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Abstract—MongoDB is one of the most popular NoSQL
database engines. To foster scalability, it provides multiple
features such as schema-less data storage or sharding. However,
those new features introduce additional considerations for the
maintainer to be careful, which might lead to erroneous imple-
mentation choices often referred to as code smells or antipatterns.
Detecting and fixing those code smells can play a crucial role for
developers in their maintenance efforts.

We present SMEAGOL (SMEIl and Antipattern detection
for monGOdb appLications), a static analysis tool to detect
MongoDB code smells in JavaScript applications. SMEAGOL
relies on CodeQL and detects code smells by analyzing and
extracting all the necessary information (e.g., data structure)
from the database access code of the application. We demonstrate
it by examining the evolution of MongoDB code smells in five
popular open-source projects, showing promising results.

Video link: https://youtu.be/h4Xbp9dIFt0
Repository link: https://github.com/bocherry/SMEAGOL_tool

Index Terms—Code smells, Static analysis, MongoDB,

JavaScript

I. INTRODUCTION

NoSQL (“Not Only SQL”) datastores have gained popular-
ity as data persistence solutions for database applications, with
MongoDB being the most popular one, according to the DB-
engines ranking MongoDB stores JSON-like documents in
collections and offers appealing features such as built-in aggre-
gation pipelines, sharding for data distribution, or schema-less
modeling for increased flexibility. Nevertheless, these features
come with considerations that require careful attention when
maintaining MongoDB code, to avoid erroneous design or
unoptimized queries [1].

Researchers studied various approaches to assist MongoDB
developers, such as supporting normalization [2[], query opti-
mization [/1]], or security issues [3], [4]] like the critical NoSQL
injection [5]], [6]]. Many problems stem from maintainability
or quality issues, often originating from poor design or im-
plementation choices. Code smells, or antipatterns, are well-
known indicators of such problems [7]], [8]], and they are also
well-studied in the context of database applications. Previous
work considered data smells [9], DB schema smells [10],
ORM (Object-Relational Mapping) smells [[11], and SQL
antipatterns or smells [12]-[15].
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MongoDB has published a blog series on Schema Design
Anti-Patterns [[16]. There are also books on “best practices”
with suggestions on code constructs to be avoided [17]—[19].

However, practitioners lack tool support to detect such
issues, and to the best of our knowledge, there is no tool
detecting MongoDB smells in the applications’ source code.

We aim to fill this gap with SMEAGOL (SMEII and Antipat-
tern detection for monGOdb appLications), a rule-based static
analysis tool to detect code smells in MongoDB. SMEAGOL
supports JavaScript, the most popular programming language
used with MongoDB [20]. It is built on CodeQL a multi-
language static analyzer with sound dataflow analysis in
JavaScript. We support the two most popular libraries using
MongoDB on npnﬂ MongoDB NodelS native drivelﬂ and
MongooseE] a MongoDB-ODM (Object Document Mapper).

For the code smell definition, we rely on Mahajan et al.’s
work [1]], MongoDB’s official blog series [16] and books
on MongoDB best practices [17]-[19]. We implemented 8
smells that can be detected from the source code of JavaScript
applications. For each, we designed detection rules and im-
plemented them as CodeQL queries. We also extracted data
structure information from the queries to refine our detection.

We demonstrate SMEAGOL by analyzing five popular
open-source projects in which we found 1,623 smell instances.

II. EXAMPLE

_id: 1,
surname: "Lewis",

birthPlace: "Bloemfontein",
nationality: "British"

Fig. 1. Author collection example

Zhttps://codeg].github.com/
3https://www.npmjs.com/search?ranking=popularity&q=Mongodb
4https://www.npmjs.com/package/mongodb
Shttps://www.npmjs.com/package/mongoose
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1 const { MongoClient } = require ("mongodb");
2 const uri = "mongodb://localhost:27017";

3 const client = new MongoClient (uri);

4 async function run() {

5 try {

6 await client.connect ();

7 const db = client.db("main");

8 let britishAuthor = await db

9 .collection("writers™")

10 .findOne ({ nationality: "British" });
11 console.log (britishAuthor.surname);

12 } ecatch (err) {

13 console.log(err);

14 } finally {

15 await client.close();

16 }

17 3
18 run() .catch(console.dir);

Listing 1. Database access code example with antipattern

/* same as line 1-7 x/
let britishAuthor = await db
.collection("writers")
.findOne ({ nationality: "British" }{ surname: 1 });
console.log (britishAuthor.surname) ;
/* same as line 11-18 */

——
N = OO e

Listing 2. Database access code example fixed

MongoDB stores BSON (Binary JSON) documents in col-
lections. A document has field-value pairs holding relevant
information for a given object.

Fig. [T] shows an example collection of documents represent-
ing fantasy authors, each with 4 attributes: surname, given-
Names, birthplace and nationality. Listing [T| shows JavaScript
code with a query to find a document in this collection.

First, the program imports and initializes a MongoClient
from the MongoDB Native driver (Line 1-3). Then, it connects
to the database (Line 7), performs a query to retrieve a single
document based on its nationality attribute (Line 8-10) in order
to print its surname property (Line 11), and closes the database
connection (Line 15).

There is an antipattern in this code snippet: The application
code queries more data than it uses. As suggested by the
Practical MongoDB book [17], this unnecessarily clutters the
retrieved document. We can use MongoDB projectionsﬁ to fix
it and specify the fields to return from a fetched document.

To introduce a projection in a find query, one must add an
object with the field to retrieve followed by a 1, as in Listing[2]

III. SMEAGOL

Fig. 2] describes SMEAGOL’s workflow. First, SMEAGOL
needs to analyze the project to create its CodeQL database.
Then, it runs the defined queries against the project to check
for potential smell instances. Finally, it outputs the locations
of the smell instances into various formats (SARIF, CSV, etc.).

To explain the process, we introduce the necessary concepts
of the CodeQL analysis, we explain how we detect smells in
MongoDB queries using CodeQL, and finally, we present the
list of smells supported by SMEAGOL.

Shttps://www.mongodb.com/docs/manual/tutorial/project-fields-from-
query-results/
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Fig. 2. SMEAGOL workflow

1 from CallExpr ce
2 where ce.getCalleeName() = "findOne"
select ce, "This is a call to a findOne function"

w

Listing 3. CodeQL query example

1) CodeQL Analysis: We use CodeQI_E as our static anal-
ysis framework. It supports multiple languages, including
JavaScript, our target language. CodeQL stores the analysis
results of a project in a relational database where each table
corresponds to an AST (Abstract Syntax Tree) element along-
side analysis data. This database can then be queried in QL,
a declarative, object-oriented query language with SQL-like
syntax. CodeQL also implements analysis techniques, such as
dataflow or taint analyses.

Listing [3] shows a simple yet powerful CodeQL query to
find every call to a function findOne.

First, the from clause specifies the AST element to query,
in this case a function call. Then, the where clause defines the
constraint to apply to the element. The query checks whether
the name of the function being called is findOne. Finally, the
select clause specifies the output element alongside an alert
message.

Being object-oriented, CodeQL supports class “inheri-
tance”, which is actually a logical reuse system facilitating
the grouping of similar elements and leveraging the imple-
mentation complexity.

2) Analyzing MongoDB Queries in CodeQL: As a motivat-
ing example, let us assume we have two functions foo and bar
performing document insert in the database, where the inserted
document lies in the first and second arguments, respectively.
If we were to implement it in a single CodeQL query, we
would have to handle this variability in the where clause,
which can get confusing, as showcased by Listing 4]

—

from CallExpr insertQuery, ObjectExpr insertedDocument

2 where

3 (insertQuery.getCalleeName () = "foo" and insertQuery
.getArgument (0) = insertedDocument) or

4 (insertQuery.getCalleeName () = "bar" and insertQuery
.getArgument (1) = insertedDocument)

5 select insertedDocument, "An inserted document"

Listing 4. CodeQL query variability example
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abstract class InsertQueryCall extends CallExpr {
abstract ObjectExpr getInsertedDocument () {} }

class FooCall extends InsertQueryCall {
FooCall() { this.getCalleeName() = "foo" }
override ObjectExpr getInsertedDocument () {
result = this.getArgument (0) } }

N=J-CREN e NV R R S

class BarCall extends InsertQueryCall ({

10 BarCall() { this.getCalleeName() = "bar" }
11 override ObjectExpr getInsertedDocument () {
12 result = this.getArgument (1) } }

Listing 5. CodeQL class example

Listing [5] shows an example implementation to handle this
issue. First, we define an abstract class (Lines 1-2) to group
the two related Objects. The extends keyword indicates an
inheritance from the CallExpr type, allowing it to reuse its
values and predicates. It also introduces an abstract predicate,
getInsertedDocument, which we override in subsequent
classes to obtain the document. Then, we define two classes:
FooCall and BarCall (Lines 4-7 and 9-12). The characteristic
predicate (Lines 5 and 10) defines the constraints related to
their class, here, function callee names “foo” or “bar”’. Now
that the domain is restrained, we can override the predicate
based on the function and obtain the inserted document from
the relevant argument position (Lines 7 and 12).

To retrieve all the inserted documents in a given project,
we need to query the abstract class, as highlighted by List-
ing [6] Note that the query has gained clarity and has higher
abstraction than the one from Listing

I from InsertQueryCall iqgc

2 select igc.getInsertedDocument (), "An inserted document"

Listing 6. CodeQL class usage example

This feature helps handle our task variability. Indeed, we
need to extract various information sources, such as index
declarations, collection names or attributes associated with
a query, coming from different method calls or Mongoose
schema declarations. As such, we could abstract it and simplify
the queries while handling the fluctuations in the background.

Another feature we extensively use is dataflow analysis, as
we do not assume that developers explicitly define the inserted
document(s) in the query (e.g., as object expressions). Hence,
we track the documents’ accesses occurring before their in-
sertion to gather information on the collections’ attributes.

3) MongoDB Code Smells: To establish the list of smells
to detect, we used several sources we already knew prior to
the study, including Mahajan et al.’s work on NoSQL energy
efficiency [1f], three books [17]-[19] and a blog series of
MongoDB developers [21[]-[24]].

We defined the following 8 smells from the sources: Case-
insensitive queries without matching index (S1), Index inter-
section rather than compound index (S2), Querying too much
data (§3), Negation in queries (S4), Uncovered queries (S5),
Sorted monkeys (S6), Multiple schemas in a file (S7) and Using
a document only for ID field (S8).

In summary, three smells concern index misusage (S1, S2
and S5), three describe incorrect use of a query (S3, S4 and
$6), and two indicate modeling issues (S7, S8), with §7 being
Mongoose-specific.

Due to limited space, we describe the smells in detail in the
companion repository

To detect the smells, we followed a cycle of defining the
global detection rule associated with a smell, then implement-
ing this detection in subsequent CodeQL queries and evalu-
ating it against the global detection rule. The implementation
contains 1356 lines of code and defines 58 classes.

All the detection rules and their implementations are avail-
able in the companion repositoryﬂ

IV. CASE STUDIES

We demonstrate SMEAGOL with case studies on five
open-source JavaScript projects chosen with over 1k stars on
GitHub, that use either MongoDB Native Driver or Mongoose.
We ran our tool against the latest commit of the default branch.
We used one monthly commit as an evolution proxy and ran
SMEAGOL against each version.

Table [I] presents an overview of the results. We manu-
ally reviewed a representative sample (n = 98) to assess
SMEAGOL’s accuracy, looking for potential false positives.
The analysis confirmed that 73% of the detected instances
were true positives after excluding two ambiguous cases The
number in parentheses is TPT+7PFP'

During this inspection, we found that HabitRPG/habitica
did not declare its indexes in the codebase. Instead, the
developers document the indexes in a markdown ﬁleﬂ making
the index declaration process invisible for SMEAGOL and,
thus, triggering false positive warnings. Such an approach is
risky in maintaining the indexes as the developers must keep
this documentation up-to-date.

SMEAGOL detected at least one smell in each project, and
the Querying too much data (S3) and Uncovered queries (S5)
smells appeared in all projects.

While we could not detect Index intersection rather than
compound index (S2) smells, our manual inspection re-
vealed an instanceﬂ Indeed, while the query uses three
different indexed attributes (userId, challenge.id and
challenge.taskId), this has no positive impact on this
query as they would need to be declared in the same index.

No instances of Case-insensitive queries without matching
index (S1) and Index intersection rather than compound index
(S2) could be found.

Using a document only for ID field (S8), Multiple schemas
in a file (S7) and Sorted monkeys (S6) were found 2, 7 and
1 times, respectively. In the case of S8, one was a false
positive as the project used Object.assign () to copy
a document’s fields, and SMEAGOL does not support its
detection. For the other oneﬂ we could confirm that the
inserted document only had one field, its _id.

7See companion repository link in the abstract.

8Two queries used projection with fields coming from a function’s
argument. We excluded them as it was impossible to tell from the code
whether they included too many fields.

9https://github.com/HabitRPG/habitica/blob/develop/migrations/docs/
mongo-indexes.md.
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Fig. 3. Code smells evolution over time
TABLE 1
PROJECTS RESULTS
Project Stars LOC S1 S2 S3 S4 S5 S6 S7 S8
Countly/countly-server 5,289 290,290 0 0 217 (4/9) 29 (5/5) 490 (10/10) 1(1/1) O 1(1/1)
HabitRPG/habitica 10,708 116,261 0 0 355(8/10)  72(7/7) 241 (4/10) 0 2(2/2)  1(0/1)
nodemailer/wildduck 1,755 53,145 0 0 98 (3/9) 9 (5/5) 68 (5/6) 0 0 0
processing/p5.js-web-editor 1,078 13,557 0 0 18 (2/5) 0 8 (4/5) 0 0 0
open-webrtc-toolkit/owt-server 1,057 49,568 0 0 8 (5/5) 1.(1/1) 3 (3/3) 0 10/1) 0

The Uncovered queries (S5) smell was detected in every
project, suggesting that the projects did not systematically
declare indexes for each query.

Querying too much data (S3) was also detected in each
project. This smell has the most instances (696). Interest-
ingly, we found numerous cases in test files. An example
in HabitRPG/habiticdd illustrates this: a User document is
retrieved on line 2083, and until the unit test ends on line
2085, only one attribute is accessed: items.mounts. To
gain test performance, a projection should be used to return
only this particular field.

Fig. 3 reports the result of the evolution analysis for the
five projects. We observe a constant increase in the num-
ber of smell instances across all projects. The two largest
projects, Countly/countly-server and HabitRPG/habitica count
the highest proportion of Uncovered query (S5). However, it
may be deliberate by the maintainers: as the number of indexes
grows within a system, so does the memory size they occupy.
Developers might consider a trade-off between storage space
and execution time, which is impossible to assess statically.
nodemailer/wildduck has a similar proportion of Uncovered
queries. Nevertheless, this can be a good indicator for devel-
opers who may not know whether a query is appropriately
indexed, and it can help them diagnose a slow query.

We can also spot a sizeable prominence of the Querying
too much data (S3) smell in all projects.

It can be explained by developers’ ignorance about the pro-
jection concept or, while not being accessed, documents being
saved as such by a user-defined function. Further investigations
are needed to figure out the main cause. processing/p5.js-web-
editor and open-webrtc-toolkit/owt-server experience abrupt
evolution due to the low number of data points.

Overall, SMEAGOL allowed us to uncover an evolution of
code smells with a constantly growing number of instances in
the five projects. It may indicate that developers are unaware
of those smells and require guidance to discover and fix them.

V. RELATED WORK

Several approaches and tools exist for identifying issues in
database communication.

Van Den Brink et al. analyzed SQL queries within PL/SQL,
COBOL, and Visual Basic systems [25]]. Nagy et al. pro-
posed SQLInspect to detect the SQL antipatterns defined
by Karwin [12] within Java programs [14]. Chen et al. fo-
cused on detecting antipatterns in systems utilizing Object-
Relational Mapping (ORM) [26]]. In their subsequent research,
they explored the performance implications of redundant data
accesses and investigated how web applications could be
enhanced by refactoring performance antipatterns [27]]. Lyu
et al. developed SAND, a static analysis tool to detect SQL
antipatterns in mobile apps [28].



Yang et al. relied on dynamic analysis to identify ORM
performance antipatterns in Ruby on Rails applications [29].
Later, they introduced PowerStation, an IDE plugin for
RubyMiner, which detects ORM inefficiencies and suggests
fixes to developers [30]. Yan et al. proposed a static analysis
method to pinpoint and address ORM issues in Ruby on Rails
applications [31]].

The closest existing tool is MongoDB Atlas, a cloud
database service for database deployment and managementm
Among its many features, it can detect MongoDB Schema
Design Anti-Patterns [[16] directly from the data. In contrast to
Atlas, SMEAGOL statically detects smells in the application
source code, without accessing the data stored in the database.

VI. CONCLUSION

We presented SMEAGOL, a static analysis tool to detect
MongoDB code smells in JavaScript projects that use the
Native MongoDB Driver or Mongoose. It relies on multiple
CodeQL queries, each dedicated to detecting a particular
smell. We defined 8 smells from a research paper, books
and official MongoDB articles. SMEAGOL leverages CodeQL
dataflow analysis and classes to extract information about the
document data structure from the database access code, further
refining the detection process. Applying SMEAGOL to five
open-source projects allowed us to detect instances of each
code smell, and to observe a high prevalence of two smells
and a constant growth in smell instances over time.

While SMEAGOL showed its potential through a prelim-
inary evaluation, more work needs to be done to increase
its usefulness for developers. For instance, CodeQL sup-
ports many programming languages, and we implemented
SMEAGOL for JavaScript. Each language has peculiarities,
but the core API is generic, and the approach could also be
adapted to other languages. In the future, we plan to extend the
number of projects analyzed to conduct a more comprehensive
evaluation, assess its limitations, and have a better glimpse at
the community’s MongoDB code smell awareness. We also
plan to extend the supported code smell catalog systematically.
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