SYN: Ultra-Scale
Software Evolution Comprehension

Gianlorenzo Occhipinti, Csaba Nagy, Roberto Minelli, Michele Lanza
REVEAL @ Software Institute — USI Universita della Svizzera italiana, Lugano, Switzerland

Abstract—The comprehension of very large-scale software
system evolution remains a challenging problem due to the sheer
amount of time-based (i.e., a sequence of changes) data and its
intrinsically complex nature (i.e., heterogeneous changes across
the entire system source code). It is a necessary step for program
comprehension, as systems are not simply created out of thin air
in a bang, but are the sum of many changes over long periods
of time, by various actors and due to various circumstances.

We present SYN, a web-based tool that uses versatile vi-
sualization and data processing techniques to create scalable
depictions of ultra-scale software system evolution. SYN has been
successfully applied on several systems versioned on GitHub,
including the nearly 20-year history of the Linux operating
system, which totals more than one million commits on more
than 100k evolving files.

Webpage of the tool and demo video: https://syn.si.usi.ch

Index Terms—software evolution, visualization, and analytics

I. INTRODUCTION

Systems constantly adapt to changing requirements [1]],
making the comprehension of software evolution an inception
step for program comprehension activities. The approaches fall
into two broad categories: the field of “mining software reposi-
tories” (i.e., MSR) and the field of software visualization. MSR
deals mainly with approaches to mine non-trivial amounts of
information of sometimes complex nature, focusing on ensur-
ing the correctness of the mined data. Software visualization
uses depictions of the entities under study, which can be two-
dimensional (e.g., [2]], [3[]), three-dimensional (e.g., [4]—[6]]
and, more recently, even completely immersive (e.g., [7], [8]).

We present an approach implemented in a tool called SYN,
which is based on interactive 3D software visualization, and
relies, in turn, on a mining infrastructure that we have created
to extract the data needed for our purposes.

II. RELATED WORK

First 3D visualization techniques to support software com-
prehension were proposed in the 1990s [9]], [10]. A popu-
lar metaphor displays systems as cities [4], [5], [[11]-[13].
In 2000, Knight and Munro described Software World, where
the entire system is visualized as the world, with cities
representing source files with classes in districts, and meth-
ods shown as buildings [4]. Panas et al. implemented a
city metaphor considering both static and dynamic informa-
tion about programs [11]. Langelier et al. used a landscape
metaphor to support the quality analysis of large-scale software
systems [12]]. Wettel and Lanza presented CODECITY to
visualize systems in interactive cities with a realistic look,
combining layouts, topologies, and metric mappings [5].

Later, they extended CODECITY to visualize the evolution
of systems [13]. Steinbriickner and Lewerentz considered
software evolution in EVO-STREETS by mapping time to the
height of hills on which classes are placed [[14f]. Their layout,
however, is not fully resistant to changes. Scheibel et al.
proposed a treemap layout algorithm that evolves alongside the
changes [2]. Tua et al. [3|] expanded the work of Scheibel et al.
using Voronoi treemaps. Pfahler et al. took evolution as a first-
class concept in M3TRICITY by implementing an evolution-
resistant layout inspired by the city metaphor [6]. Moreno-
Lumbreras et al. proposed a web-based implementation of
CODECITY that runs both on-screen and in virtual reality (VR)
[8]], [15]. Making a leap forward, Hoff et al. devised a novel
immersive environment to explore systems in VR [7].

III. SYN
A. Approach

Software systems can grow notoriously large and accu-
mulate a wealth of historical information throughout their
evolution. For example, the Linux kerne had over 1.1M
commits, and the core module of LibreOfﬁceE] had over 480K
commits on January 1, 2023.

The challenges of visualizing the evolution of large-scale
software systems revolve around dealing with a massive
amount of evolutionary data [2[], [6]], [12], i.e., mining and
storing the evolutionary information of the system efficiently
and visualizing the collected data to comprehend it.

ProjectHistory N ProjectVersion
1
t T 1
FileHistory FileVersion
1

Fig. 1: Evolutionary Model of SYN

1) Mining: SYN implements an evolutionary model in-
spired by Girba [16] (see Figure[I). In the model, ProjectHis-
tory represents the history of a repository. It holds ProjectVer-
sions and FileHistories. FileHistory represents a file through-
out the evolution of the system, considering its changes,
renamings, etc. A change is described by a FileVersion that
represents a file at a particular point in time (e.g., commit).
A ProjectVersion is created for each commit and is associated
with the related FileVersions.

'https://github.com/torvalds/linux [acc. 2023/09/23]
“https://github.com/LibreOffice/core [acc. 2023/09/23]

This is the author’s version of the work. It is posted for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 2023
IEEE/ACM 31st International Conference on Program Comprehension (ICPC), pp. 69 2023, doi: |10.1109/ICPC58990.2023.00020,

https://doi.org/10.1109/ICPC58990.2023.00020
https://doi.org/10.1109/ICPC58990.2023.00020
https://syn.si.usi.ch
https://github.com/torvalds/linux
https://github.com/LibreOffice/core

SYN Visual Inspector

argouml

Animation 107

TestProject.java

Fig. 2: The Main User Interface of SYN (above) and the Configuration Screens for the Visualization (below)

To build the evolutionary model of a software system, SYN
mines the historical information in the project’s git repository.
It gathers all file actions, namely file additions, deletions,
content modifications, renames, and moves. Notice that git
does not differentiate between rename and move. To provide
a more detailed view of file actions, SYN detects rename as
a move when the file remains in the same directory.

SYN collects metrics during the analysis for all file modi-
fications. It covers any file in the repository, including source
files, textual files, images, and binaries. The metrics include
file size (in bytes, for all files), number of lines, number
of added/deleted lines (for textual files), and number of
non-empty/non-comment source lines (for source files). The
metrics are used in the visualization for various mappings.

2) Visualization: SYN uses a three-dimensional represen-
tation to depict an evolving software system (see Figure3). We
use the third dimension (i.e., height) to depict metric values,
while width and length are constant to ease the layout.

S ENESEESEEEEEEENEEDR
n n
" 0 WULwz se@ n
P : B
sdo@megens ©_=m
u [& ADD MODIFY
Qa 8xnsm 2 =
: =N N
1 I n
™ ™ ™1 DELETE MOVE
L 1 1 n
S W
1 m |
"R B I m RENAME BASE
] n
1 anm FEEEEEREER

Fig. 3: The Visualization Approach of SYN

SYN uses a simple spiral layout to position the 3D artifacts,
similar to the work of Moreno-Lumbreras et al. (]|, [13].

Each artifact represents a FileVersion (i.e., a file at a
particular point in time). The color of the artifact depicts
the “state” of a FileVersion at the visualized point in time,
according to the legend in Figure [3] For example, if the file
has just been added to the repository, it is green. If the file
has been moved within the repository, it turns light blue. If a
file is deleted, the artifact is removed from the visualization.
To exploit and support the users’ spatial memory [[17]], entities
occupy the same position throughout their evolution. Even the
space occupied by an entity that has been deleted will not be
reused (i.e., it leaves a hole in the visualization). The “Base”
color (i.e.,, grey) denotes that a file has not undergone any
change in a user-defined time interval. For example, if we
set the time interval to 6 months, all files that have not been
changed in more than half a year will be grey. Moreover, as
the evolution visualization plays out, any color tends toward
the base color (i.e., aging), e.g., if a file is modified once and
never again, it will be yellow for one version and slowly fade
from yellow to grey as the visualization plays out.

B. User Interface

Figure [2| depicts the web interface of SYN. The visual-
ization (A% takes up the central part of the UL It is fully
interactive, i.e., the user can pan, zoom, rotate, hover and
click on the visual entities to obtain additional information in
a dedicated panel @ The panels on the left provide system-
wide evolutionary information about the currently displayed
version and statistics about the visualization (C). The user
uses the top-left panel to traverse the history by either
letting the evolution “Play” out automatically as an animation
or by stepping into the “Previous” or “Next” snapshot.

Jul 7 2005

Oct 16 2008 Apr 16 2013

Files ‘ ‘
Removed ‘

Number of
Commits

Jan 16 2015

D

Apr 17 2022

Jan 15 2018

Fig. 4: Linux Evolution Snapshots

Before reaching the visualization, the user is guided through
a configuration wizard depicted in the lower part of Figure [2]
One can choose the components to visualize (e.g., binary,
text, JAVA), @ the grouping strategy of versions (e.g., by the
number of commits or days), the mapping of metrics to
shapes and dimensions, @ the color scheme, and @ other
visualization settings (e.g., VR, shadows).

C. Architecture and Implementation

Figure [5] depicts the overall architecture of SYN, composed
of a set of modules as follows.

SYN SYN
Interactive Web Interface Analyzer
i Repository Explorer
e\
SYN SYN History Builder
GraphQL Server Core
[View Generator | [Metrics Extractor |

Fig. 5: The Architecture of SYN

The Interactive Web Interface implements the main Ul as
described before. It is a web application written with React.js
and uses Babylon.js as a real-time 3D engine. The back end
is developed in Java with Spring Boot. Its GraphQL server
provides endpoints to retrieve the data to be visualized. The
Core implements the evolutionary model (ProjectHistory, Pro-
JjectVersion, FileVersion, etc.), and provides means to define
and generate new views.

The mining is implemented in the Analyzer, which acts as a
repository explorer to retrieve data from GitHub, computes the
values of specific metrics, and builds the history model of a
system. A command line interface (CLI) provides commands
to use the Analyzer module and simple operations on the
mined data (e.g., inspect files in projects).

IV. CASE STUDIES
A. Evolution of Linux

Figure [] shows six snapshots of the evolution of the Linux
GitHub repository. We extracted about 110K FileHistories,
almost one million commits, and more than two million
FileVersions. The first snapshot depicts a short period when
many files are being added. This is due to the fact that
the history of the Linux GitHub repository is somewhat
falsified, as Linus Torvalds created a new repository instead of
importing the existing history, as explained in his first commit
messageE] The second snapshot depicts a massive file removal
(i.e., the empty band within the spiral). Development activity
was always high, as indicated by the bright colors in snapshots
3, 4, and 5. Snapshot 6 shows increased activity, but when
looking at the number of commits, we see some regularity
regarding how the commits are being performed. Snapshot 6
highlights how massive the system has become.

3https ://github.com/torvalds/linux/commit/ldal77e4
[acc. 2023/09/23]

https://github.com/torvalds/linux/commit/1da177e4

B. Evolution of JetUML

Figure|§| shows eight snapshots of the evolution of J etUMLE|
a desktop application for fast UML diagramming. The system
has more than seven years of activity and our analysis detected
795 FileHistories and 10K FileVersions.

1 Jan 07 2015, 18:59

Jan 07 2015, 19:14 2
Initial Commit

Initial Revision

‘Aul_n.ut:
@ 299seese

« @ Qense

N

-
>

] .
® samsass
"

s=zmgee

,.
gorgrpege

3 Jan 07 2015, 19:57 Jan 10 2015 4
#1 Move all fields #8 Moved to a dedicated packag
‘a‘iil,l.b.is ‘J‘ii‘_l.bb'&
i Jddw - : i FLLL e :
3. < 3 sans <
N - N -
-1 : S5 Tereect
- =% " -
e > D
Jan 22 2015, 19:57 Oct 16 2015
5 6

#27 Renamed the packages #121 Fixed copyrights

\%\\ . a“‘ . vesrn

jiﬁ“
@ Vesiieses ‘j§ 'R .
a ju- (1 ITY l-‘ f‘.‘ j"“
+ @ Qens o a . 2 ™
- c = . -
- aa - s = =
® ssEsass @ 1. ’ - &
“% e ae® A o
" » .
7,0 8 .
799 "TIIANWWT
7 Nov 26 2017 Jul 22 2020 8
#212 Remove stg from name #374 Fix copyrights

7z
7%

474
\&“\nnn.-\l.l liv..or #IH5
< il V<

NN Neogs5igess sespee LY s Fee (&
I W Ty A N Y we EE
< :iﬁ“ ,,,,,,,,,,,, - * S pap”
N3 Wi e D FE N A N e c =
aN - 3 s
ER L ELELEEE F =) ' e o5
kT e: = Sl ==
- a == - : - =
- - : . - - -
s s> 52 8 n s s - — - ——
3.0 & 252 ST E=
‘ L4 ° - N ’- :l—’ - r Ir L
2% g] EB°.° S
’ ° g4 cnjreeeecee X : g mmsne sae ,\b
L oggpoos " uny aned 1 " W\ TN
27/ NN P A - \\\\ A S
4 e
4 ’ [LA l Ll \’\(
4
Wy 9a°4944 | \“\\\\s’

Fig. 6: JetUML Evolution Snapshots

Figure [6]1 depicts the initial commit with three files:
README.md, LICENSE, and .gitignore. In Figure [6]2
the author committed the initial codebase, composed of 83
files, named Violet (i.e., the original name of the system). In
Figure [6]3 the author refactored 49 files, changing the position
of some fields inside the classes (i.e., modified files are colored
in yellow). In the snapshot depicted in Figure [6]4, the author
moved some classes from the Violet to the Violetta folder
(i.e., moved classes are represented in light blue). Figure [6]5
marks the birth of the JetUML project, as this is the first time
this new name has been used.

4https://www.jetuml.org [acc. 2023/09/23]

Figure [6]6 shows several modified files (i.e., yellow). Our
manual analysis showed that these changes are merely the
result of a massive copyright update. In Figure [6]8, the
author renamed the package cam.cgill.cs.stg.jetuml to
ca.mcgill.cs.jetuml. As a result, we can see 162 light blue
entities (i.e., moved entities). Finally, in the snapshot depicted
in Figure[6]8 a massive refactoring took place. Once again, this
has to do with a change in the copyright of every class. In this
snapshot, one can also notice many blank spaces in the middle
of the visualization. This means that some earlier entities have
been removed and are no longer part of the system.

C. Visualization vs. Animation

It should be noted that SYN, while offering many ways
to interact with the visualization, is also used as a tool
for software animation, where the viewer leans back and
observes the system evolve, sees artifacts grow and shrink, and
disappear. A viewer can pause the animation at any moment
in time, and dive down into the visualization, also being able
to access specific revisions on GitHub directly.

V. CONCLUSION

We presented SYN, a web-based tool to support soft-
ware evolution comprehension through interactive three-
dimensional depictions. SYN is geared towards scalability
and can process even ultra-large-scale repositories like those
hosting Linux. One aspect which is difficult to convey in a
written paper is that SYN maps time on time, becoming thus
a de facto interactive software animation tool.

We illustrated through two example systems how SYN
helps the viewer to understand complex evolutionary pro-
cesses, which can be fine-grained (as in the JetUML example)
and small-scale, but also very coarse-grained (as in the Linux
example) and ultra-scale.

SYN does not come without limitations: Processing a
huge repository can take many hours, and is usually handled
offline with the SYN mining infrastructure. Interacting with
a visualization within a browser depicting tens of thousands
of artifacts sooner than later leads to latency issues outside
our control. To overcome this limitation, the present version
of SYN visualizes ultra-scale repositories (e.g., Linux) offline
using ray tracing [[18]]. While we are confident that hardware
advances will keep pushing the boundaries of SYN’s online
usability, these limits are there to stay for a while.

Future work will be dedicated towards virtual reality and
collaborative visualization & comprehension.

TooL AVAILABILITY

2 A live demo, a video demonstration, source code, and
detailed instructions on how to run SYN through Docker are
available at |https://syn.si.usi.ch.

ACKNOWLEDGEMENTS

We gratefully acknowledge the support of the Swiss Na-
tional Science Foundation (SNSF) and the Fonds de la
Recherche Scientifique (F.R.S.-FNRS) for the joint Lead
Agency project “INSTINCT” (SNF Project No. 190113).

https://www.jetuml.org
https://syn.si.usi.ch

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

REFERENCES

M. M. Lehman, “Laws of software evolution revisited,” in European
Workshop on Software Process Technology. Springer, 1996, pp. 108—
124.

W. Scheibel, C. Weyand, and J. Déllner, “Evocells - a treemap layout al-
gorithm for evolving tree data,” in Proceedings of the 13th International
Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications - IVAPP, INSTICC. SciTePress, 2018, pp.
273-280.

D. P. Tua, R. Minelli, and M. Lanza, “Voronoi evolving treemaps,”
in Proceedings of the 9th IEEE Working Conference on Software
Visualization (VISSOFT 2021), 2021, pp. 1-5.

C. Knight and M. Munro, “Virtual but visible software,” in Proceedings
of the 17th International Conference on Information Visualization.
IEEE, 2000, pp. 198-205.

R. Wettel and M. Lanza, “Visualizing software systems as cities,” in
Proceedings 4th International Workshop on Visualizing Software for
Understanding and Analysis. 1EEE Computer Society, 2007, pp. 92-99.
F. Pfahler, R. Minelli, C. Nagy, and M. Lanza, “Visualizing evolving
software cities,” in Proceedings of the 8th Working Conference on
Software Visualization (VISSOFT 2020). IEEE CS Press, 2020, pp.
22-26.

A. Hoff, L. Gerling, and C. Seidl, “Utilizing software architecture
recovery to explore large-scale software systems in virtual reality,”
in Proceedings of the 10th IEEE Working Conference on Software
Visualization (VISSOFT 2022), 2022, pp. 119-130.

D. Moreno-Lumbreras, R. Minelli, A. Villaverde, J. M. Gonzilez-
Barahona, and M. Lanza, “CodeCity: On-screen or in virtual reality?”
in Proceedings of the 9th IEEE Working Conference on Software
Visualization (VISSOFT 2021). IEEE, 2021, pp. 12-22.

S. P. Reiss, “An engine for the 3D visualization of program information,”
Journal of Visual Languages & Computing, vol. 6, no. 3, pp. 299-323,
1995.

P. Young and M. Munro, “Visualizing software in virtual reality,” in Pro-
ceedings of the 6th International Workshop on Program Comprehension
(IWPC 1998). 1EEE Computer Society, 1998, pp. 19-26.

T. Panas, R. Berrigan, and J. Grundy, “A 3D metaphor for software
production visualization,” in Proceedings of the 7th International Con-
ference on Information Visualization. 1EEE Computer Society, 2003,
pp. 314-319.

G. Langelier, H. Sahraoui, and P. Poulin, “Visualization-based analysis
of quality for large-scale software systems,” in Proceedings of the 20th
International Conference on Automated Software Engineering. ACM,
2005, pp. 214-223.

R. Wettel, “Visual exploration of large-scale evolving software,” in Pro-
ceedings of the 31st International Conference on Software Engineering
(ICSE 2009). 1EEE, 2009, pp. 391-394.

F. Steinbriickner and C. Lewerentz, “Representing development history
in software cities,” in Proceedings of the ACM 2010 Symposium on
Software Visualization. ACM, 2010, pp. 193-202.

D. Moreno-Lumbreras, R. Minelli, A. Villaverde, J. M. Gonzalez-
Barahona, and M. Lanza, “CodeCity: A comparison of on-screen and
virtual reality,” Information and Software Technology, vol. 153, p.
107064, 2023.

T. Girba, “Modeling history to understand software evolution,” Ph.D.
dissertation, University of Bern, 2005.

A. L. Shelton and T. P. McNamara, “Systems of spatial reference in
human memory,” Cognitive psychology, vol. 43, no. 4, pp. 274-310,
2001.

A. S. Glassner, An introduction to ray tracing. Morgan Kaufmann,
1989.

	I Introduction
	II Related Work
	III SYN
	III-A Approach
	III-B User Interface
	III-C Architecture and Implementation

	IV Case Studies
	IV-A Evolution of Linux
	IV-B Evolution of JetUML
	IV-C Visualization vs. Animation

	V Conclusion
	References

