) used together in 16% of all database-dependent projects. One
percent of the systems added, deleted, or changed a database during the
four years. The majority (62%) of these systems had a single database be-
fore becoming hybrid, and another significant part (19%) became “mono-
database” after initially using multiple databases. We examine the evo-
lution of these systems to understand the rationale of the design choices
of the developers. Our study aims to guide future research towards new
challenges posed by those emerging data management architectures.

Keywords: Data models · Open-source projects · Empirical study

1 Introduction

Modeling, querying, and evolving database-centered systems are known as time-
consuming, risky, and error-prone. The main challenges related to those processes
originate from the possibly complex interdependencies between the application
programs and their underlying databases. This is especially true in the absence
of a fully explicit database schema, which partly moves the responsibility of
data integrity constraints from the database management system to the client
programs. This situation may become even more complex with the increasing
popularity of NoSQL database technologies. Such scalable technologies are at-
tractive due to the flexibility offered by the absence of strict data schema. But
the long-term impact of their use on data management still has to be assessed.

A. Ghose et al. (eds).: ER 2021, LNCS 13011, pp. 87–100, 2021.
The final publication is available at Springer via https://doi.org/10.1007/978-3-030-89022-3_8.

https://doi.org/10.1007/978-3-030-89022-3_8

88 Benats et al.

Furthermore, as their full name suggests, Not Only SQL technologies were not
initially intended to replace relational database management systems but rather
complement them. Hence there is a recent emergence of hybrid data-intensive sys-
tems that rely on both relational and NoSQL technologies. Such heterogeneous
systems request that developers master several modeling and query languages,
and bring new challenges for research and practice.

This paper presents an empirical study of the use of (multi-)database models
in open-source database-dependent projects. We mined four years of develop-
ment history (2017–2020) of a total number of 33 million projects by leveraging
Libraries.io. We identified projects with databases and written in popular pro-
gramming languages (1.3 million), then applied filters to eliminate “low-quality”
repositories and remove project duplicates. We gathered a final dataset of 40,609
projects. We analyzed the dependencies of those projects to assess (1) the pop-
ularity of the different database models, (2) the extent that they are combined
within the same systems, and (3) how their usage evolved.

Our results confirm the emergence of hybrid data-intensive systems as we
found that 16% of all database-dependent projects use (multi-)database models
(e.g., relational and non-relational).3 We also observe that one percent of the
systems added, deleted, or changed a database during the four years. The ma-
jority (62%) of them became hybrid after using a single database technology. On
the other hand, a significant number of systems (19%) became “mono-database”
after initially using multiple databases. We examined the evolution of these sys-
tems to understand the rationale of the design choices of the developers.

This study has several implications for the research community. It provides
empirical evidence for the need for novel solutions supporting the design, query-
ing, and evolution of hybrid database systems. It advances the identification of
the most representative data-intensive systems for further empirical studies or
evaluation purposes. It aims to guide future research towards new challenges
posed by those emerging data management architectures.

The remainder of the paper is structured as follows. Section 2 expresses our
research objectives through three research questions and presents the research
method we followed in conducting our study. Section 3 presents our main find-
ings. Section 4 proposes a discussion about the contribution of this paper to
scientific research. Section 5 lists threats to validity, and Section 6 discusses
related work. Concluding remarks are given in Section 7.

2 Study Method

Research questions We seek answers to the following research questions:
RQ1: How prevalent are different data models and their related database

technologies? Based on the database dependencies of the collected open-source
projects, we assess the usage of each database technology (e.g., PostgreSQL,
MongoDB, Redis, Neo4J, Cassandra) and, transitively, each data model (i.e.,
relational, document, key-value, graph, and wide-column).

3 The detailed results are publicly available in a replication package [3]

(Multi-) Database Models in Open-Source Projects 89

RQ2: Are multi-database models frequently used in software systems? We
identify projects corresponding to hybrid systems, i.e., systems using at least
two data models. We analyze which data models are combined in those systems.
We call those combined models multi-database models.

RQ3: How does data model usage evolve? We analyze the evolution of the
database models used in repositories. We track the additions, deletions, or re-
placements of database models. We then classify the projects based on the evo-
lution of their data models.

Programming language
C#, Java, JavaScript, PHP,
Python, Ruby, TypeScript
Package manager
npm, Maven, PyPI, Rubygems,
Packagist, NuGet

Database dependency
Redis, Memcached, Cassandra,
HBase, MongoDB, Couchbase,
Neo4j, MySQL, SQLite,
PostgreSQL

Project quality
min. 100 kB repository
min. 2 contributors, min. 2 stars

v1.1.1
2017-11

v1.2.0
2018-03

v1.4.0
2018-12

v1.6.0
2020-01

Final dataset

1

2

3

v1.0.1
2017-07

Libraries.io datasets
(available in CSV format)

~33M projects

~7M projects

~1.3M projects

~40K projects

Project duplicates
filter forks using same DBs

4~42K projects

Fig. 1. Overview of project filtering

Preliminaries Our study took as input the dataset of Libraries.io,4 an open-
source web service that lists software development projects and their depen-
dencies. The primary aim of this service is to help developers keeping track of
libraries, modules, and frameworks they depend upon. However, its extensive and
up-to-date dataset is also representative, thus valuable for empirical software en-
gineering studies [10,29,30]. Libraries.io monitors projects of major source code
repositories (i.e., Bitbucket, GitHub, and GitLab). It lists 33 million repositories
with dependencies to 235 million packages in 37 package managers (e.g., npm,
Maven, PyPI). Libraries.io has five major versions of its dataset at the time of
writing, covering four years of evolution from 2017 to 2020. We imported each
dataset into a database. Then, as shown in Figure 1, we filtered the projects
according to the selection criteria described in the following subsections.

Programming language We study projects written in popular programming
languages according to Octoverse,5 namely C#, Java, JavaScript, PHP, Python,
Ruby, and TypeScript. We determine the programming language of a project

4 Libraries.io – https://libraries.io/
5 Octoverse – https://octoverse.github.com/

https://libraries.io/
https://octoverse.github.com/

90 Benats et al.

based on the package manager it relies on. Hence, from the complete list of
Octoverse, we excluded C and C++ because their usage of package managers
is not as common as in the selected languages. Package managers are impor-
tant for us also when determining the database dependency in the subsequent
filtering step. Libraries.io tracks the most popular managers for the selected
programming languages, namely, npm, Maven, PyPI, Rubygems, Packagist, and
NuGet. Therefore, besides the programming language, we keep projects having
dependencies in these. In the remaining of the paper, we discuss JavaScript and
TypeScript projects together due to the similarities of the two languages and,
primarily, because of the same package managers and database libraries. The
2017 and 2020 versions of the dataset had 3.7M and 7.2M projects satisfying
these criteria.

Database dependency The projects had to rely on database technologies.
According to a recent survey [8], the most common NoSQL models are key-
value, wide-column, document-oriented, and graph-based data models. We focus
on the two most popular mono-database technologies for each data model on
DB-Engines Ranking,6 a monthly updated website that ranks database manage-
ment systems. At the time of our study, the top document stores were MongoDB
and Couchbase; key-value databases were Redis and Memcached ; wide-column
databases were Apache Cassandra and HBase. For graph databases, we only
considered Neo4j as others had very weak rankings.

We added popular open-source relational database management systems, i.e.,
MySQL, SQLite, and PostgreSQL. We excluded proprietary technologies such as
Oracle and SQL Server. The reason is that our dataset represents open-source
software systems where the use of proprietary databases is not representative.
Consequently, we limit our study to open-source technologies. We established a
list of search expressions combining database technologies and access types to
identify a list of database access drivers. For direct access drivers (e.g., JDBC
connectors), we used client and driver keywords. For object-relational mapping
(ORM) and object NoSQL mapping (ONM) [28] technologies, we used orm, onm,
odm, ogm and mapper keywords. We searched for these expressions in the search
engines of the package managers to find libraries. We also queried Google for
additional libraries missed by the package managers. Each driver’s relevance was
manually checked based on its description and provided source code samples.

This collection process led to 707 direct database-access drivers, including
220 object mapping libraries. The complete list of selected drivers is available in
our replication package [3]. Overall, 18% of the projects (710K in 2017 and
1.3M in 2020) depended on database-access libraries.

Project quality GitHub is known to host many private and inactive projects [16].
To ensure a representative sample, we filter “low-quality” projects from the list
of repositories. In particular, we keep a project if it meets the following selec-
tion criteria: (1) a repository with a minimum size of 100kB, (2) at least two
contributors, and (3) having been starred at least twice.

6 DB-Engines Ranking – https://db-engines.com/en/ranking

https://db-engines.com/en/ranking

(Multi-) Database Models in Open-Source Projects 91

Stars and contributors reflect a level of popularity [6] and collaborative ac-
tivity [5]; thus, we set minimum thresholds for them. However, for us, a popular
Python project with a single file of a few code lines is as important as a less pop-
ular Java project with thousands of lines of code, given that they use databases.
The database dependency filter already ensures the latter one. So the purpose
with the additional minimum size of 100kB is merely to expect a minimum con-
tent in repositories. A total number of 42,176 repositories (∼3%) remained in
the dataset after this filtering step.

Project duplicates We filter duplicated projects (i.e., exact copies of projects
or projects with minor differences like bug fixes) by identifying fork projects.
We keep only the source project of forks having the same database dependencies
if the source is in the dataset. Otherwise, we keep the project with the longest
history, i.e., the project in more dataset versions of Libraries.io. More details of
this filtering can be found in our replication package [3]. We identified and re-
moved 1,567 duplicated repositories and finally gathered 40,609 projects (26,745
in 2017 and 38,248 in 2020).

Table 1. Projects by programming language and data model (2020)

Data model Ruby JavaScript Python Java C# PHP

Relational 11,049 (44.66%) 4,164 (16.83%) 4,863 (19.66%) 3,707 (14.98%) 956 (3.86%) 2 (0.01%)
Document 953 (9.76%) 6,126 (62.73%) 1,435 (14.70%) 782 (8.01%) 273 (2.80%) 196 (2.01%)
KeyValue 2,548 (28.11%) 2,831 (31.23%) 2,522 (27.82%) 927 (10.23%) 228 (2.52%) 8 (0.09%)
Column 34 (3.26%) 79 (7.57%) 549 (52.64%) 350 (33.56%) 27 (2.59%) 4 (0.38%)
Graph 49 (12.04%) 91 (22.36%) 65 (15.97%) 176 (43.24%) 13 (3.19%) 13 (3.19%)

Total 12,370 (32.28%) 11,747 (30.66%) 7,558 (19.72%) 5,062 (13.21%) 1,362 (3.55%) 221 (0.58%)

Final dataset Table 1 presents an overview of the programming languages
and different data models used in the projects of the 2020 dataset. The most
common programming languages in the dataset are Ruby (32.28%), JavaScript/-
TypeScript (30.66%), Python (19.72%) and Java (13.21%). Interestingly, Ruby,
Python, Java and C# are mainly used in systems with relational databases,
while document-oriented data stores are frequently used in JavaScript and PHP.

3 Study Results

3.1 RQ1: How prevalent are different data models and their related
database technologies?

Table 2 presents the number of projects relying on different data models. Overall,
more than half of the projects declare a relational driver dependency. Thus, the
relational data model is the most used in the dataset. However, an interesting
observation is that the percentage of relational databases is constantly decreasing
among the database-dependent projects. It goes down to 54.72% from 57.40%

92 Benats et al.

over the four years. In contrast, the ratio of projects relying on NoSQL data
models is increasing. Except for graph data models, an increase in the usage ratio
can be observed for document-oriented (21.30% to 21.97%), key-value (18.97%
to 19.98%), and wide-column (1.40% to 2.44%) data models.

Table 2. Evolution of database-dependent projects by data model

Dataset Relational Document Key-Value Wide-Column Graph

2017-07 17,816 (57.40%) 6,610 (21.30%) 5,886 (18.97%) 436 (1.40%) 288 (0.93%)
2017-11 19,112 (57.27%) 7,173 (21.49%) 6,284 (18.83%) 487 (1.46%) 317 (0.95%)
2018-03 19,622 (57.16%) 7,372 (21.47%) 6,524 (19.00%) 490 (1.43%) 323 (0.94%)
2018-11 21,037 (56.12%) 8,082 (21.56%) 7,349 (19.60%) 677 (1.81%) 344 (0.92%)
2020-01 24,620 (54.72%) 9,884 (21.97%) 8,989 (19.98%) 1,096 (2.44%) 402 (0.89%)

Figure 2 presents the database management systems used in the 2020 snap-
shot. MongoDB appears as the most used NoSQL database management system
competing with relational technologies. It represents the majority of document-
oriented database-dependent projects. Both Redis and Memcached are popular
technologies for key-value data stores. Redis is almost as popular as SQLite and
MySQL among the subject systems. Cassandra is the most used technology for
wide-column stores. It is followed by Neo4j, the only graph-based technology on
the list, then by HBase and Couchbase.

P
o
st

g
re

S
Q

L

M
o
n

g
o
D

B

M
y
S

Q
L

S
Q

L
it

e

R
ed

is

M
em

ca
ch

ed

C
a
ss

a
n

d
ra

N
eo

4
j

H
B

a
se

C
o
u

ch
b

a
se

102

103

104

1
2
,5

1
1

8
,6

6
0

8
,3

4
0

9
,7

8
4

1
2
2

7
,6

2
5

1
,8

4
0

9
7
5

1
4
7

4
0
2

#
p

ro
je

ct
s

Relational

Document

Key-
Value

Wide-
Column

Graph

Fig. 2. Usage of database management systems (2020)

Overall, relational models lead the ranking as they are used in over half of
the database-dependent projects. Document and key-values stores are the most
used NoSQL technologies with approximately 21% and 19% of projects, respec-
tively. Wide-column (1-3%) and graph-based (<1%) database families are much
less represented. Interestingly, the proportion of relational database-dependent
projects has decreased in the last four years, in contrast to NoSQL datastores.

(Multi-) Database Models in Open-Source Projects 93

3.2 RQ2: Are multi-database models frequently used in software
systems?

This research question focuses on the heterogeneity of database-dependent projects,
i.e., projects having multiple dependencies to different data models.

R D K C G
R 51.03 2.13 9.36 0.56 0.10
D 20.03 2.25 0.10 0.06
K 10.32 0.23 0.03
C 1.51 0.01
G 0.70

R + D 1.00 0.08 0.03
R + K 0.19 0.01
R + C 0.01
D + K 0.05 0.02
D + C 0.00
K + C 0.00

(a) (b)

Fig. 3. (a) Percentage of database-dependent projects with one, two and three data
models (2020) (b) Distribution of hybrid database-dependent projects

Figure 3a gives the distribution of hybrid database-dependent projects in the
2020 dataset. We only present the percentage of projects relying on one, two or
three different data models. The projects with more data models (four or five)
represent only 0.19% of all filtered projects. Figure 3b depicts the most common
combinations of data models in hybrid projects.

Answering this research question, we make the following observations. More
than 16% of our database-dependent projects are hybrid, i.e., define dependen-
cies to access more than one database family. Most systems relying on a rela-
tional, document, or graph data model correspond to single-database projects.
In contrast, more than 56% of the key-value projects are paired with another
data model, typically with a relational or a document database. Another notice-
able combination of hybrid projects groups about 45% of the total number of
wide-column dependent projects with another technology, such as a relational
database or a key-value database. The proportion of hybrid systems increased
for almost all models in the last four years, except for key-value models

3.3 RQ3: How does data model usage evolve?

We follow the evolution of the repositories in our dataset and keep track of
changes (i.e., replacement, addition, or deletion) in their data models. For ex-
ample, when developers change from a relational model to a document store,
we record it as a replacement event. Similarly, when they add a new database
technology to the existing one, we record it as an addition of a new data model.
When we see they do not use a data model anymore, we consider it as a deletion.

94 Benats et al.

We identified a total number of 471 repositories with changes in their data
models throughout the time period of our dataset. We answer this research
question considering only these systems.

First
version

Latest
version

Fig. 4. Changes in projects’ database families. Data models: R - relational,
D - document, K - key-value, C - column and G - graph

Figure 4 presents how systems changed their data models between their first
and latest known versions in our dataset. The first known version can be in
2017 or after it for projects appearing in our dataset later. The latest known
version can be 2020 or before if the project became unavailable. For example,
if a system had initially used a document store, then changed to a relational
model, the system is counted as ‘D’ on the left side and ‘R’ on the right side of
the diagram. The sizes and colors of the boxes represent the number of systems
using the actual data model or the combination of multiple models.

We can make the following interesting observations by looking at the dia-
gram. First, the most common change in the database family is adding a key-
value database to an existing relational one. We identified 29.5% of the 471
repositories with such a design decision. This is in line with the findings of
RQ2, where we found the combination of key-value and relational data models
as the most common in hybrid systems. Second, we found a significant num-
ber of projects (7.6%) with the addition of a key-value database to an existing
document database. The deletion of a key-value family from a relational and a
key-value combination was also common (7.4%), and the addition of a relational
database to an existing document database (6.8%), or the addition of a relational
database to a key-value database system (5.3%) were also significant.

We also classify the repositories according to their database usage. Becoming
hybrid indicates that a system starts using more than one database technology,
and staying hybrid means that it keeps using multiple data models. Similarly, we
classify systems as becoming/staying mono-database when they start/keep using
a single database.

(Multi-) Database Models in Open-Source Projects 95

Became
hybrid

62.00%

Became mono-
database

18.90%

Stayed
hybrid

11.68%
Stayed mono-

database

7.43%

More
hybrid

61.82%

Unchanged

29.09%
Less

hybrid

9.09%

Fig. 5. Changes in data models

Figure 5 presents a summary of the classification of the changes in the
database families. In 62% of the repositories which evolved their data model,
we observed that the systems became hybrid. They had used a single database
model before and added a new model later. On the contrary, 18.9% of the repos-
itories had used a multi-database model before and became mono-database. The
right side of Figure 5 elaborates on the systems that stayed hybrid. Here we ob-
serve a general trend of adding more data models to the existing ones as 61.82%
of these systems become more hybrid.

To better understand developers in applying such changes to the systems,
we contacted the developers of five systems where we found interesting changes
in the evolution. We got a response from the developers of the ORCID project.7

We observed the addition of MongoDB to an existing PostgreSQL database in
this system in 2018. The developers used the two databases for a while, but then
abandoned MongoDB. The dependency is still there, but it is not used anymore.

Manual inspection revealed that both databases used a table column as a dy-
namic flag updated when a MongoDB message was received in a queue managing
that column. This interaction tracked the transfer of data from the PostgreSQL
to the MongoDB database. As the developers explained, the team experimented
with the benefits of querying the data from a document data store compared to
a relational database. For their purpose, the migration had more disadvantages.
Hence, they abandoned the document store later.

Overall, the results of this research question indicate the following. Evolving
database-dependent projects tend to add more data models to their existing
ones, turning mono-database systems into hybrid or already hybrid systems to
even “more hybrid.” The most common change in the combination of database
families is adding a key-value database to an existing relational or document
model. Adding a relational database backend to a current key-value/document
database-based system is also a frequent combination. Whereas moving to more
than two database families is seldom.

7 ORCID Source – https://github.com/ORCID/ORCID-Source

https://github.com/ORCID/ORCID-Source

96 Benats et al.

4 Discussion and Implications

Our study confirms the emergence of hybrid systems, as 16.41% of subject sys-
tems used at least two database models in 2020. This number slightly increased
from 2017, when 15.77% of the systems were hybrid. Looking at the evolution of
the systems, we found a few (1%) that changed their database model by adding,
deleting, or changing a database. In particular, 62% of the database model
changes consisted of the addition of a new database. In a few cases (18.9%),
these modifications were removals. Goeminne and Mens studied database frame-
works in open-source systems [14], and there is an interesting parallelism with
our work. They found that “different database frameworks used in a project tend
to co-occur” and “all database frameworks remain present in more than 45% of
the projects.” Similar findings were confirmed by Decan et al. [9].

Such observations make us assume that developers rarely change database
models in the lifecycle of the project. However, when modifications are needed,
developers tend to add new database models to the system. As previous research
has shown, the database schema evolves continuously [7, 24, 26]. Keeping up
with the changes is an expensive and error-prone task [27], especially when the
database schema is not explicitly provided. Hybrid systems make this evolution
process even more complex. The state-of-the-art approaches on data-intensive
systems evolution [1, 9, 11, 17, 19, 21, 22, 25] mostly consider software systems
relying on a relational database and typically written in Java [9, 17–19, 21] or
PHP [1, 22, 25] (see Section 6). Our results show that more complex data ar-
chitectures and other programming languages are emerging, bringing their own
maintainability challenges.

Unfortunately, only a few authors have started investigating the challenges of
evolving NoSQL applications [23,24,28] or supporting schema evolution in hybrid
systems [12]. In this direction, promising ideas are the use of unified platforms
to integrate multiple data sources [15] or provide support in managing multiple
schemas [4]. Another approach is to manipulate a unified data schema [2] or query
and migrate the data across different databases relying on relational or NoSQL
technologies [13]. Developers could greatly benefit from more tools helping them
maintain and evolve multi-database systems or recommend useful changes in
their data models.

5 Threats to Validity

Construct validity concerns mostly the preparation of the dataset of our study.
We rely on the dataset of Libraries.io that monitors Bitbucket, GitHub, and
GitLab. While these are the largest open-source repositories, they might not
fully represent all open-source projects using databases.

We excluded “low-quality” projects with a quality filter. To balance the qual-
ity and the size of the dataset, we chose filtering criteria according to quartiles.
Similar, even more strict, values for contributors and stars are used in the lit-
erature [5, 20]. Filtering only based on popularity is prone to include projects

(Multi-) Database Models in Open-Source Projects 97

with non-software artifacts (e.g., experimental or teaching purposes) [20]. To
mitigate this risk, we use a combined filter and the requirement of database de-
pendency. We also filtered project duplicates through the identification of fork
projects with the same database dependencies. This filter could consider individ-
ual projects as duplicates and miss “non-forked” copies in rare cases. Overall,
the filters resulted in less than 5% of all database-dependent projects. The num-
ber of projects remains sufficient to obtain representative results; however, the
filters can affect our findings. A more in-depth analysis of the projects could
still improve the dataset, particularly by classifying the projects and identifying
false positive projects that define database dependencies without using them.
Our replication package [3] provides all the necessary resources (datasets,
extraction scripts) to replicate our study by selecting projects based on differ-
ent quality criteria. Additionally, we performed control analyses on the whole
dataset (e.g., by filtering all fork projects) and did not find contradicting results.

The selection of database access libraries was based on keywords and included
manual validation. We identified an exhaustive list of 707 drivers. This step
can be biased; however, establishing a complete list of drivers is probably an
unreachable goal. The actual list of drivers is also available in our replication
package to alleviate this threat. It can be reused and extended in future studies.

Internal validity does not affect this study, being an exploratory study, we
did not claim any causation. On the other hand, external validity concerns the
extent to which our results can be generalized. We present observations con-
cerning the use of seven programming languages of subject systems. Although
these languages are popular today, the results might not be generalized to other
programming languages. Similarly, databases not considered in our study might
affect generalizability. In particular, we aim at open-source technologies, and
proprietary systems remained outside of our study. Further research might be
needed to investigate whether our findings hold on other technologies.

Conclusion validity concerns relationships in our observations. We do not
investigate relationships; consequently, we do not perform statistical tests. How-
ever, relationships might exist that we did not observe in our study.

6 Related Work

In this section, we discuss the novelty of our work with respect to previous
research literature. The most related study by Decan et al. [9] investigates the
introduction and the co-existence of relational database access technologies. The
authors analyzed the evolution of 2,457 Java projects on GitHub and focused
on JDBC, Hibernate and JPA as database access technologies. They observed a
significant technology migration from Hibernate to JPA but did not find evidence
of the massive replacement of JDBC.

Several authors identified database accesses in source code to identify smells,
inconsistencies or antipatterns. Muse et al. [21] performed an empirical study
on GitHub projects and analyzed the prevalence of SQL code smells in Java
applications. Dimolikas et al. [11] studied the evolution of tables in a relational

98 Benats et al.

schema over time concerning the structure of the foreign keys to which tables
are related. Meurice et al. [19] investigated the co-evolution of source code and
database schemas with the ultimate goal to assist developers in preventing incon-
sistencies. Their study considered three Java systems. Qiu et al. [22] analyzed
the co-evolution of SQL database schemas and code in ten open-source PHP
applications. Anderson et al. [1] analyzed SQL queries embedded in PHP appli-
cations to support their understanding, evolution and security. Shao et al. [25]
identified a list of database-access performance antipatterns, mainly in PHP web
applications. Integrity violation was addressed by Li et al. [17], who identified
constraints from source code and related them to database attributes.

Several previous studies exclusively focus on NoSQL applications. Störl et
al. [28] investigated the advantages of using object mapper libraries when ac-
cessing NoSQL data stores. They overview Object-NoSQL Mappers (ONMs) and
Object-Relational Mappers with NoSQL support. As they say, building applica-
tions against the native interfaces of NoSQL data stores create technical lock-in
due to the lack of standardized query languages. Therefore, developers often
turn to object mapper libraries as an extra level of abstraction. Scherzinger et
al. [24] studied how software engineers design and evolve their domain model
when building NoSQL applications, by analyzing the denormalized character
of ten open-source Java applications relying on object mappers. They observed
the growth in complexity of the NoSQL schemas and common evolution op-
erations between the projects. Ringlstetter et al. [23] looked at how NoSQL
object-mappers evolution annotations were used. They found that only 5.6% of
900 open-source Java projects using Morphia or Objectify used such annotations
to evolve the data model or migrate the data.

The related approaches and studies described above primarily focus on the
analysis, maintenance, and evolution of either relational or NoSQL systems.
They mainly consider Java or PHP systems. The number of systems studied
varies between 2.5 and 3 thousand projects. In contrast, our study investigates
the use of database models in 40,609 open-source projects relying on relational
and/or NoSQL database technologies. Therefore, our work does not restrict to
single-database systems but specifically considers hybrid systems by covering five
different database models (relational, document, key-value, column, and graph)
possibly used in combination. Furthermore, we do not focus on a single program-
ming language; we consider seven different languages (C#, Java, JavaScript,
PHP, Python, Ruby, and TypeScript) among the most popular languages today.

7 Conclusion

This paper investigates the (joint) use of SQL and NoSQL database models in
open-source projects. We started from several million projects, keeping those
defining at least one database dependency based on a list of database drivers for
the most common programming languages. We then selected only the projects
meeting specific quality requirements.

(Multi-) Database Models in Open-Source Projects 99

We found that the majority of current database-dependent projects (54.72%)
rely on a relational database model, while NoSQL-dependent systems represent
45.28% of the projects. However, the popularity of SQL technologies has recently
decreased with respect to NoSQL datastores. As far as programming languages
are concerned, we noticed that Ruby and Python systems are often paired with
a PostgreSQL database. At the same time, Java and C# projects typically rely
on a MySQL database. Data-intensive systems written in JavaScript/TypeScript
are essentially paired with document-oriented or key-value databases.

Our results confirm the emergence of hybrid data-intensive systems where
(multi-) database models (e.g., relational and NoSQL) are used together (16%
of all database-dependent projects). In particular, we found that more than 56%
of systems relying on a key-value database also use another database technology,
typically relational or document-oriented. Wide-column dependent systems fol-
low the same pattern, with over 47% of them being hybrid. This demonstrates
the complimentary usage of SQL and NoSQL database technologies in practice.
We also observe that one percent of the database-dependent projects evolved
their data model. The majority (62%) were not born hybrid but once relied on a
single database model. In contrast, 19% became “mono-database” after initially
using multiple database models.

Future work could benefit from analyzing the popularity of business domains
in which combinations of database technologies are used together. An inves-
tigation of the rationale for adopting or giving up hybrid architectures could
also reveal practical implications or lessons that would help the developers. Our
findings provide a clear motivation to further understand and address those chal-
lenges and constitute an important step towards supporting developers to design
and evolve hybrid data-intensive systems.

Acknowledgments. This research is supported by the F.R.S.-FNRS and FWO EOS
project 30446992 SECO-ASSIST and the SNF-FNRS project INSTINCT.

References

1. Anderson, D., Hills, M.: Supporting Analysis of SQL Queries in PHP AiR. In:
SCAM 2017. pp. 153–158. IEEE (2017)

2. Basciani, F., Rocco, J.D., Ruscio, D.D., Pierantonio, A., Iovino, L.: Typhonml: a
modeling environment to develop hybrid polystores. In: MODELS 2020. pp. 2:1–2:5

3. Benats, P.: Repl. pkg., https://github.com/benatspo/Multi-database_Models

4. Bernstein, P.A., Melnik, S.: Model management 2.0: Manipulating richer mappings.
In: SIGMOD ’07. p. 1–12. SIGMOD ’07, ACM (2007)

5. Bird, C., Nagappan, N., Murphy, B., Gall, H., Devanbu, P.: Don’t touch my code!
examining the effects of ownership on software quality. In: ESEC/FSE ’11. p. 4–14.
ACM (2011)

6. Borges, H., Tulio Valente, M.: What’s in a GitHub star? understanding repository
starring practices in a social coding platform. JSS 146, 112–129 (2018)

7. Cleve, A., Gobert, M., Meurice, L., Maes, J., Weber, J.: Understanding database
schema evolution: A case study. Science of Comp. Progr. 97, 113–121 (2015)

https://github.com/benatspo/Multi-database_Models

100 Benats et al.

8. Davoudian, A., Chen, L., Liu, M.: A survey on NoSQL stores. ACM Computing
Surveys (2018)

9. Decan, A., Goeminne, M., Mens, T.: On the interaction of relational database
access technologies in open source Java projects. In: SATTOSE 2015. pp. 26–35

10. Decan, A., Mens, T., Grosjean, P.: An empirical comparison of dependency network
evolution in seven software packaging ecosystems. EMSE. 24(1), 381–416 (2019)

11. Dimolikas, K., Zarras, A.V., Vassiliadis, P.: A study on the effect of a table’s
involvement in foreign keys to its schema evolution. In: ER 2020. pp. 456–470

12. Fink, J., Gobert, M., Cleve, A.: Adapting queries to database schema changes in
hybrid polystores. In: SCAM 2020. pp. 127–131 (2020)

13. Gobert, M.: Schema evolution in hybrid databases systems. In: VLDB 2020 (2020)
14. Goeminne, M., Mens, T.: Towards a survival analysis of database framework usage

in Java projects. In: ICSME 2015. pp. 551–555
15. Jovanovic, P., Nadal, S., Romero, O., Abelló, A., Bilalli, B.: Quarry: A user-

centered big data integration platform. Inf. Systems Frontiers 23, 9–33 (2021)
16. Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian,

D.: The promises and perils of mining GitHub. In: MSR 2014. p. 92–101. ACM
17. Li, B., Poshyvanyk, D., Grechanik, M.: Automatically detecting integrity violations

in database-centric applications. In: ICPC 2017. pp. 251–262. IEEE
18. Linares-Vásquez, M., Li, B., Vendome, C., Poshyvanyk, D.: Documenting database

usages and schema constraints in database-centric applications. In: ISSTA 2016.
pp. 270–281 (2016)

19. Meurice, L., Nagy, C., Cleve, A.: Detecting and preventing program inconsistencies
under database schema evolution. In: QRS 2016. pp. 262–273. IEEE

20. Munaiah, N., Kroh, S., Cabrey, C., Nagappan, M.: Curating GitHub for engineered
software projects. Empirical Softw. Engg. 22(6), 3219–3253 (Dec 2017)

21. Muse, B.A., Rahman, M.M., Nagy, C., Cleve, A., Khomh, F., Antoniol, G.: On the
prevalence, impact, and evolution of SQL code smells in data-intensive systems.
In: MSR 2020. pp. 327–338

22. Qiu, D., Li, B., Su, Z.: An empirical analysis of the co-evolution of schema and
code in database applications. In: ESEC/FSE’13. pp. 125–135 (2013)

23. Ringlstetter, A., Scherzinger, S., Bissyandé, T.F.: Data model evolution using
object-nosql mappers: Folklore or state-of-the-art? In: 2nd International Workshop
on BIG Data Software Engineering. pp. 33–36 (2016)

24. Scherzinger, S., Sidortschuck, S.: An empirical study on the design and evolution
of NoSQL database schemas. In: ER 2020. pp. 441–455. Springer (2020)

25. Shao, S., Qiu, Z., Yu, X., Yang, W., Jin, G., Xie, T., Wu, X.: Database-access
performance antipatterns in database-backed web applications. In: ICSME 2020.
pp. 58–69. IEEE

26. Sjøberg, D.: Quantifying schema evolution. Information and Software Technology
35(1), 35–44 (1993)

27. Stonebraker, M., Deng, D., Brodie, M.L.: Database decay and how to avoid it. In:
Proc. Big Data (2016)

28. Störl, U., Hauf, T., Klettke, M., Scherzinger, S.: Schemaless NoSQL data stores-
Object-NoSQL Mappers to the rescue? BTW 2015

29. Sun, Z., Liu, Y., Cheng, Z., Yang, C., Che, P.: Req2Lib: A semantic neural model
for software library recommendation. In: SANER 2020. pp. 542–546

30. Yamamoto, K., Kondo, M., Nishiura, K., Mizuno, O.: Which metrics should re-
searchers use to collect repositories: An empirical study. In: QRS 2020. pp. 458–466

	An Empirical Study of (Multi-) Database Models in Open-Source Projects
	1 Introduction
	2 Study Method
	3 Study Results
	3.1 RQ1: How prevalent are different data models and their related database technologies?
	3.2 RQ2: Are multi-database models frequently used in software systems?
	3.3 RQ3: How does data model usage evolve?

	4 Discussion and Implications
	5 Threats to Validity
	6 Related Work
	7 Conclusion

