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Abstract—The increasing data volume and the variety of
data formats of modern data-intensive systems unveiled the
boundaries of traditional relational database management sys-
tems. NoSQL technologies aim to fulfill shortcomings through
numerous features such as allowing unstructured, schema-less
data storage. However, new features also pose challenges to
software engineering techniques that used to work well for
relational databases.

In this paper, we present an approach to retrieve database
accesses in JavaScript applications that use MongoDB. The ap-
proach handles JavaScript’s highly dynamic and typeless nature
through heuristics to avoid collision with third-party libraries.
The aim is to identify the part of the source code involved in the
database communication as the first step towards additional static
analysis approaches. We evaluated the approach on an oracle of
307 open-source projects and reached a precision of 78%. We
demonstrate potential use cases of the approach through case
studies on the evolution of open-source systems.

Index Terms—Database Accesses, Static Analysis, NoSql, Mon-
goDB, JavaScript, NodeJS

I. INTRODUCTION

NoSQL (“Not Only SQL”) systems emerged to tackle
the limitations of relational databases. They offer attractive
features such as scalability with scale out, cloud readiness, and
schema-less data models [1]. New features come at a price,
however. For example, schema-less storage allows faster data
structure changes, but the absence of explicit schema can result
in multiple implicit schemas co-existing in the same system.
The increased complexity makes developers’ operational and
maintenance burdens heavier [2], [3].

Several efforts have been made to address the challenges
of NoSQL systems. A popular purpose is to support schema
evolution in the schema-less NoSQL environment [4]. For
example, researchers study automatic schema extraction [5],
schema generation [6], optimization [7], and schema sugges-
tions [8]. Behind the scenes, such approaches mainly rely on
a static analysis of the source code or the data when it is
available. For the source code, they operate on the part of it
that implements the database communication.

This paper addresses the problem of retrieving database
accesses from the source code of JavaScript applications that
use MongoDB. This is the first critical step for further static
analysis techniques.

We target MongoDB, the most popular NoSQL technology
on DB-Engines Ranking1 and JavaScript, the programming
language where MongoDB is used the most frequently [9].
According to a recent empirical study [9], about half (52%)
of the database-dependent JavaScript projects use a document
store (i.e., MongoDB), and only about a third of them (35%)
rely on a relational database.

Static analysis of JavaScript is known to be extremely
difficult. Existing techniques [10], [11] usually struggle to
handle the excessively dynamic features of the language [12],
and approaches with type inference [13], data flow [14], or call
graphs [15] need to balance between scalability and soundness.

We need a sound approach that scales with potentially
large system code bases. MongoDB queries in JavaScript are
typically constructed through the APIs of database access
libraries. The most popular ones2 are the native MongoDB
Node Driver3 and Mongoose ODM.4 Therefore, we look
for the usage of these APIs in JavaScript projects. We use
CodeQL,5 a powerful semantic code analysis engine that
provides the syntax tree of the analyzed project and performs
a sound dataflow analysis. We define heuristics to improve the
precision of identifying APIs of database access libraries.

We evaluated the accuracy of our approach on an oracle
of 307 open-source projects and reached promising results
achieving a precision of 78%. Our approach is the first step
towards additional analyses of database access API usage in
JavaScript applications. It is required, for example, to analyze
the evolution of such systems [16], help their developers
propagate schema changes [17], or identify antipatterns [18].
We demonstrate potential use cases on two interesting case
studies where we assess the evolution of open-source systems.

Paper Organization. Sections II and III present the back-
ground and the details of the approach. Section IV describes
its evaluation on open-source projects. Section V demonstrates
the approach through two case studies. Section VI presents the
related work, then we conclude and discuss potential future
directions in Section VII.

1https://db-engines.com/en/ranking
2https://www.npmjs.com/search?q=mongodb&ranking=popularity
3https://docs.mongodb.com/drivers/node/current/
4https://mongoosejs.com/docs/
5https://codeql.github.com/
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II. BACKGROUND

MongoDB is a document-oriented datastore. Its central
concept is a document that stores all information for a given
object. Every document can be different, unlike in a relational
database, where tables have to conform to a specific schema.
Documents can also embed and reference other documents,
similar to a join in a relational database. A group of documents
is called a collection. MongoDB stores data in BSON (Binary
JSON), optimized for speed, space, and flexibility.

The most popular npm libraries to work with MongoDB
are Mongoose ODM and MongoDB Node Driver.2 MongoDB
Node Driver is offered by MongoDB for Node.js applications
as the native driver. Its API provides the basic operations to
query the database. Mongoose is an ODM (Object Document
Mapping) layer on the MongoDB Node Driver.

1 const mongoose = require("mongoose");
2
3 let SmartphoneSchema = new mongoose.Schema({
4 name: String,
5 price: Number,
6 inStock: Boolean
7 });
8
9 const Smartphone = mongoose.model("smartphones",

SmartphoneSchema);
10
11 module.exports = Smartphone;

Listing 1. Mongoose schema definition example

1 Smartphone = require("./smartphones.js");
2
3 // ...
4 iPhone = new Smartphone("iPhone 13 Pro", 999, true);
5 await iPhone.save();
6
7 // ...
8 iPhones = await Smartphone.find({name: /iPhone/});

Listing 2. Mongoose query example

Listing 1 presents a typical schema definition in Mongoose.
First, the mongoose module is included using the built-in
require function. Then a schema is created through the
mongoose.Schema(...) API call. Everything in Mon-
goose starts with a Schema that is mapped to a MongoDB
collection and defines the structure of the documents within
that collection. A Model is needed to work with a Schema
in Mongoose. Line 9 creates a Model in Listing 1. Finally,
the model gets exported to be used externally (line 11).

Listing 2 shows an example usage of the model exported in
Listing 1. The model is imported using the require function.
An instance of a model is a Document in Mongoose. It can be
created and saved in various ways. An example can be seen on
line 5, using the Document.save() method of the iPhone
Document instance. Finally, line 8 shows a simple query to
find documents.

Both Mongoose and MongoDB Node Driver have well-
defined APIs to operate with the database. Our goal is to
identify the part of the source code where they use these APIs
to create, query, modify or delete data. In general, the aim
is to identify every statement that operates with the database.
This enables us to further analyze the database access code.
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Fig. 1. Approach overview

III. APPROACH

Fig. 1 presents an overview of the main steps of the
approach. First, we analyze a JavaScript project with CodeQL,
and then we run our queries to extract the database access
methods. In a second step, we apply filtering heuristics to
improve the precision by eliminating method calls in potential
conflict with other APIs. The outcome is a list of source code
locations accessing the database with details of the access (e.g.,
API used, receiver, context).

1) CodeQL Analysis: As mentioned in the introduction,
state-of-the-art tools exist to perform static analysis for
JavaScript. We choose CodeQL6 mainly for the following
reasons: (1) it can parse JavaScript projects conforming to
recent ECMAScript language specifications (which is not the
case for many other tools); (2) it provides an abstract syntax
tree (AST) that can be queried in an SQL-like query language;
(3) it has scalable data flow analysis; (4) it supports multiple
languages, making our approach reusable, e.g., to TypeScript;
(5) finally, it is freely available for research and open-source.

CodeQL takes as input the source files of the project.
It parses them and builds an internal database that can be
queried in QL, an SQL-like, declarative, object-oriented query
language.7 A CodeQL analysis can be customized by defining
new predicates and classes to be used in the queries. Therefore,
the next step is to implement queries and predicates to extract
database access methods in JavaScript applications. We made
our source code available in an online appendix.8

2) Database Access Methods Extraction: We look for
method calls invoking a database access method of the
MongoDB Node Driver or Mongoose. We gathered method
signatures from reference guides of MongoDB Node Driver
3.6 and Mongoose 5.12.8. From this list, we selected the
methods that access the database for one of the following
operations: (1) creates a new collection/document; (2) updates
the content of documents or a collection; (3) deletes documents
from a collection; (4) accesses the content of documents.

Overall, we collected 179 methods, 74 from MongoDB
Node Driver and 105 from Mongoose. The complete list of
the methods is also available in our online appendix.8

6https://codeql.github.com/
7https://codeql.github.com/docs/ql-language-reference/about-the-ql-

language/
8https://github.com/bocherry/saner22-online-appendix
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CodeQL provides type inference to approximate types for
JavaScript expressions and variables. It also has a call graph
that represents the caller-callee relationship between functions.
Yet, due to the highly dynamic nature of JavaScript, these are
often incomplete; thus, we cannot rely on them to identify
database access API usage. We implement a naive approach
that looks for method calls with identifiers matching the
method names in our API list. However, only matching method
names would produce noise and mistakenly detect methods
from other APIs. To minimize this noise, we apply filtering
heuristics in the following step.

3) Filtering Heuristics: The names of some API meth-
ods would likely collide with other methods defined inter-
nally or in external libraries. For example, the Mongoose
Model.create(...)9 API saves one or more docu-
ments to the database. A naive approach can mix this with
the create(...) method of JavaScript’s Object, i.e.,
Object.create(...). We call these collisions in the rest
of the paper. Similar collisions can generate significant noise
in our approach. Thus, we apply heuristics to avoid such cases
and looked for potentially colliding methods in the MongoDB
and Mongoose API documentation.

Many of the heuristics check the immediate type or name
of the receiver object of the method call. For example, the
receiver object of iPhone.save() in Listing 2 is iPhone.
In the remaining of the paper, we refer to the receiver object
as the receiver.

Some heuristics also check the parameters of the method
calls, i.e., the number of parameters and their types should
match when they are available. For example, we collect all
the method calls for the Model.findOne(...) method of
Mongoose with at least one Object parameter and a callback
function. This function has two mandatory parameters and two
more optional parameters according to the documentation.10

Below, we further describe each of our heuristics.
H1: Find call’s single parameter should not be a

string literal. JavaScript has a standard Array.find(...)
method. Hence, we define this heuristic to avoid collision with
native JavaScript find and other well-spread libraries.

H2: The receiver should not be a Promise object. This
heuristic is applied to all methods to avoid collision with the
Promise API. Promise is frequently used for asynchronous
operations in JavaScript.

H3: A create(...) invocation’s receiver should not
be an Object or a subclass of Object that is not a Document.
This heuristic avoids collision with native JavaScript Object
methods, e.g., Object.create(...).

H4: The receiver should not be “_”. Lodash11 is a
JavaScript library, which provides utility functions to work
with arrays, numbers, objects, strings, etc. Its standard notation
uses the dash (“_”) as an identifier. Thus, this heuristic avoids
potential collisions with the frequently used Lodash.

9https://mongoosejs.com/docs/api/model.html#model_Model.create
10https://mongoosejs.com/docs/api.html#model_Model.findOne
11https://lodash.com/

H5: The receiver should not be JQuery.events,
JQuery or match the regular expression “\$\(.*\)”. This
heuristic avoids method collisions with the JQuery library.12

H6: The file should transitively import MongoDB or
Mongoose. Candidate method call should be in a file belonging
to an import chain originating from a file importing MongoDB
or Mongoose. A file belongs to an import chain if the file
(1) contains a MongoDB or Mongoose import, or (2) imports
such a file containing a MongoDB or Mongoose import, or
(3) transitively imports such a file.

H7: Mandatory parameters should match. Each method
invocation should have the same number of mandatory pa-
rameters as the method signature in the documentation. The
minimum and the maximum number of mandatory arguments
are considered when more methods share the same name.

IV. EVALUATION

We assess the precision of the approach on an oracle of
open-source JavaScript projects. We relied on the dataset
of Benats et al. [9] and queried JavaScript projects using
MongoDB. We queried the dataset for repositories with at least
100 stars and found a total number of 502 projects. We cloned
these projects and analyzed them. We identified database
accesses with the approach in 307 projects. An overview of
the projects can be seen in Table I with descriptive statistics
(min, first quartile (Q1), median, third quartile (Q3), and max)
of the GitHub stars, files, lines of code, and DB accesses.

TABLE I
STATISTICS OF THE PROJECTS

Min Q1 Median Q3 Max

Stars 100 230 413 1191 335,035
Files (JavaScript) 2 25.5 61 163 3,880
LOC (JavaScript) 58 1,570 5,034 25,938.5 536,380
DB Accesses 1 6 19 48 2,213

We collected 19,093 database accesses in the oracle. Inter-
estingly, the projects with at least one database access method
had a total number of 2,166,866 method calls. Meaning that,
on average, about 1 out of 100 method calls were related to
database accesses in the projects.

We took a random sample of 818 database access calls
representing a confidence level of 90% with a 3% margin of
error. Each call was randomly assigned to two authors who
checked them manually. The aim was to see if the call indeed
belonged to the detected method signature of the identified
database access. Suppose, for example, that the approach
detected the Smartphone.find({name: /iPhone/})
call in Listing 2 as Mongoose’s Model.find(Object
filter) method. The two authors manually checked
whether Smartphone was indeed a Model object and if
it had overwritten the find method.

We did two tagging rounds. Before labeling the 818 meth-
ods, we had a trial round on a sample set of 150 methods.

12https://jquery.com
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The goal of the trial was to avoid potential misunderstandings
in the process. As a result, we also improved the heuristics.

When reviewing a method call, the two authors tagged
whether it was a false or true positive and added remarks
where needed. It was also possible to assign an ‘Unclear’ tag.
This tag aimed to indicate cases when the code was obfuscated
or when it was impossible to determine the final method call,
for example, due to a POST request. The two taggers worked
independently, i.e., they were not aware of the tags of each
other. After this tagging, we checked for conflicts, and a third
author rechecked the specific cases and discussed them with
the two taggers when needed.

Many cases involved deep structures where it was challeng-
ing to check the code context manually. 15% (120) of the
method calls had conflicts and needed a third reviewer.

At the end of this process, we tagged 179 cases as false
positives, 619 as true positives, and 20 as unclear. Excluding
the unclear cases, the approach achieved a precision of 78%.
The dataset of the oracle is available in the online appendix.8

V. CASE STUDIES

We demonstrate the approach on case studies of two open-
source systems. We ranked the projects in our benchmark
according to database accesses and looked at the top 15
projects. Remind that all the projects had at least 100 stars
on GitHub. Thus, these projects are not “toy projects” but
represent popular JavaScript projects. Here, we analyze two of
the top 15 projects to illustrate the application of our approach.

We organize the database access methods into categories:
select, update, delete, insert, create, and generic. We use the
generic category for methods that do not fall in the categories
above or perform multiple operations.

A. Bitcore

Bitcore13 is an “infrastructure to build Bitcoin and
blockchain-based applications for the next generation of fi-
nancial technology.” The project has 4.2K stars and 2K forks
on GitHub. We selected this repository as an interesting multi-
project infrastructure with a MongoDB database in its core.
Its GitHub repository is composed of six applications and nine
libraries. The developers use tags regularly. Hence we analyze
the tagged releases to get a glance at the evolution of Bitcore.

Fig. 2 shows the database access methods in the different
releases. The absence of releases before v8.1.0 is due to a
massive change in the evolution of the project. Before that
version, the repository held a standalone application and the
other applications were in separate repositories, which they
later joined into multiple sub-projects of this repository.

The most represented database operation is select with 170
distinct method calls. One can also see a major change in the
number of database accesses around v8.16.2. Taking a closer
look at it reveals that a commit14 adds numerous models and
methods interacting with it. It is a new feature, Bitcore “can
now sync ETH and get wallet history for ERC20 tokens.”

13https://github.com/bitpay/bitcore
14https://github.com/bitpay/bitcore/commit/d08ea9
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Fig. 2. Evolution of database accesses in Bitcore

We also analyzed the three applications which were split in
the repository, namely, bitcore-node, bitcore-client, and wallet-
service. The most significant part of the database operations
is performed in the bitcore-node application.

B. Overleaf

Overleaf15 is a well-known “online real-time collaborative
LaTeX editor.” We selected this project as an interesting
candidate to represent a front-end Web application. They do
not use tags or releases, hence, we take one commit per month
to analyze its evolution.
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Fig. 3. Evolution of database accesses in Overleaf

Fig. 3 shows the results of our analysis. The repository was
created in 2007. Still, we can see that the tool did not detect
database access before May 2019. Our manual investigation
revealed that the project’s back-end used CoffeeScript in this
early period.16 CodeQL does not support this language. Thus
its analysis is missing from the history.

This project uses much more update queries than Bitcore.
Indeed, the proportion of updates 34% (108) is around the
same as selects 32% (103). There is also an abrupt change
in database accesses between September and October 2020.
Interestingly, Overleaf was actually migrated from MongoJS
to MongoDB Node Driver.

Overall, the approach worked well to get a picture of
the evolution of the two systems, and we could also spot
interesting major events in their histories.

15https://github.com/overleaf/web (Notice that since our initial dataset, the
project has been migrated to overleaf/overleaf.)

16https://github.com/overleaf/web/commit/82f7e4
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VI. RELATED WORK

Many researchers tackled the challenges of analyzing
JavaScript through static approaches [12]–[15]. Sun et al.
recently presented a summary of such approaches, their
challenges, and recent trends [12]. Interesting to us are the
JSAI [10] and TAJS [11] analysis frameworks. Both are state-
of-the-art tools to analyze JavaScript code. However, CodeQL
had more benefits for our needs. Also interesting to note recent
machine learning models to predict types in JavaScript, i.e.,
NL2Type [19].

There are a few studies in the realm of reverse engineering
of MongoDB applications. In particular, they extract models
from the JSON document database [5], [20]–[22]. Some
approaches also deal with schema generation [6], optimiza-
tion [7], and schema suggestions [8]. Also interesting to us
is the work of Störl et al., who studied schema evolution and
data migration in a NoSQL environment [4]. In this context,
the closest work to us was done by Meurice et al., who
implemented an approach to extract the database schema of
MongoDB applications written in Java. They also applied their
method to analyze the evolution of Java systems.

The approaches above rely on the data instead of the
source code or do not support JavaScript. To the best of our
knowledge, there is no other approach to identify MongoDB
database accesses in JavaScript applications despite their fre-
quent usage and popularity in this development environment.
We analyze JavaScript through a robust analysis framework,
CodeQL, and tackle the challenges of the dynamic language
through multiple heuristics.

VII. CONCLUSION

Extracting database accesses from source code is the first
inevitable step of different approaches that target applications
working with databases, e.g., when supporting code compre-
hension, schema inference, testing, or data migration. Current
approaches for NoSQL systems mostly take the database as
input. However, the source code is often the only available (and
reliable) documentation about the system’s data structures.
We target exactly this source of information in JavaScript
applications where document stores are used frequently. In this
context, the approach is particularly useful in mining software
repositories, where these technologies, namely JavaScript and
MongoDB, are prevalent today.

JavaScript is a highly dynamic language and extremely
difficult to handle with static analysis. We also have a few
limitations to deal with. Currently, we support MongoDB
Node Driver and Mongoose. If the application uses another
library or a web service for the database access, we will miss it.
Our heuristics might also be strict in some cases. For example,
JavaScript does not require checking parameter types, or one
can define a method without importing a MongoDB library,
thus being removed by our import chain heuristic.

Our approach opens the possibility for many potential
future research directions. In particular, we plan to extend the
analysis to the context of the database access. For example,
we would track the parameters’ value and obtain information

about the data structure. The approach could be used to infer
the database schema, visualize database accesses, or analyze
the evolution of schemas co-existing in NoSQL applications.
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