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Abstract—Several techniques have been proposed in the lit-
erature to support code completion, showing excellent results
in predicting the next few tokens a developer is likely to type
given the current context. Only recently, approaches pushing the
boundaries of code completion (e.g., by presenting entire code
statements) have been proposed. In this line of research, we
present FeaRS, a recommender system that, given the current
code a developer is writing in the IDE, recommends the next
complete method to be implemented. FeaRS has been deployed to
learn “implementation patterns” (i.e., groups of methods usually
implemented within the same task) by continuously mining open-
source Android projects. Such knowledge is leveraged to provide
method recommendations when the code written by the developer
in the IDE matches an “implementation pattern”. Preliminary
results of FeaRS’ accuracy show its potential as well as some
open challenges to overcome.

Index Terms—Source code recommender, Code completion

I. INTRODUCTION

Recommender systems for software engineering have been
defined by Robillard et al. as “applications that provide
information items valuable for a software engineering task in a
given context” [1]. In this context, source code recommender
systems (i.e., techniques able to recommend useful pieces
of code for an implementation task at hand) pursue one of
the long-lasting dreams of software engineering research: The
(semi-)automatic generation of source code.

These techniques aim at speeding up the implementation of
new code, similarly to what is accomplished through in-IDE
code completion [2]. For several years, most of the effort in
this field targeted the improvement of the recommendations
in terms of accuracy (i.e., the ability to correctly predict the
code tokens the developer is going to type), with several works
reporting impressive results [3]–[9]. However, little progress
has been made regarding the type of support these tools
can provide to developers. Indeed, techniques and tools able
to recommend more complex code elements such as entire
statements or even functions have been proposed only very
recently [5], [8], [10].

In a recent work, we presented FeaRS [11], an approach
that monitors the code of Android developers in the IDE and
is able to recommend the complete code of the next method
(i.e., signature and method body) they are likely to implement
based on method(s) they have already implemented. FeaRS
relies on a set of implementation patterns collected by mining
open-source Android apps on GitHub.

In this paper, we present an improved version of FeaRS,
which we release as an open-source project on GitHub [12].

As compared to the previous version [11], we integrated
a new crawler in FeaRS to continuously mine Android apps
and learn new implementation patterns (e.g., when developers
implement method M1, they are likely to implement M2 as
well), thus increasing the size of the knowledge base FeaRS
relies on, hopefully increasing its capabilities of recommend-
ing relevant methods.

FeaRS also features an Android Studio plugin monitoring
the new methods written by the developer in the IDE to
generate, based on it, the next method to implement. The
communication between the plugin and the knowledge base is
performed through a web service, which checks if the newly
implemented method(s) received from the plugin match any
implementation pattern in the knowledge base.

In this work, we summarize the approach and the empirical
evaluation described in our technical paper [11], while we
remind the reader of the paper for all details. On top of this,
FeaRS’ architecture and a usage scenario are presented.

II. ARCHITECTURE

Fig. 1 depicts FeaRS’ architecture. It is composed of (i)
an offline analysis implemented by the FeaRS Crawler and
the FeaRS Analyzer, which aim at mining open-source An-
droid apps and identify implementation patterns; and (ii) an
online service implemented by the FeaRS Web Service and
available through the FeaRS Plugin, where developers can
check possible recommendations for the next method to be
implemented. The recommendations are currently limited to
the Java programming language. In the following, we detail
the main components of FeaRS’ architecture.
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Figure 1. Overview of FeaRS’ architecture
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A. Crawling and Analyzing Open-source Android Projects

The FeaRS Crawler retrieves and clones Android apps using
the GitHub API (step 1 in Fig. 1). The targeted GitHub
repositories meet the following criteria: (i) are written in Java;
(ii) contain a build.gradle file with a dependency towards
the Android SDK; (iii) have at least ten stars.

Once all repositories are cloned, the FeaRS Analyzer ex-
tracts the newly added methods from each commit of each
project (step 2 in Fig. 1). The set of new methods added
into the same file from the same commit is considered as
a candidate implementation pattern. To identify recurring im-
plementation patterns, the FeaRS Analyzer applies clustering
(step 3 in Fig. 1) to group methods added in different commits,
possibly from different systems, implementing equivalent or
very similar functionalities.

For example, two commits ck and cj performed in two
different repositories may implement different sets of new
methods (e.g., Mk = {m1,m2} and Mj = {m3,m4}) that
represent the same implementation pattern (i.e., m1 = m3 and
m2 = m4). FeaRS uses a customized version of the publicly
available ASIA clone detector [13] to assess the similarity
between different methods and then cluster them.

Different clustering results can be generated by tuning a
threshold λ in the similarity algorithm (i.e., two methods are
clustered together only if their similarity is higher than λ),
and our evaluation showed that the best results are achieved
with λ = 0.90 [11]. Finally, the FeaRS Analyzer takes a set
of transactions as input, where each transaction is represented
as a set of new methods added into the same file from the
same commit using their cluster IDs. Then, it applies Associ-
ation Rule Mining [14] to identify repetitive implementation
patterns, relying on the R arules package (step 4 in Fig. 1).

The extracted association rules represent the FeaRS’ knowl-
edge base in the form of rules {M} =⇒ mi (LHS =⇒
RHS), where M represents a non-empty set of methods and
mi a method that FeaRS can recommend based on the fact
that the developer implemented M .

In addition, this offline analysis automatically checks for
projects’ updates (i.e., new commits performed in already
analyzed projects). It looks for new Android projects that
have been created since the previous crawling of GitHub. The
knowledge base (i.e., the set of learned implementation pat-
terns) is then updated every three months in order to improve
the recommendation capabilities of FeaRS continuously.

B. FeaRS Web Service and IDE Plugin

FeaRS is structured as follows:
• The FeaRS IDE Plugin acts as the front-end in direct

contact with developers via an interactive GUI;
• The FeaRS Web Service plays a role as the back-end

which processes the requests of the front-end and inter-
acts with the database;

• The knowledge we learned from the offline analysis (i.e.,
clusters of methods, association rules) is considered as
the database side (knowledge base).

When the developer implements a set of new methods {M}
in the IDE (note that {M} could also be a singleton), this set
is identified by the plugin, wrapped into JSON format, and
sent to the web service via a POST request. For each method
in the set, the web service checks if it can be matched to
an existing cluster in the database and, if this is the case,
the method set {M} will be presented as {C}, meaning that
each method is associated to an existing cluster when possible
(the size of {C} can be smaller than {M} if some methods
cannot be matched to any clusters). Finally, for any association
rule {Clhs} =⇒ {crhs} in the database, the centroid
method of the cluster {crhs} will be sent to the plugin as
a recommendation if the following formula is valid:

∃{Ci} ⊆ {C}, {Ci} ⊆ {Clhs} ∧ {crhs} /∈ {C} (1)

III. FEARS IN ACTION

Alice is working on the development of an Android app.
After Alice installed the IDE plugin, she can start and stop
FeaRS through the Û and � icons in the IDE toolbar.

By clicking Û, FeaRS starts monitoring the code written by
Alice and identifies when a new method is added. When this
happens, the text of the new methods added by Alice is sent
to the Web service.

The Web service tries to assign each received method to one
of the clusters previously computed while crawling Android
apps. Also, in this case, we leverage the ASIA clone detector.
In particular, we compute the similarity between each received
method and the centroid of all known methods’ clusters. Once
the most similar centroid is obtained for an added method, the
latter is assigned to the corresponding cluster if its similarity is
higher than a given threshold that we empirically set at 0.90
[11]. If the similarity is lower, the method is not assigned
to any cluster and cannot be used by FeaRS to generate
recommendations.

Once the newly implemented methods are matched with
the clusters (when possible), all their permutations are used
to generate candidate LHSs that can be compared with the
implementation patterns (i.e., association rules) in FeaRS’
knowledge base. For example, if three methods added by Alice
are matched to clusters C1, C2, and C3, we generate 7 possible
LHSs: {C1}, {C2}, {C3}, {C1, C2}, {C1, C3}, {C2, C3}, and
{C1, C2, C3}.

Then, FeaRS checks if any of these LHSs is equal to the
LHS of one of the association rules previously extracted. If
this is the case, a recommendation is generated by exploiting
the RHS of the corresponding association rule. For example,
if {C1, C3} is matched in a rule {C1, C3} =⇒ C7, then
a method representing the centroid of cluster C7 is returned
by the Web service to the plugin as a recommendation. It is
important to note that for the same LHS, different RHSs may
be recommended (i.e., it is possible to have in the knowledge
base different association rules sharing the same LHS). In this



case, the Web service returns the centroid belonging to the
RHS of the rule having the highest confidence.

Fig. 2 shows the GUI of the FeaRS Android Studio plugin.
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Figure 2. The FeaRS Android Studio plugin [11]

Starting from the top, the slider 1 allows setting the sensi-
tivity of the recommendations to one of three possible levels:
Low, Medium, and High sensitivity. Moving the slider towards
Low, FeaRS generates fewer recommendations that, however,
are more likely to be relevant and correct. Instead, moving
the slider towards High, the developer will receive a higher
number of recommendations, including more false positives.
The three levels are associated to specific configurations of the
approach behind FeaRS that we empirically defined [11]. For
example, in the high sensitivity configuration, only association
rules having a confidence of at least 0.5 are considered when
triggering recommendations. Such a value increases to 0.65
for the medium sensitivity and to 0.8 for the low sensitivity
configuration. The tool becomes stricter (i.e., lower recall and
higher precision) when moving from high to low sensitivity.

The signatures 2 shown in the GUI represent the methods
implemented by Alice that, once matched to specific clusters,
were recognized as part of the LHS of three association rules
in the FeaRS’ knowledge base. The fact that three recommen-
dations were generated can be seen from the small arrows
in Fig. 2 (the ones showing 1 / 3), that allow Alice to scroll
through the three recommendations. Indeed, FeaRS shows only
one of the three possible recommendations (i.e., the method
getLastKnownLocation) that the implemented methods
triggered 3 .

Alice can then use the three buttons 4 at the bottom
of the GUI to (i) like/dislike the suggestion; (ii) copy the
recommended method to past it in the IDE; and (iii) discard
the recommendation. If Alice pastes the snippet in the IDE, a
comment documenting the GitHub repository from which the
snippet has been taken is added to the code, so that Alice can
check its reusability from a legal perspective.

IV. EVALUATION SUMMARY

FeaRS has been evaluated through a large-scale empirical
study based on a dataset featuring the complete change history
of 20,713 Android apps [11]. The dataset has been split into
training, validation, and test.

The first 80% of the apps’ history has been used as a training
set to extract the association rules used by FeaRS to build
the knowledge base. The subsequent 10% (“validation set”)
has been used to tune the parameters of FeaRS, and allowed
to define the three configurations (i.e., low, medium, high
sensitivity) we previously described. Finally, the last 10% has
been used as a “test set” to assess the performance of FeaRS.

To better understand how the correctness of the generated
recommendations has been computed, consider the following
running example. Three association rules have been learned
in the training set: {C1, C2} =⇒ C3, {C4, C5} =⇒ C6,
and {C2, C6} =⇒ C7. The test set features a commit ci in
which a developer implemented three new methods that can be
matched to clusters C1, C2, and C3. In this case, we assume
that if the developer was using FeaRS while working on ci, she
would have received a correct recommendation. Indeed, our
tool could have matched the association rule {C1, C2} =⇒
C3, thus correctly recommending C3 to the developer, saving
her time. Clearly, we are assuming that the implementation
order followed by the developer in ci left C3 as the last method
to implement.

Similarly, if we find a commit cj in which the developer
implemented three methods matched to clusters C1, C2, and
C4, then we can assume that FeaRS would have generated a
wrong recommendation if used by the developer, since also in
this the C3 recommendation would have been triggered.

The details of this study and of how we compute recall
and precision based on this data are reported in our technical
paper [11]. Also, the same analysis has been performed on the
validation set to define the best configurations.

Table I
FEARS PERFORMANCE

Sensitivity High Medium Low
#commits 69,480 69,480 69,480
recall 0.07 0.05 0.04
precision 0.50 0.62 0.72

Table I reports the results achieved by the three FeaRS
configurations on the test set. As expected, the precision is
quite low in the high sensitivity configuration, where FeaRS
achieves 0.50. However, the precision increases up to 0.72
in the most conservative scenario (low sensitivity). The recall
values move instead in an inverse direction, decreasing from
0.07 (high sensitivity) to 0.04 (low sensitivity).

The precision values indicate that once FeaRS generates a
recommendation, it is likely to be adopted by the developer.
However, the recall shows a strong limitation of our tool, that
we hope to overcome by expanding the knowledge base thanks
to the continuous mining of Android apps.



Also, while the recall is low, it still corresponds to thousands
of methods correctly recommended.

In addition to the above-summarized quantitative analysis,
we performed a qualitative analysis by manually inspecting
some examples where FeaRS managed or failed to generate
a good recommendation. There are two main observations we
made from the manual analysis. First, FeaRS often recom-
mends quite short methods that, while potentially useful, are
likely to represent trivial recommendations with little time-
saving potential for developers. Second, not all “false positive
recommendations” in our study are actually wrong recommen-
dations. Indeed, we found cases in which the recommended
method, while slightly different from the one implemented by
the developers in the test-set commits, accomplished a very
similar goal, thus being potentially useful [11].

V. RELATED WORK

FeaRS is mainly related to code completion techniques and
code search engines.

A. Code Completion Techniques

Several techniques have been proposed to improve code
completion. Some works focused on proposing smarter rank-
ing of the recommendations: Instead of sorting them alphabet-
ically, context-sensitive approaches have been defined to build
better ranking mechanisms [3], [5]. IDEs have also recognized
the importance of context-sensitive recommendations: Eclipse
has plugins to extend its core code completion, among these,
aiX Code Completer [15] and Codota [16] use AI techniques
and can even recommend a full line of code.

Hindle et al. [4] pioneered the work on statistical language
models applied to software. They used n-gram models to
create a language-agnostic algorithm that predicts the next
token in a given statement. This work opened the research
to several other attempts to improve language models [6], [8],
[9] for the specific task of code completion.

Robbes and Lanza used information extracted from the
change history to improve code completion of method calls
and class names. Their tool is able to propose a correct match
in the top-3 results in 75% of cases [7].

Karampatsis et al. [17] suggested that neural networks are
the best language-agnostic algorithm for code completion,
showing its superiority compared to the state-of-the-art lan-
guage model [18]. Since then, several works have leveraged
deep learning-based architectures to create code recommender
systems (see, e.g., [19]–[21]). The recently proposed GitHub
Copilot tool [10] builds on top of this literature.

While these approaches are undoubtedly valuable to speed
up code writing, most of them are limited to recommendations
related to the next few tokens the developer is likely to
type. With FeaRS, we forge another step ahead to predict
the next full method a developer is likely to implement by
exploiting implementation patterns learned from open-source
repositories.

B. Code Search Engines

FeaRS is also related to code search engines, namely
techniques and tools that allow retrieving code samples and
reusable open-source code from the Web [22]–[27].

For example, Thummalapenta et al. developed a code search
engine exploiting static analysis to return relevant code sam-
ples for search queries [24], [28]. The authors also extended
their approach [25] to assist users by detecting hotspots that
can serve as starting points for reusing APIs. McMillan et al.
[26], [27] combined three sources of information (i.e., the
textual descriptions of applications, the API calls used inside
each application, and the dataflow among those API calls) to
locate relevant software in a large code base.

Compared to code search engines, FeaRS also queries a
database of code elements (in our case, code implementation
patterns) to identify those possibly relevant for a coding task
at hand. However, developers do not need to formulate any
query, with FeaRS automatically inferring what they need by
monitoring their development activities.

VI. CONCLUSIONS

We presented FeaRS, a tool able to recommend the next
full method a developer is likely to implement given the new
method(s) implemented in the IDE. FeaRS exploits implemen-
tation patterns learned from thousands of open-source Android
apps, with the number of patterns growing over time thanks
to a continuously running mining process.

The whole idea behind FeaRS is to exploit what has been
defined by Hindle et al. [4] as the naturalness of software:
What a developer is doing has a high chance of having been
done by someone else, somewhere else before.

Our future work focus on a number of directions aimed at
improving FeaRS. First, there are non-trivial licensing issues
related to code reuse from open-source projects. Such issues
are shared with most of the learning-based code recommender
systems. As of now, our strategy has been to “delegate” the
final decision to the developer. However, better support can
be provided by at least informing the developer through an
automated assessment of possible licensing issues. Second,
while the developer can copy/paste the recommended methods,
FeaRS does not help in any way in integrating a copied method
in the code under development, for example, by automatically
adapting the identifiers in the recommended method to those
already defined in the code written in the IDE, if possible.
Finally, we plan to run a controlled experiment with developers
to assess the actual usefulness of our recommender system
during implementation tasks.

FeaRS is available on GitHub as an open-source
project [12].
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