
This is the author’s version of the work. It is posted for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 2021
Working Conference on Software Visualization (VISSOFT), pp. 150–154, 2021, doi: 10.1109/VISSOFT52517.2021.00029.

Visualizing Discord Servers
Marco Raglianti, Roberto Minelli, Csaba Nagy, Michele Lanza

REVEAL @ Software Institute – USI, Lugano, Switzerland

Abstract—The last decade has seen the rise of global software
community platforms, such as Slack, Gitter, and Discord. They
allow developers to discuss implementation issues, report bugs,
and, in general, interact with one another. Such real-time
communication platforms are thus slowly complementing, if not
replacing, more traditional communication channels, such as
development mailing lists. Apart from simple text messaging
and conference calls, they allow the sharing of any type of
content, such as videos, images, and source code. This is turning
such platforms into precious information sources when it comes
to searching for documentation and understanding design and
implementation choices. However, the velocity and volatility of
the contents shared and discussed on such platforms, combined
with their often informal structure, makes it difficult to grasp
and differentiate the relevant pieces of information.

We present a visual analytics approach, supported by a tool
named DISCORDANCE, which provides numerous custom views
to support the understanding of Discord servers in terms of
their structure, contents, and community. We illustrate DISCOR-
DANCE, using as running example the public Pharo development
community Discord Server, which counts to date ∼180k messages
shared among ∼2,900 developers, spanning 5 years of history.
Based on our analyses, we distill and discuss interesting insights
and lessons learned.

Index Terms—visualization, software communities, Discord

I. INTRODUCTION

Ever since the advent of internet, digital communities
have been born, have thrived, and have also died out. Early
platforms were purely text-based (e.g., mailing lists, Internet
Relay Chat), while modern platforms, such as Slack1 and
Discord,2 are full-blown multi-media environments with high
velocity and throughput. Global software communities are
scattered around the planet and, also driven by the open source
movement, have embraced such platforms early on. Each
software community uses various communication mechanisms
to keep in touch and to discuss [1]. While some of those
communication channels can be mined fruitfully [2], [3], the
signal-to-noise ratio of certain of those channels is low [4].

In the last decade, more feature-rich alternatives have
emerged. Rich content media sharing in instant messaging
software (e.g., Slack) broadened the spectrum of possible in-
teractions between members of these virtual communities and
turned such platforms into precious information sources. Re-
cently, tools originally targeted at video-gaming communities
(e.g., Discord in Fig. 1) have seen an increasing adoption in
other contexts, such as classrooms [5] and software developers
communities at large.3

1See https://slack.com [accessed 2022/03/15]
2See https://discord.com [accessed 2022/03/15]
3See https://git.io/JnRGr [accessed 2022/03/15]

Fig. 1. A Screenshot of the Discord Application

Developers use these communication channels to promote
the libraries/frameworks they developed and offer technical
support. Novice developers can ask for help and receive
answers from their more experienced peers. In a nutshell, these
platforms act as a novel source of documentation and encap-
sulate design decisions and implementation choices. However,
as already pointed out by Jaanu et al. [4], the velocity,
volatility, and transient nature of the information exchanged
on such platforms, combined with their informal structure,
makes it difficult to grasp and differentiate the relevant pieces
of information.

We present a visual analytics approach, supported by a tool
named DISCORDANCE, which provides a catalogue of custom
views to support the understanding of Discord servers in terms
of their structure, contents, and community.

Our approach aims at easing the comprehension of relevant
aspects about the community and its individuals. Apart from
the approach and the presentation of DISCORDANCE, the
main contribution of this paper is a set of custom views to
progressively disclose information about:

1) the server, its structure, and its content subdivision;
2) individual channels, their history, and their potential

information content;
3) authors as individual entities, their different activity

patterns, and their interactions with the community;
4) source code elements that can be mined for insights on

domain-specific aspects.

https://doi.org/10.1109/VISSOFT52517.2021.00029
https://doi.org/10.1109/VISSOFT52517.2021.00029
https://slack.com
https://discord.com
https://git.io/JnRGr

Fig. 2. Structure of the Pharo Discord Server (root): Categories (rectangles), Voice Channels (circles), and Text Channels (squares)

II. BACKGROUND

A. Discord in a Nutshell

Discord is a Voice over Internet Protocol (VoIP), instant
messaging, and digital distribution platform. It can be seen as
a client/server application with additional support for peer-to-
peer communication. A Discord Server is the basic functional
unit encapsulating the concept of a community. A server is
typically divided into Categories and Channels (Fig. 2). The
two main channel types are Text and Voice. Text channels
support textual messages, embedded links (i.e., textual mes-
sages with a partial preview of the linked resource), emojis,
reactions, and file sharing. Voice channels support spoken
communication, camera feeds, and screen sharing. To better
structure a Server, Channels can be grouped into Categories.
Discord uses a permission system based on roles assigned
to the members to limit (or grant) the visibility of a given
channel (or a category) to a given role. Members of a server
interact with each other in the channels they have access to. In
a server, there are two types of users: Regular (i.e., humans)
and Bots (i.e., software applications that run specific activities
in a channel, e.g., moderation).

Our supporting tool, called DISCORDANCE, features a bot
that can be added to a server to retrieve and analyze its data,
e.g., messages it is entitled to read. DISCORDANCE also uses
DiscordST4 [6], a client for the public Discord REST API
written in Pharo.5 After creating a domain model by scraping
the Discord server, DISCORDANCE enables its interactive
visualization based on the views presented in Section III.

B. Case Study: The Pharo Discord Server

We analyze the Pharo development Discord server. Pharo is
a pure object-oriented programming language and a powerful
environment, focused on simplicity and immediate feedback,
inspired by Smalltalk. Table I provides statistics about this
server, containing several hundreds of people with an average
of 100 messages per day.

TABLE I
STATISTICS ON PHARO DEVELOPMENT DISCORD SERVER

Snapshot Date Jun 16 2021
First Message Date Sep 8 2016
Activity Duration 4 years 282 days
Active Members 966
Inactive Members 1,525
Previously Active Authors 394
Sent Messages 183,481

4See https://git.io/JnR3h [accessed 2022/03/15]
5See https://pharo.org/ [accessed 2022/03/15]

III. VISUALIZING DISCORD WITH DISCORDANCE

DISCORDANCE offers six polymetric views [7] to analyze
different aspects of a Discord server such as channels, authors,
and source code elements discussed in messages.

A. Channel Activity View
This view provides an overview of the channels in terms

of their activity, i.e., the number of messages sent. Each
text channel is represented as a rectangle: The height is
proportional to the number of messages sent to that channel
while the width is proportional to the number of authors who
sent them. The area of rectangles indicates the “activity” in
a given text channel. Voice channels are represented as fixed-
size circles. Since channel names are not unique, to distinguish
them, we keep track of the channel hierarchy (i.e., categories
containing them). For this reason, the Channel Activity View
adopts a tree layout, with categories at the top.

Examples: Fig. 3 depicts the Channel Activity View for the
Pharo Development Discord Server. At a glance, we can spot
the two most active text channels: “general” in the “PHARO”
category and “beginner-help” in the “For new users” category.
The former counts 49,872 messages from 862 authors while
the latter counts 23,305 messages from 494 authors.

Channel Activity View

Text channelName

CategoryName

Voice channel
Name

Active
authors

Messages

general

beginner
-help

Fig. 3. Channel Activity for the Pharo Development Discord Server

B. Channel Activity Timeline View
Channels can also be analyzed in terms of their recent ac-

tivity and overall lifespan. When considering the first message
sent in a channel as the starting point and the last one as the
ending point, we can see interesting patterns.

https://git.io/JnR3h
https://pharo.org/

Examples: The server started as a single channel for a few
months. Most channels have recent activity and a long history
(Fig. 4).

Jun 16
2021

Sep 20
2018

Mar 9
2017

Sep 8
2016

Channel Activity Timeline View
Text channel CategoryName

Activity
starts

Activity
span

Fig. 4. Channel Activity Timeline for the Pharo Development Discord Server

There are important channels that are still relevant. Their
initial activity date and the overall height of the channel’s
representation can indicate how important the channel has
been in the history of the community. In this view, we see
channels that were active in the past and are not active
anymore and channels created only recently. The former are
candidates for archival and probably do not serve any real
purpose besides documenting the past. The latter should be
investigated separately since their overall activity may be
overshadowed by longer standing channels, despite possibly
containing interesting insights or patterns.

C. Author Activity Status View

A Discord server is dynamic in terms of members and
their activity status. Some authors send a few messages and
then quit the community while others only read messages
without sending anything. This view aims at highlighting the
composition of the user base of a server. Table II summarizes
author types and membership status.

TABLE II
AUTHOR TYPES BASED ON ACTIVITY & MEMBERSHIP STATUS

Activity/Membership Definition
active member sent messages, currently receiving messages
inactive member receives messages (and possibly reads them),

didn’t send any message (yet)
active ex-member sent messages in the past, not part of the Pharo

Discord community anymore
inactive ex-member never sent any message, presence on the server

can be inferred by at least one mention

Examples: Fig. 5 depicts all authors, sorted by decreasing
no. of messages, colored by their activity/membership status.

There are 966 active authors who are also current members
of the community. 1,525 members did not post a message yet.
Previously, 394 authors posted at least one message but they
left the server, thus, they are not members anymore.

Author Activity Status View

Active
channels

Messages

Active
member

Active ex-member

Inactive member

Inactive ex-member

Fig. 5. Author Activity Status for the Pharo Development Discord Server

Moreover, this view highlights differences in author’s be-
havior. For example, Author 1 (i.e., first row, first rectangle)
is more active than Author 2 (i.e., first row, second rectangle)
but in a significantly lower number of channels.

It would be interesting to investigate the activities of active
ex-members to find insights on why they left the community
(e.g., they did not get an answer to their first question, they
had a flame with another user, they changed topics).

D. Author Activity Sparkline View

This is a chart-based view. Every author can have different
activity patterns when using Discord to communicate. Activity
charts are a compact representation of daily activity by an au-
thor. In the single view (Fig. 6), only one author is considered
and his daily number of sent messages can be charted over
his activity period or the whole server activity period.

0

100

200

300

Jun 16 2021Apr 8 2020Jan 29 2019Nov 19 2017Sep 8 2016

Fig. 6. Author Activity Sparkline for Author 9

Using a small multiples approach [8], we can compare
different authors to spot differences in their activity patterns.

Examples: In Fig. 6, we depict the activity of a long-
standing member of the community. The increase in average
activity in the last year and a half is apparent as well as a
certain periodicity in the overall activity that could be further
investigated (e.g., with respect to seasonality).

In Fig. 7, we show the top 10 most active authors with their
daily activity, charted over the whole server lifetime.

Jun 16
2021

Apr 8
2020

Jan 29
2019

Nov 19
2017

Sep 8
2016

0
100
200
300

Author 1 Author 2

Author 3 Author 4

Author 5 Author 6

Author 7 Author 8

Author 9 Author 10

Fig. 7. Author Activity Sparklines for the 10 Most Active Authors

Authors 1, 2, and 3 (from top-left by row) are still active
while 4, 5, and 6 have stopped their activity between around
1.5 and 2.5 years ago. Author 7 is the most active, while his
activity started more recently compared to the others. Author
10 has a very low average daily activity.

E. Code Blocks View
Many messages feature structured content of various type,

such as stack traces and diffs. We are interested in source code,
which developers frequently share and discuss using Discord.
The Pharo Discord server features close to 14k messages with
structured content, and more than 2.3k messages with source
code. Discord supports Markdown that allows marking code
blocks in a message. We use the syntax highlighting annotation
(i.e., “‘smalltalk) to identify the programming language
of a code block, as shown in the sample message below.

1 ‘‘‘smalltalk
2 MyClass new doThing: (MyClass new doAnotherThing)
3 ‘‘‘
4 is equivalent to:
5 ‘‘‘smalltalk
6 [:myClass | myClass doThing: myClass doAnotherThing]

value: MyClass new.
7 ‘‘‘

Examples: In Fig. 8, we show all the potential code blocks,
using specific colors for those with a recognized syntax
highlighting. The vast majority of source code elements are
2,530 Smalltalk code blocks.

F. Class References View
Narrowing down the presence and relevance of source code

related information in our case study, this view investigates
the number of mentions for specific classes in the Pharo core
libraries. We restrict the code blocks to the ones explicitly
marked for Smalltalk syntax highlighting. We then perform a
regular expression based pattern matching with class names to
extract class mentions.

Examples: In Fig. 9, we show mentions of the Collection
class hierarchy. We sort them by the number of mentions,
thus highlighting the most common classes in Smalltalk code
blocks. There are 294 references for the String class, 212 for
the Dictionary class, 185 for the OrderedCollection class, etc.

Code
Blocks
View

Lines
No

syntax

Size

Smalltalk

Shell script

Various
languages

Unknown
syntax

Fig. 8. Code Blocks for the Pharo Development Discord Server

Class References View

Class name
mentions

Class
name

Class name mentions

Fig. 9. Class References for the Smalltalk Collection Hierarchy

IV. RELATED WORK

Numerous works have highlighted the importance of com-
munication channels and platforms for a more comprehensive
understanding of software systems and their developer com-
munities, e.g., [9]–[16]. The software visualization community
has so far neglected them, with some notable exceptions.

Software developer communities visualization has been
presented by Stephany et al. [17], who showed an analysis
and visualization of mailing lists and source code reposi-
tories of three open source projects. The authors highlight
the underlying social structure and communication patterns
between developers within each project. Neu et al. presented
a contributor-centric visualization in the form of “Developer
Activity Diagrams” [18]. Git repositories are mined to extract
contributors’ daily activities in terms of git commits at different
scales (e.g., project, ecosystem). Source code, mailing lists,
and bug trackers are also mined by Goeminne and Mens
[19]. Their integration of different data sources to feed the
visualization layer is another step in confirming the importance
of communication between developers and between developers
and users. Issue trackers, code repositories, wikis, and analyt-
ics platforms are possible knowledge sources considered for
visualization by Johanssen et al. [20].

V. CONCLUSIONS & FUTURE WORK

The importance of software community platforms is increas-
ing and is fundamentally changing how developers discuss and
interact with each other. We presented a set of views, generated
using a custom-built tool named DISCORDANCE, exploring
one instance of such a platform: Discord. Beyond the views
that we presented, and the insights that said views allow, our
primary contribution is a comprehensive approach, preceded
by a careful modeling of the domain, to visually navigate and
explore novel types of information, that ultimately all relate
to software systems, and their understanding from the point
of view of the people developing and discussing them.

As part of our future work, we could compare differ-
ent communities to extract commonalities and differences as
highlighted by the presented views. We could also add new
views by exposing features extracted from the messages (e.g.,
@mentions between authors). Another interesting direction
is to use the gained insights to automatically recommend
Discord server refactoring (e.g., channel split/merge) or to
perform sanity checks (e.g., roles, permissions). Finally, a web-
based front-end for DISCORDANCE could help communities
to explore their own servers and gain actionable insights.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support of the
Swiss National Science Foundation (SNSF) for the project
“PROBE” (Project No. 172799) and the Fonds de la Recherche
Scientifique (F.R.S.-FNRS) and the SNSF for the joint Lead
Agency project “INSTINCT.” We also thank the Pharo Discord
community, and in particular Stéphane Ducasse and Marcus
Denker, for adding the DISCORDANCE bot to their server.

REFERENCES

[1] J. A. Teixeira and H. Karsten, “Managing to release early, often and on
time in the OpenStack software ecosystem,” Journal of Internet Services
and Applications, vol. 10, no. 1, p. 7, 2019.

[2] A. Bacchelli, T. Dal Sasso, M. D’Ambros, and M. Lanza, “Content
classification of development emails,” in Proceedings of ICSE 2012
(34th International Conference on Software Engineering). IEEE, 2012,
pp. 375–385.

[3] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. Van Deursen,
“Communication in open source software development mailing lists,” in
Proceedings of MSR 2013 (10th Working Conference on Mining Software
Repositories). IEEE, 2013, pp. 277–286.

[4] T. Jaanu, M. Paasivaara, and C. Lassenius, “Near-synchronicity and dis-
tance: Instant messaging as a medium for global software engineering,”
in Proceedings of GSE 2012 (7th International Conference on Global
Software Engineering). IEEE, 2012, pp. 149–153.

[5] R. Menzies and M. Zarb, “Professional communication tools in higher
education: A case study in implementing Slack in the curriculum,” in
Proceedings of FIE 2020 (Frontiers in Education Conference). IEEE,
2020, pp. 1–8.

[6] J. Cerezo, J. Kubelka, R. Robbes, and A. Bergel, “Building an expert
recommender chatbot,” in Proceedings of BotSE 2019 (1st International
Workshop on Bots in Software Engineering). IEEE/ACM, 2019, pp.
59–63.

[7] M. Lanza, “Codecrawler — polymetric views in action,” in Proceedings
of ASE 2004 (19th International Conference on Automated Software
Engineering). IEEE CS Press, 2004, pp. 394–395.

[8] E. Tufte, Envisioning Information. Graphics Press, 1990.
[9] C. M. Costa Silva, “Reusing software engineering knowledge from de-

veloper communication,” in Proceedings of ESEC/FSE (28th European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering. ACM, 2020, pp. 1682–1685.

[10] R. Abreu and R. Premraj, “How developer communication frequency re-
lates to bug introducing changes,” in Proceedings of IWPSE-EVOL 2009
(ERCIM Workshop on Software Evolution and International Workshop
on Principles of Software Evolution). ACM, 2009, pp. 153–158.

[11] D. M. German, B. Adams, and A. E. Hassan, “The evolution of the
R software ecosystem,” in Proceedings of CSMR 2013 (17th European
Conference on Software Maintenance and Reengineering). IEEE, 2013,
pp. 243–252.

[12] G. Poo-Caamaño, L. Singer, E. Knauss, and D. M. German, “Herding
cats: A case study of release management in an open collabora-
tion ecosystem,” in Open Source Systems: Integrating Communities.
Springer International Publishing, 2016, pp. 147–162.

[13] G. Poo-Caamaño, E. Knauss, L. Singer, and D. M. German, “Herding
cats in a FOSS ecosystem: a tale of communication and coordination
for release management,” Journal of Internet Services and Applications,
vol. 8, no. 1, pp. 1–24, 2017.

[14] P. Mutton, “Inferring and visualizing social networks on internet relay
chat,” in Proceedings of IV 2004 (8th International Conference on
Information Visualisation). IEEE Computer Society, 2004, pp. 35–43.

[15] E. Shihab, Z. M. Jiang, and A. E. Hassan, “On the use of internet relay
chat (IRC) meetings by developers of the GNOME GTK+ project,” in
Proceedings of MSR 2009 (6th IEEE International Working Conference
on Mining Software Repositories). IEEE, 2009, pp. 107–110.

[16] A. Foundjem and B. Adams, “Release synchronization in software
ecosystems,” Empirical Software Engineering, vol. 26, no. 3, p. 34, 2021.

[17] F. Stephany, T. Mens, and T. Gîrba, “Maispion: A tool for analysing and
visualising open source software developer communities,” in Proceed-
ings of IWST 2009 (International Workshop on Smalltalk Technologies).
ACM, 2009, pp. 50–57.

[18] S. Neu, M. Lanza, L. Hattori, and M. D’Ambros, “Telling stories
about GNOME with Complicity,” in Proceedings of VISSOFT 2011 (6th
International Workshop on Visualizing Software for Understanding and
Analysis). IEEE, 2011, pp. 1–8.

[19] M. Goeminne and T. Mens, “A framework for analysing and visualising
open source software ecosystems,” in Proceedings of IWPSE-EVOL 2010
(ERCIM Workshop on Software Evolution and International Workshop
on Principles of Software Evolution). ACM, 2010, pp. 42–47.

[20] J. O. Johanssen, A. Kleebaum, B. Bruegge, and B. Paech, “Towards the
visualization of usage and decision knowledge in continuous software
engineering,” in Proceedings of VISSOFT 2017 (Working Conference on
Software Visualization). IEEE, 2017, pp. 104–108.

	I Introduction
	II Background
	II-A Discord in a Nutshell
	II-B Case Study: The Pharo Discord Server

	III Visualizing Discord with DiscOrDance
	III-A Channel Activity View
	III-B Channel Activity Timeline View
	III-C Author Activity Status View
	III-D Author Activity Sparkline View
	III-E Code Blocks View
	III-F Class References View

	IV Related Work
	V Conclusions & Future Work
	References

