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ABSTRACT

There has been some recent clamor about the developer layoff
and turnover policies enacted by high-profile corporate executives.
Precisely defining the contributions in software development has
always been a thorny issue, as it is difficult to establish a developer’s
“performance” without recurring to guesswork, due to how software
development works and how Git persists history.

Taking inspiration from a seemingly informal notion, the pony
factor, we present an approach to identify the key developers in a
software project. We present an analysis of 1,011 GitHub reposito-
ries, providing fact-based reflections on development contributions.

CCS CONCEPTS

« Software and its engineering — Collaboration in software
development; - Human-centered computing — Collaborative
and social computing.
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1 INTRODUCTION

Since the takeover of Twitter by Elon Musk, the company has seen
a considerable reduction in its developer workforce. Nonetheless,
the system seems resilient to such a drain, which raises the ques-
tion, “who are the key developers?”, leading to others: Who are the
unlucky disposable ones? Are they disposable because they did not
contribute enough? What is a developer’s contribution anyway?
How does removing a bug compare to adding proper documenta-
tion? All such questions boil down to how someone, billionaire or
not, can confidently pronounce, “You're fired!”.
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Productivity, contribution, and code ownership are related con-
cepts relevant both in an industrial setting and for open source
communities [26]. They tie into a system’s dependence on certain
developers [6, 8, 20, 24]. This led to the question, “If Guido was hit
by a bus?”,! posed in 1994 in the Python mailing list, due to the
project’s dependency on Guido van Rossum: What destiny would
the Python project have if he simply “walked away”?

While we recognize the importance and relatedness of code
ownership and productivity, we focus solely on the concept of
contribution: We present a large-scale study performed on 1,011
GitHub projects, leveraging the seemingly simple metric called the
“Pony Factor” (PF) to identify the key contributors in software
projects. PF enumerates the smallest possible set of developers,
called ponies, who contributed more than 50% of the total commits.

The Pony Factor. First defined by Gruno and taken up by Nal-
ley,® the “PF shows the diversity of a project in terms of the division
of labor among committers [...]. The higher the PF, the more resilient
the project is towards contributors leaving or taking a vacation”.

The PF is given by:

PF = min(n|n € {1,...,N}and X7, C; 2 Kx V)
where PF is the pony factor, N is the number of developers, C; is the
number of commits for the i-th developer (with developers sorted
in decreasing order of number of commits), K is the percentage to
cover (typically K = 50%), and V is the total number of commits.

Our investigation led to several reflections and insights. We will
show how small modifications in the metrics can significantly affect
the key developers identified by the pony factor. The objective is
to show that, even if refined, it is unreliable to define a developer’s
performance with simple metrics, if not properly contextualized.

2 RELATED WORK

Defining a reliable contribution metric is not straightforward [18,
23], and there is no consensus on how it should be done [19].

Trucks, Buses, and Heroes. Ricca and Marchetto studied 20
randomly selected open-source projects [28], computing the truck
factor, i.e., “the number of people on your team that have to be
hit with a truck/bus before the project is in serious trouble” [36].
They found that hero developers (i.e., developers that exclusively
manage/own a number of files > a% of the total) were common
in the considered projects and that the truck factor was generally
low. Avelino et al. proposed a heuristic-based approach to estimate
a system’s truck factor [3], confirming a low truck factor for 65%
of 133 popular projects on GitHub.

!See https://tinyurl.com/if-guido [acc. September 23, 2023]
2See https:/tinyurl.com/px32w868 [acc. September 23, 2023]
3See https:/tinyurl.com/24b9n6bw [acc. September 23, 2023]
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Cosentino et al. computed the bus factor on files, directories,
and branches for Git-based development [7] to perform a risk as-
sessment. Jabrayilzade et al. [17] proposed a multimodal bus factor
algorithm, integrating history in the version control system, code
reviews, and meetings meta-data.

The truck factor itself has seen several slightly different defi-
nitions [10, 11, 15, 29]. It has been used in various contexts, such
as identifying experts [2, 35] and quantifying knowledge loss that
would be incurred if they left the project [16, 30]. Agrawal et al. [1]
identified “hero projects” in which less than 20% of developers pro-
duce more than 80% of the code. They analyzed the impact of hero
developers on a project as an alternative to the bus factor.

Code Ownership. Studies on code ownership practices have of-
ten led to contrasting results. For example, Kurapati et al. surveyed
109 practitioners through LinkedIn, Yahoo, and Google Groups.
50% of respondents used collective code ownership [22]. Similarly,
Rauf et al. found that 43% of developers from 45 Pakistani software
companies used collective code ownership [27]. On the contrary,
Rodriguez et al. found that collective code ownership was the least-
used agile practice among 408 surveyed Finnish software practi-
tioners from 200 organizations [31]. In large projects, files are often
owned by multiple developers. Sindhgatta et al. studied the evolu-
tion of an enterprise system developed following agile practices.
They found that 60% of the files had more than one owner [32].

Attributing ownership is relevant not only for project resilience
but also for software quality. Bird et al. examined the relationship
between ownership and software quality in Windows Vista and
Windows 7 [5]. They defined the proportion of ownership of a
contributor for a component as the ratio of the number of commits
by a contributor relative to the total number of commits for that
component. They considered major contributors who had at least
5% ownership. Greiler et al. replicated Bird et al’s study on four
Microsoft systems at a smaller granularity level: Files instead of
components [14], confirming that code ownership correlates with
code quality. Foucault et al. explored the relationship between own-
ership metrics and fault-proneness in open-source projects [12].
They did not find a correlation between ownership and module
fault metrics, due to the distribution of contributions among devel-
opers and the presence of “heroes”. For most projects, they found a
single “hero” performing most of the commits.

Most works (except [1]) focus on a limited number of systems
(e.g., [7, 17, 28]) and various evolving definitions of the bus factor.
Our main contribution is a large-scale study on GitHub repositories
leveraging the pony factor to derive data-driven insights.

3 DATASET CREATION

Figure 1 provides an overview of our dataset creation process. We
used SEART-GHS [9], with the filtering criteria shown in Figure 1,
to create an initial dataset of 2,053 GitHub repositories, with almost
a million developers who produced a billion lines of code.

3.1 Data Cleaning

The extraction process is hampered by data quality problems, which
calls for the following data cleaning steps.

Small project removal. We excluded projects with less than
10K lines of code in their latest revision.
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Figure 1: Dataset Creation and Analysis Process.

First commit. Not all projects started their development on
GitHub. Some projects can have a large initial commit hiding ear-
lier development history and distorting the pony factor calculation.
Thus, we filter projects whose initial history is not in Git, by ex-
cluding repositories with a first commit over 10K lines of code in
source files (i.e., excluding non-source files such as READMEs).

Submodule removal. Git supports submodules (i.e., a repository
as a subdirectory of another repository). Discriminating between a
project split into submodules and a third-party library added as a
submodule is out of the scope of the present work. Therefore, we
exclude projects with submodules in their development history.

Bot removal. Bots are popular in GitHub repositories [13, 33]
and can generate noise in our analysis. We implemented an ap-
proach to detect bots by searching for recurring patterns in the
contributors’ usernames (e.g., ‘GitHub Action’, ‘name[bot]’), includ-
ing a recent bot list identified by Golzadeh et al. [13], and then
remove their commits from the project.

Contributor aliasing. Who are the developers? Git tracks com-
mit authors by their names and email addresses, which are then
matched with users on GitHub. The same person can use multiple
names, email addresses, or even GitHub accounts.

This calls for the need to aliasing the contributors. Various ap-
proaches exist in the literature [4, 25, 34]. We implement a strategy
with: (i) contributors’ names Levenshtein similarity greater than 0.9
or (ii) emails’ usernames Jaro-Winkler similarity greater than 0.9
with a prefix weight of 0.1 and name Levenshtein similarity greater
than 0.7. Figure 2 shows contributors before and after aliasing.

Pre-aliasing{ H| | fmmmmmocow @n 00 oo w0 w oo o
Post-aliasing 1 @—_mmm camoo o 0000

0 500 1,000 1,500 2,000 2,500 3,000 3,500
Contributors

Figure 2: Contributors Pre- and Post-Bot-Alias Removal.

A significant amount of aliases would have negatively impacted
the relevance of identified ponies. The combined effect of bot exclu-
sion and aliasing leads to a considerable reduction in contributors
in the range of 2.2%-44.9% for the single repository (mean: 13.2%,
std: 6.8%). For example, the gcc-mirror/gcc repository dropped from
3,652 to 2,082 contributors, with a 43.0% reduction.
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3.2 Final Dataset

The final dataset consists of 1,011 repositories with 332K contribu-
tors, who changed a total of 4.5 billion lines, leading to a total count
of 343 million lines of code in the repositories at mining time. The
dataset is available in the replication package.*

4 FINDING THE PONIES

Figure 3 shows how PF is distributed across our dataset. To make
the figure more clear, we do not display observations beyond the
99-th percentile in at least one of the four distributions (28 outliers).
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Figure 3: Ponies On Commits, On Lines, On Lines Last Year
(Augmented Pony Factor), and With Memory Decay.

The top-left side shows the PF calculated following the original
definition based on the number of commits. We calculated PF based
on the changed lines within the commits in the top-right subplot.
In the bottom-left, we narrowed it down to the commits only in the
last year (before the last known commit), and in the bottom-right,
we calculated the PF according to the memory decay on the lines.

4.1 Pony Factor On Commits

As the top-left chart in Figure 3 shows, most projects have a low
number of ponies considering the original commit-based definition:
99.3% have less than 25 ponies (med: 2, mean: 3.42, std: 5.22). Projects
in the dataset had contributors ranging from 101 to 2,500 (med: 230,
mean: 328.73, std: 301.00). Looking at the normalized numbers (i.e.,
the ponies over the total number of contributors), on average, 1.24%
of the contributors are ponies (std: 1.22).

4.2 Pony Factor On Lines

An important limitation of measuring the pony factor based on
commits is that it does not consider the magnitude of the contri-
bution in the commits. We address this limitation by analyzing
the changed lines in each commit and refining the granularity of
PF to line changes so that in the PF equation V becomes the total
number of changed lines and C; the number of changed lines for
the i-th developer. Since lines cannot be interpreted in binary files,
we narrow the scope to non-binary files.

Figure 3 (top-right) shows how the distribution of ponies gets
progressively steeper towards lower values (i.e., fewer ponies) when
counting contributed lines. 99.5% of the projects have less than 12
ponies. The average ratio of ponies drops significantly to 2.23% of
the contributors (std: 1.86). The prebid/prebid.js project has 450K
lines of code, including several small adapters added by separate
developers, resulting in many ponies (82) at commit level. We iden-
tified 10 ponies at line granularity. They are the key developers
who oversee the larger codebase.

4https://doi.org/10.6084/m9.figshare.23989335
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Figure 4: Contribution Distribution.

Figure 4 shows a bar chart of contributors based on their changed
lines of code, normalized according to the top developer’s contribu-
tion, and distributed in ten bins. For example, the first bin includes
developers who committed between 0-10% of the top developer’s
contribution, and so on. The numbers are the mean values among
all projects. Most of the contributors (~98%) are in the first bin
for an average project. Their contributions amount to less than a
fifth of the total changed lines. The top developers’ bin is two and
a half times higher but achieved only by 1% of the authors. Very
few developers are often responsible for the vast majority of the
contribution, corroborating the concept of hero developers.

4.3 Augmented Pony Factor

Gruno and Nalley modified the PF formula to take into account
only active developers: The Augmented Pony Factor (APF). As there
is no operational definition to discern “active” developers, we assess
this formula with active developers who had at least one commit
in the last year (preceding the last commit in the analyzed project).
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Figure 5: Augmented Pony Factor.

Figure 5 shows the deltas of the APF formula on the PF after
outliers exclusion (as done for Figure 3). For the lines, the number
of ponies drops with a mean of -0.63 (med: 0.0, std: 1.61), while
for commits, the effects show more spread with a minimum of -71
and a maximum of 26 new ponies (mean: -0.90, med: 0.0, std: 4.08).
Narrowing the dataset to the last year of activity shows a median
reduction of the total contribution to 4.69% (mean: 9.53, std: 1.28)
for code lines. This implies that the calculation of the APF takes
into account less than 5% of the total contributions. The recent
activity has presumably decreased for these projects.

4.4 Memory Decay

Another limitation of the original PF definition is that it counts
all contributors, regardless of whether they are still active in the
project. Following the approach of Kriiger et al. [21], we leverage the
Ebbinghaus forgetting formula: R = e s, where R is the retention
rate, the recall rate of a given event, ¢ is the time elapsed in days
since the event, and s is the memory strength.


https://doi.org/10.6084/m9.figshare.23989335

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

We implemented a pony factor version that considers only the
changed lines that developers did not yet forget. So, the recalled
contribution for the single developer is: Cy,,q = X\I_; LOC; X R(%;).
Where n is the total number of contributions, LOC; is the number
of the lines of code of the i-th contribution, and R is the retention
rate, which depends on the time of contribution ¢;.

Figure 3 (bottom-right) shows how ponies are distributed with
this restriction. The number of ponies drops for most projects: 99.3%
have less than 7 ponies. There are also projects that increase their PF
with memory decay. In Figure 6, we compare PF with and without
memory decay and sort projects according to their change in the
number of ponies. 119 (11.8%) projects have more ponies, showing
potentially increased activity and distribution of key developers.
443 (43.8%) remain stable with the same number of ponies. The
number of ponies decreases for 449 (44.4%) projects. Memory decay
weighs more recent history than overall contribution, significantly
changing who is identified as a relevant contributor.

e

PF Memory Decay - PF

0 200 400 . 600 800 1 ,060
Project

Figure 6: Pony Factor With and Without Memory Decay.

The PF drops to 3 in the prebid/prebid.js project showing two
key developers who started contributing intensively. The ponies
changed 34K lines (20K, 12K, and 2K, respectively) within the mem-
ory decay time window. Focusing on recency is risky in long-lived
large projects: Is someone a pony if they contributed 1,000 lines to a
million-line project within the last year? Hardly so. Also, there is no
clear way of establishing that someone is still active. The heuristic
“performed at least a commit within the last year” is rough and
intrinsically unreliable.

4.5 Developer Profiling

Another factor that must be considered is that despite obtaining a
finer-grained, line-based definition of the pony factor, there is no
distinction between the type of contribution developers make. For
example, a line of code in Java is treated the same as a line of code
in C++ or Markdown. We developed a custom visualization, named
contribution heat map, depicted in Figure 7.

The figure shows the contribution of the apache/drill project.
The upper part shows a contributor for each line, and for each
column, the file types in the repository are sorted from most to
least changed. In the specific project, the most changed files are
java files, followed by grouping files without extension and .json
files. Each tile in the heat map is colored (from light blue to dark
blue) according to the total contributions of a person concerning
the file type. The contributors are sorted according to their line-
based contributions. Because the predominance of certain file types
obscures less “popular” file types, the bottom half of the figure
shows the heat map again, but with the coloring relative to each
file type. The horizontal red line divides ponies from non-ponies.
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Figure 7: Contribution Heat Map of the apache/drill Project.

We see, for example, that while the top contributor is a .java pony,
there is someone (Laurent Goujon) who globally is not detected
as a pony, but when it comes to .cpp and .hpp, he is undoubtedly
a key developer. The contributor heat map helps to inspect what
would be obscured if one only looks at the big picture.

4.6 Data quality

The analyses conducted are strongly influenced by the quality of the
data stemming from Git. Some projects such as kodecocodes/swift-
algorithm-club are not real systems and it is impossible to identify
them systematically. Still others, such as elastic/ansible-elasticsearch,
although they have seen activity over the past year, this only
amounts to 400 lines of code and explicitly states “This project
is no longer maintained” in their README.

From Git’s history, it is not possible to derive pair programming
activities and, in any case, it would then be non-trivial to assign a
consistent contribution value to each developer.

The Git algorithm to identify changed lines ignores the quality
of the change made. For example, a single modification, such as re-
formatting, will consist of as many modified lines as those in which
the reformatting is substantiated, overestimating the contribution.

5 CONCLUSIONS

We presented an early-stage approach to identify potential key de-
velopers in projects, leveraging the “pony factor” metric. Although
variations of the original definition based on commits lead to quite
different results, these are promising. Our approach suffers from a
number of known problems: Aliasing can only be tackled partially,
and Git and GitHub generally suffer from data loss problems (e.g.,
commit squashing) which are difficult to address. Moreover, many
existing approaches do not distinguish between the types of con-
tribution. As the contribution heat map has shown, some crucial
developers provide their contributions only in specific locations of
the system. If one does not make a distinction, there is a substantial
risk of underestimating those contributors’ importance. Bots and
cross-cutting commits without coding semantics also exacerbate
the data quality problem. The ultimate issue, and part of our future
work, is that there is no ground truth. The ponies that we detect are
only potentially actual key developers. There is no way of saying
whether they are still around or relevant, and given the many data
quality problems, any detection of the ponies comes with a huge
grain of salt. Essentially, anyone, even random billionaires, might
say “You’re Fired!”, but doing so confidently is rather pretentious.
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